Poster: Your Gesture Can Prevent Oops Moments in Online
Meeting

Ashutosh Kr Sinha
ashutosh_2421cs13@iitp.ac.in
IIT Patna, India

ABSTRACT

The rapid advancements in network and communication technolo-
gies have enabled numerous applications that enhance human in-
teraction, with online meetings being one of the most significant.
These virtual meetings proved invaluable during the COVID-19
pandemic, allowing people to stay connected despite physical dis-
tancing. However, such meetings also increase the likelihood of
"Oops moments," particularly when participants are distant from
their input devices. This work presents a smart application that
recognises hand gestures to prevent embarrassing moments during
online meetings. The system provides seamless control over key
meeting functions, such as toggling the microphone and camera,
taking screenshots, and starting/stopping recordings, all through
simple hand gestures. In a survey of 20 participants, 95% found the
application effective in improving their meeting experience.

CCS CONCEPTS

« Computing methodologies — Image and video acquisition.

KEYWORDS

Gesture, Online Meeting, Oops moments, Video

1 INTRODUCTION

Non-verbal communication (NVC) plays a crucial role in conveying
over 65% of information, compared to just 35% transmitted through
verbal communication. Among the various forms of NVC, Hand
Gesture Recognition (HGR) has emerged as a prominent and prac-
tical method for interacting with smart devices, such as televisions,
computers, and home appliances, air conditioners, enabling control
over functions like fan speed and ambient temperature settings [2].
As aresult, HGR has become a key research area that leverages sen-
sor technology and computer vision. Although vision-based HGR
systems exhibit superior accuracy, they require substantial compu-
tational resources [1]. Nonetheless, effective HGR techniques are
essential for enhancing human-computer interaction (HCI), provid-
ing intuitive, non-traditional interfaces that bypass conventional
input devices like keyboards and mice [2].

Online meetings and virtual collaboration have become essential
for remote communication across sectors, from corporate settings
to educational institutions. The global COVID-19 pandemic high-
lighted their critical role in enabling seamless collaboration without
the need for physical presence. However, the convenience of online
meetings also brings the risk of unintended interruptions or embar-
rassing “Oops moments,” such as forgetting to mute the microphone
or inadvertently leaving the camera on (as illustrated in Figure 1
sourced from YouTube!). These issues are even more challenging

https://www.youtube.com/watch?v=NbIRUTp60WI

Rahul Mishra
rahul_mishra@iitp.ac.in
IIT Patna, India

Hari Prabhat Gupta
hariprabhat.cse@iitbhu.ac.in
IIT (BHU) Varanasi, India

Figure 1: A snapshot of an "Oops moment" during an online
meeting, sourced from YouTube.

when users are away from their input devices, making it difficult to
control features like the microphone or camera quickly. As reliance
on remote communication platforms continues to grow, there is a
clear need for intuitive, hands-free solutions that allow participants
to manage meetings effortlessly and prevent disruptions.

This poster presents Meet-Assist, a smart application designed
to reduce the risk of embarrassing "Oops moments" during on-
line meetings by utilizing hand gesture recognition for controlling
key functionalities. The system, built using OpenCV and Medi-
aPipe, allows users to control essential features such as muting and
un-muting the microphone, turning the camera on or off, taking
screenshots, and managing recordings—all through simple hand
gestures, like raising a certain number of fingers. This approach
eliminates the need for direct interaction with input devices like
the keyboard or mouse, ensuring a more seamless and intuitive
experience. In addition to gesture control, the system incorporates
a predictive mechanism that analyzes minimal user gestures to
anticipate and prevent potential Oops moments before they occur.

2 METHODOLOGY

The architecture of Meet-Assist consists of three core modules:
(a) Gesture Detection Module, (b) Control Interface, and (c) Oops
Moment Prediction Module.

2.1 Gesture Detection Module

We utilize a Convolutional Neural Network (CNN) to recognize
hand gestures based on video input. Let x; represent the video
frame at time ¢, and g; denote the corresponding hand gesture in
that frame. The CNN model is defined as a function f(-), which
takes an input image x; and outputs the probability distribution
over the possible gestures:

P(gtlxt) = f(xt). 1)

https://www.youtube.com/watch?v=NblRUTp60WI

The model is trained on a dataset D = {(x;,gi)}-,, Where each
sample consists of a frame x; and its corresponding gesture label

gi- The objective is to minimize the cross-entropy loss:

n K
L=->"%"1(gi = k) log P(g; = klxs), ®)
i=1 k=1
where K is the number of possible gestures, and 1 is the indicator
function. The trained CNN model is fine-tuned using real-time
participant data to ensure high accuracy during live meetings.

2.2 Control Interface

Recognized gestures are translated into system commands through
a mapping function ¢(-), where each gesture is mapped to a corre-
sponding action. The interface communicates with online meeting
platforms via their APIs. In cases where direct API integration is
unavailable, the system simulates necessary keyboard or mouse
actions ¥/(-) to perform the mapped commands. Figure 2 illustrates
several examples of operations carried out using hand gestures
with the developed application. A sample video demonstrating
these features is available at?.

