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ABSTRACT
mmWave-based 3D human pose estimation is gaining popularity
due to its non-intrusive nature and privacy-preserving capabilities.
However, understanding the inner workings of these black-box
models remains a challenge, especially with the unreliable and
inconsistent signals from mmWave sensing. In this paper, we pro-
pose a new metric to quantify model behavior and systematically
analyze the predicted pose joints. Our findings show that reveal-
ing hidden correlations between radar inputs and pose predictions
can significantly enhance tasks such as human activity recogni-
tion. Incorporating this characterized information into the input of
downstream model improves accuracy by 9.21%.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization → Embedded and
cyber-physical systems.
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1 INTRODUCTION
As mmWave sensing matures, its applications in human-centric
tasks are expanding. Ensuring the accuracy of core tasks like hu-
man pose estimation is crucial to prevent errors from affecting
downstream applications such as gait analysis [1], patient moni-
toring [6], and posture tracking [5]. Unfortunately, state-of-the-art
mmWave-based human pose estimation models [3, 4, 10] struggle
with downstream activity recognition tasks, despite their impres-
sive skeleton-wise accuracy. This is especially true when certain
activity-specific joints are poorly predicted, resulting in suboptimal
inputs for downstream models.

We observe that, while thesemodels produce accurate poses, they
often rely more on prior knowledge of human body structure and
typical poses than on sensor signals, particularly when the reflected
signal is sparse. Understanding these inherent model biases and
characterizing the behavior of pose estimation models remain open
challenges.

Although model bias is a known phenomenon with several miti-
gation techniques [3, 4, 8–10], it is somewhat inevitable in the con-
text of mmWave sensing. mmWave radar receives highly unreliable
and inconsistent reflections off the human body [2, 7]. In real-world
settings, it is practically impossible to position the radar to receive
adequate signals from all parts of the body, even when signal qual-
ity is augmented with software and hardware techniques [8, 11].
If a model relies solely on mmWave signals without prior knowl-
edge, it may never fully learn the concept of pose due to the lack of

dense signals from all body parts. Therefore, instead of attempting
to eliminate this bias, we propose to characterize it and make it
explicit in the predicted pose.

By clarifying how each body joint is estimated—whether it is
sensed by the radar or generated based on statistical prior knowl-
edge—we observe a significant improvement in the accuracy of
downstream activity recognition. The recognizer benefits from the
additional information on joints, enabling it to make more accurate
predictions by understanding the precise distribution of bias in the
pose estimator.

2 JOINT CHARACTERIZATION
Pose estimation using mmWave signals involves predicting the
3D coordinates of 19-22 body joints, such as the head, shoulders,
elbows, knees, and ankles. A model’s accuracy is generally assessed
based on joint estimation error, which is the distance between
the predicted joint coordinates and the ground truth. If this error
falls below a certain threshold, the joint is classified as positive;
otherwise, it is classified as negative. However, this metric does
not account for whether the joint was estimated using actual radar
signals or if it was inferred from the model’s prior knowledge.
Even if the model makes accurate predictions, its internal decision-
making process remains opaque, making it challenging to fully
understand how it operates.

By utilizing both signal data and ground-truth joint coordinates,
we can gain insight into the model’s behavior. Using the inverse
square law, we can quantify how much the signals contribute to
each joint’s estimation. For each joint, we define signal strength as∑𝑁
𝑛=1

𝐼𝑛
𝑑2
𝑗,𝑛

, where 𝑁 is the number of points in the mmWave point

cloud, 𝐼𝑛 is the intensity of the signal, and 1/𝑑2
𝑗,𝑛

is the normalized
inverse squared distance between joint 𝑗 and point 𝑛. If the sig-
nal strength exceeds a defined threshold, the joint is considered
sensed by the radar. Some joints may be indirectly sensed if their
coordinates can be derived from another directly sensed joint.

We classify each joint into one of four categories based on the
accuracy of the predicted coordinates and the signal strength at
that joint. Figure 1 (left) shows these four categories, defined as
follows:

• Surprise Positive: Joints correctly estimated (close to ground truth)
but not sensed (directly or indirectly).

• Surprise Negative: Joints incorrectly estimated (far from ground
truth) despite being sensed (directly or indirectly).

• Expected Positive: Joints correctly estimated (close to ground
truth) and also sensed (directly or indirectly).

• Expected Negative: Joints incorrectly estimated (far from ground
truth) and not sensed (directly or indirectly).
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Figure 1: Joint types and their distribution for MARS model.

