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Abstract
As microcontrollers become more capable, embedded systems are
taking on increasingly complex responsibilities. As this trend con-
tinues, these embedded systems are shifting towards multi-tenancy.
It’s common to see these applications include multiple components
from untrusted parties, running simultaneously on the same hard-
ware. This poster discusses the challenges of designing an interface
for persistent storage on a multi-tenant embedded system. In ad-
dition, it examines a minimal implementation and evaluates its
successes and shortcomings.

CCS Concepts
• Computer systems organization→ Embedded software; •
Security and privacy → Operating systems security.
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1 Introduction
Multi-tenant systems have unique resource sharing requirements:
they must virtualize and fairly share often limited resources while
also maintaining confidentiality between users. Historically, em-
bedded systems have been single tenant. They are usually relatively
simple and deployed for single-purpose applications. Recently, more
embedded systems are becoming increasingly complex and see the
need for multiprogramming. With this new reality, these systems
are becoming multi-tenant as developers incorporate more third-
party components to run on these devices.

This poster will focus on the ideal interface for persistent storage
on multi-tenant embedded systems. It will put forward the ques-
tions facing designers and explore how existing persistent storage
systems handle them. Then we will dive into how those questions
are answered in the context of a minimal implementation for a
secure embedded operating system: TockOS.

2 Background
When it comes to persistent storage, many embedded systems pro-
vide no isolation at all. This might be adequate for single-tenant
systems, where the entire platform is known and trusted.

On multi-tenant systems it is desirable to ensure confidentiality
of sensitive data across applications. In the context of persistent
storage, this means that each app should not be able to read or
modify another app’s persistent storage. In this multi-tenant envi-
ronment, each app is an untrusted entity. They could be written by
third-parties and be potentially malicious or buggy. Say that there
are multiple apps running on the same board. One app might save

sensitive cryptographic keys so it can retrieve them across reboots.
If all apps have unrestricted access to flash storage, another app
could read that key, breaking confidentiality and opening the door
for a whole class of malicious activity.

3 Design Considerations
When setting out to implement such a persistent storage system, a
few questions must be answered. This section will explore these
concerns and examine how many traditional desktop and mobile
operating systems handle them.

3.1 App Interface
When designing a storage system, it is crucial to have an interface
that is intuitive while still providing the necessary functionality.
The designer must decide the best way to have apps interact with
locations in storage. Single-tenant embedded systems might only
use a barebones interface where apps can directly refer to physical
storage addresses.

Many operating systems organize their physical storage into a
hierarchical filesystem. From the app’s perspective, they can open a
file, seek to an offset, and start reading or writing. This abstraction
also allows for apps to organize logically related information in
separate files. All the while, don’t have to worry about where their
data actually gets physically stored.

3.2 Isolation Model
On multi-tenant systems, it’s crucial to pick the right level of isola-
tion to fit the system needs and threat model.

On UNIX-based operating systems, the isolation barrier is de-
fined between users and groups instead of processes. Each file or
directory has permissions that dictate which user owns it and how
much permission various entities on the system have. This provides
a great deal of flexibility for defining exactly what each entity can
do with each file.

Some platforms take this a step further and provide a stronger
isolation model using sandboxing. The iOS mobile platform has
a filesystem, however it only allows apps to access files that are
within that app’s sandbox. [1]

3.3 Retention Model
Once a system has determined how to store and update its persistent
storage, it must attempt to answer the question of when it’s safe
to delete data that isn’t deemed necessary. On some systems with
limited storage space, it might make sense to occasionally clean
out storage space or move it somewhere else.

On desktop and server classes of computers, storage is usually
plentiful and the system will not start clearing user files on its own.
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Figure 1: Layout of multiple app regions in persistent storage

Storage is only cleared with explicit user permission to delete the
data. Mobile devices still mostly stick to this paradigm; however,
their storage space can be much more limited. To combat this, they
might occasionally offload on-device data to a form of cloud storage.
One example of this is iOS’s "Optimize iPhone Storage" which will
upload larger, high resolution photos to iCloud while keeping small,
low resolution thumbnails on device. [2]

4 Minimal Implementation
For TockOS, we’ve implemented a persistent storage interface
which provides strong isolation between apps. As mentioned, Tock
is a multi-tenant system where each "tenant" is not trusted. This
section examines how this implementation addresses the previous
questions and where its shortcomings lie.

Apps are permitted to perform read and write operations starting
at a specified offset address and continuing for a given length. Apps
use logical addresses, meaning their storage starts at address 0
regardless of where their data is physically located. This logical
addressing reduces complexity for apps since they don’t need to
worry about where their data is relative to other apps’.

With this implementation, we’ve chosen to split up the physical
storage space into fixed-size regions that exclusively belong to a
single app. Unlike what most filesystems do, each app can only have
ownership of a single region. The main limitation of this design is
that apps cannot grow their storage size. They are given a single
fixed-size region and have no ability to resize it. This decision was
made to limit complexity of this initial implementation. Future
implementations, should consider adding an interface for apps to
request more space.

With that being said, this fixed size can be customized in the ker-
nel at compile-time to allow for larger regions. Note that changing
the size only is reflected for new regions that are created afterwards.
Any existing region will keep its previous size. To accommodate
potential discrepancies in region size, a header is written to the
start of each region to describe its length as shown in Figure 1

When it comes to isolation, the Tock kernel enforces isolation
between regions on every read and write. Apps are not trusted and
therefore should not be able to access another app’s persistent data.
To enforce this, it uses each region’s starting and ending addresses
to perform the appropriate bounds checks.

One challenge in the implementation process was preserving
ownership data across reboots. When the kernel boots up, it is
unware to which apps had previously owned the storage regions.
To aid the kernel, ownership data is stored in the header of each

region as shown in Figure 1. Specifically, a 32-bit value called a
"ShortID" is written to this header. A ShortID is assigned to each app
by the Tock kernel and it carries the property that it is persistent
across reboots. [3]

With regards to data retention, this implementation does not
make an attempt to clear out existing data. While this means that
no data will be lost or deleted, it does prove problematic as space
fills up over time. If a user removes apps from their board and flash
new apps, those old app regions will not get automatically removed
and new app regions will be allocated to take up even more space.
This problem is exasperated with the extremely limited storage
capacity of embedded systems.

For embedded devices which are expected to run for long periods
of time, it might make sense to rethink the data retention policy.
While thinking about this problem, one idea that was brought
forward was to present a programmatic interface for apps to give up
their own storage space. While this would be a simple solution that
could solve the issue of limited space, we thought that it wouldn’t be
a common enough scenario to be useful. Most apps using persistent
storage will just save some data and let it sit there forever. There
usually isn’t a case where they will delete their own data and give
it up to another app. Another approach could be to clear inactive
app regions that haven’t been accessed for some period of time.
Once a region is cleared, it could be handed off to any other app
that requires storage space. This requires apps to consent to their
storage being cleared, which might not apply to all use cases.

5 Conclusion
In the case of persistent storage for TockOS, the "right" abstrac-
tion is still yet to be realized. What currently exists, is a simple
implementation that guarantees isolation. However, it is limited by
the fact that app regions cannot be dynamically resized and that
there is no mechanism to free up existing regions. With future up-
dates guided by discussion and community insight, we can iterate
upon this minimal implementation to meet the needs of such a
multi-tenant embedded system.
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