(a) (c) (d)

Figure 2: Illustration of the developed application showcas-
ing various fingers performing different actions: a) launching
the application, b) displaying captured images, c) initiating
video recording, d) taking a screenshot.

2.3 Oops Moment Prediction Module

Based on recent user actions, the Oops Moment Prediction Module an-
ticipates potential mishaps (like leaving the microphone unmuted).
Let A; = {aj,a,...,am} be the set of actions the user performs
at time ¢. A risk score R(A;) estimates the probability of an Oops
moment occurring:

m

R(A) = — 3" 1(ai € O),)
=

where O represents risky actions (e.g., an open mic at an inappro-

priate time). If R(A;) surpasses a predefined threshold Ry, the

system alerts the user to avoid potential disruptions. Algorithm 1

outlines the flow of real-time hand gesture recognition, command

execution, and Oops moment prediction.

3 RESULTS AND DISCUSSION

To verify the efficacy of the proposed system, we surveyed with
20 participants, focusing on various aspects of user experience. As
shown in Table 1, the participants provided overwhelmingly pos-
itive feedback across key categories such as navigation, loading
speed, suitability, overall design, interface, and overall experience.
Specifically, 95.7% of the responses were positive, indicating a high

https://drive.google.com/file/d/1KUoiaJlzCGEc1H_LStq2txX394-ugXsq/view?usp=
sharing

Mishra, et al.

Algorithm 1: Meet-Assist: Gesture-Based Control and
Oops Moment Prediction

Input: Video feed V, Pretrained gesture recognition model f(-),
Set of recognized gestures G = {g1, 92, - . ., gk }» Meeting
platform API (), Risky actions set O, Action history Ay;

Output: Gesture-based control in online meetings, Oops moment

warning;
1 Initialize system: Load gesture model f (-), define
gesture-to-command mapping ¢(g;);
2 while meeting is ongoing do

3 Capture frame x; from video feed V;

4 Perform gesture recognition: P(gs | x;) = f(xz);

5 if g; exceeds confidence threshold T then

6 Map gesture to command: command « ¢(g;);
7 Execute command: ¢/ (command);

8 Log action a; in Ay;

9 Calculate Oops risk score using (3);
10 if R(A;) > Ry, then

| ‘ Issue Oops moment warning to user;

level of user satisfaction, with the system scoring particularly well
in navigation, suitability, and overall experience. A small portion
(4.3%) of the feedback indicated a need for improvement, mainly in
loading speed and the visual appeal of the interface. These results
highlight the system’s robustness in providing a smooth and intu-
itive user experience while leaving room for minor enhancements.
Table 1: Responses from 20 participants. Nav. = Navigation,
LoadS. = Loading Speed, Suitab. = Suitability, OD = Overall
Design, Inter. = Interface, and OE = Overall Experience.

Response | Nav. Loads. Suitab. OD
Postive 19/20 18/20 20/20 19/20
Need Impv. | 1/20 2/20 0 1/20
Response | Inter. | Appealing OE Total
Postive 20/20 18/20 20/20 134/140=95.7%
Need Impv. 0 2/20 0 6/140=4.3%

To evaluate the performance of the proposed hand gesture recog-
nition system, we measured the accuracy of the CNN model in
recognizing different finger counts. As illustrated in Table 2, the
model achieved high accuracy across all finger counts. Specifically,
the system performed best in recognizing five fingers, with an ac-
curacy of 98%, followed by four and three fingers, each at 96%.
The accuracy slightly decreased to 94% for two fingers and 91%
for a single finger. These results demonstrate the robustness of the
CNN model in accurately detecting hand gestures, confirming its
effectiveness in real-time gesture-based controls.

Table 2: Illustration of the accuracy percentage in recognizing
different finger counts using the CNN model.

No. of fingers 5 4 3 2 1
Accuracy of CNN | 98% | 96% | 96% | 94% | 91%
REFERENCES

[1] Haoming Liu and Zhenyu Liu. 2023. A Multimodal Dynamic Hand Gesture
Recognition Based on Radar-Vision Fusion. IEEE Transactions on Instrumentation
and Measurement 72 (2023), 1-15.

[2] Jungpil Shin, Abu Saleh Musa Miah, Md. Humaun Kabir, Md. Abdur Rahim, and
Abdullah Al Shiam. 2024. A Methodological and Structural Review of Hand
Gesture Recognition Across Diverse Data Modalities. IEEE Access (2024), 1-34.

https://drive.google.com/file/d/1KUoiaJIzCGEc1H_LStq2txX394-ugXsq/view?usp=sharing
https://drive.google.com/file/d/1KUoiaJIzCGEc1H_LStq2txX394-ugXsq/view?usp=sharing

	Abstract
	1 Introduction
	2 Methodology
	2.1 Gesture Detection Module
	2.2 Control Interface
	2.3 Oops Moment Prediction Module

	3 Results and Discussion
	References