Model Dataset #Surprise
Positive

#Surprise
Negative

#Expected
Positive

#Expected
Negative

MARS (CNN-depth 6) MARS 46,740 26,702 42,158 36,096
MARS (CNN-depth 4) MARS 41,009 35,546 33,314 41,827
MARS (CNN-depth 6) mmBody 115,181 35,897 82,239 32,245

mmBody (P4T-2 frames) MARS 67,495 10,833 57,761 14,828
mmBody (P4T-5 frames) MARS 74,230 5,299 62,213 6,838
mmBody (P4T-2 frames) mmBody 112,117 36,748 81,388 35,177
mmBody (P4T-5 frames) mmBody 113,580 36,834 81,302 33,318
mmMesh (3 frames) MARS 68,327 14,786 54,074 14,509
mmMesh (10 frames) MARS 76,909 6,450 62,410 5,927
mmMesh (3 frames) mmBody 113,519 36,427 81,709 33,343
mmMesh (10 frames) mmBody 116,673 37,561 80,575 30,753

Table 1: Distribution of joint types across different model variants and datasets.

Model Input Accuracy
Joint 77.64%

Joint + Label 86.85%
(a) Labeling joints improves
accuracy.

Joint
Label

Surprise
Positive

Surprise
Negative

Expected
Positive

Expected
Negative

#Joint 826 122 73 1,202
(b) A closer look at test cases where joint labeling helped
correct mispredictions.

Table 2: Effect of joint characteristics on activity recognizer.

3 EMPIRICAL STUDY
We examine the distribution of joint types for three leading mod-
els—MARS [3], mmBody [4], and mmMesh [10]—using publicly
available datasets from MARS and mmBody, each captured with
different radar technologies. To ensure fairness and consistency,
the models are trained on the combined training and validation
sets, and evaluated on the test sets. To align mmBody model’s input
format, we omit the initial frames from the input sequences. We
apply thresholds of 10𝑐𝑚 for joint accuracy, −0.25 for MARS signal
strength, and −0.035 for mmBody signal strength, using the nor-
malized square of signal amplitude to measure reflected intensity.

In Figure 1 (right), we present a visualization of the joints cate-
gorized by signal strength and estimation error. The results show
that 30.81% of the joints fall into the surprise positive category
(lower left box), while 17.60% are surprise negative (upper right
box). Table 1 details the joint distributions across all three models
and their variations, spanning multiple datasets. Our analysis re-
veals a significant presence of surprise joints, indicating underlying
model behaviors that recent studies have largely overlooked.

On the MARS dataset, the average number of surprise positive
joints is 62,452, and surprise negative joints is 16,603, representing
54.57% of the total positive joints and 45.35% of the negative joints.
A similar distribution pattern is observed in the mmBody dataset.
Moreover, as the models’ precision improves, the proportion of
surprise positive joints increases, while the number of surprise
negative joints decreases.

We design a 10-class activity recognizer that uses human body
poses, represented by the 3D coordinates of 19 body joints, as input.
The poses are estimated using the pre-trained MARS model, and
the activities are sourced from the MARS dataset, covering both
upper and lower bodymovements. The baseline recognizer achieves
an accuracy of 77.64%. To improve performance, we augment the
model by adding joint types as extra input features, while only
adjusting the input layer to ensure fairness. After training and
evaluating on the same dataset, this modification leads to a 9.21%
improvement in accuracy, as shown in Table 2 (a).

To explore the source of this improvement, we analyze the dis-
tribution of joint types in instances where the baseline model mis-
classifies but the augmented model correctly predicts. As shown
in Table 2 (b), most of the joint labels are either surprise positive
or expected negative. This suggests that the augmented classifier
effectively leverages joint type information to improve activity
recognition, particularly when the input signals are weak. In con-
trast, the baseline model, which relies more on prior statistical
knowledge when signals are sparse, generates poses containing
many expected negative and surprise positive joints. These joint
labels reveal patterns in the model’s correct and incorrect predic-
tions, providing critical information to improve the accuracy of
downstream applications.

4 CONCLUSION AND FUTUREWORK
We introduce a new method to characterize the latent behavior of
current mmWave-based human pose estimation systems by ana-
lyzing the correlation between predicted pose joints and received
signal strength. Additionally, we demonstrate that incorporating
this joint-wise label information with existing inputs can enhance
downstream task. For future work, developing a systematic ap-
proach to generate this information without relying on ground
truth is essential.
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