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Abstract
Intermittently-powered embedded devices ensure forward progress
of programs through state checkpointing in non-volatile memory
(NVM). However, NVM writes are energy-expensive and add to the
execution time of the application. We developed system support
to maximize computational progress by minimizing the need to
perform NVM writes in two ways. First, we focus on optimizing
the reference implementation to allow faster execution which sig-
nificantly reduces the application state to be checkpointed. Second,
we employ a mixed memory model that reduces the update size
at each checkpoint. These design decisions enable us to compute
3.5×-4.4× more challenges than a double buffering-based approach
commonly used in existing literature.
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1 Introduction
Miniaturized mechanical systems have enabled the design of tiny
energy harvesters that help embedded devices eliminate their de-
pendency on traditional batteries [2]. Harvested energy, however,
is generally highly variable across space and time [2]; making pe-
riods of normal computation and periods of energy harvesting to
be unpredictably interleaved. Checkpointing application state over
non-volatile memory (NVM) is required to let the program cross
periods of energy unavailability [1, 5, 7]. Checkpoints often rep-
resent a dominating factor in an application’s energy profile and
subtract from the energy budget that can be used for computations.
Therefore, taming this overhead is crucial in order to maximize
computational progress in a single energy cycle.
Challenges: Checkpointing overhead is defined by two factors:
Volatile application state and frequency of checkpoints.

• Volatile Application State Larger the size of the volatile
application state, the more the checkpointing energy, and
the lesser the energy available for performing program
execution. Therefore, system support is required to track
changes in the application state from the previous check-
points [1] in order to reduce the size of update.

• Checkpointing FrequencyApplications running on battery-
free devices must be instrumented to add system support
that enables resumption of application execution across
each power failure.

Figure 1: Figure shows the checkpointing overhead compared
to the mixed memory model when running the optimized
version of the application.

Figure 1 shows the overhead of a double-buffered approach (com-
monly used by checkpointing [1] and task-based systems [7] for
state retention) compared to direct NVM writes. Double-buffering
forces the system to write 2× the size of volatile state, which sig-
nificantly increases the overhead [4]. The ideal configuration is
to have a differential checkpointing mechanism [1] coupled with
hardware support to trigger checkpointing when the voltage falls
below a software-defined threshold [3]. However, we don’t have
any hardware support for this competition, so we focus only on
software-based solutions.
Solution:We solve the above-mentioned challenges in two ways
to maximize computational progress in each energy cycle. First,
we optimize the reference implementation to employ msp430’s
intrinsic functions and inline assembly instructions that consume a
lesser number of clock cycles compared to the ones generated by
msp430gcc. Second, we employ a mixed-memory model to reduce
the update size at each checkpoint. It allows the system to simply
save the data onto NVM instead of tracking the changes, as required
by some of the existing works [1, 6] thus saving energy.

Optimizing the application significantly reduces the need to
perform a checkpoint, as the application is able to finish multiple
iterations for most energy traces.

2 System Design
Our system profiled the entire application, especially the hot code
paths and functions as most of time is spent executing the instruc-
tions within that path/function. We discuss each step in detail.

2.1 Optimizing SHA-1
Bit rotations, swapping endianess, and string concatenation func-
tions form the core of SHA-1 algorithm. Therefore, we first targeted
functions performing these operations to improve their implemen-
tation.



Saad Ahmed and Josiah Hester

Figure 2: Figure shows the number of correct solutions provided by the application after implementing the optimizations and
mixed memory model for five energy traces, when running for a duration of 60 seconds.

• Bit Rotations: As MSP430 is 16-bit MCU, rotating a long
integer (32-bits) requires data movement that causes signif-
icant degradation in the application execution. Therefore,
we used inline assembly code for performing bit rotation
of long integers by 1, 5, and 30.

• Swapping Endianess: Reversing the endianness of a 32-bit
value not only involves swapping the lower 16 bits with
the upper 16 bits but also requires swapping each byte in
each half. For this purpose, we employedMSP430’s intrinsic
SWAP_BYTES function which is a macro for SWPB instruction.

• String Concatenation: Reference implementation used
snprintf function, which concatenates all strings, even
the ones that did not change from the previous iteration,
thus consuming a lot of clock cycles. We replaced it with a
custom helper function that only concatenates the counter
with the unchanged stamp string, thereby improving per-
formance.

Additionally, we performed loop unrolling for sha_transform func-
tion and avoided memcpy as much as possible.

2.2 Mixed Memory Model
MSP430FR5994 is equipped with amixedmemorymodel that allows
non-volatile (FRAM) and volatile memory (SRAM) to be accessed
as main memory. Using this feature, we designed the system in a
way that maximizes allocation of .data as well as .text sections
onto SRAM so that accesses remain faster and energy-efficient [4].
For this purpose, we profiled application’s execution to find the
best configuration for both data and code placement. We allocated
hot code paths in SRAM as it is faster to execute and placing such
functions in FRAM incurs access latency, especially beyond 8MHz
as it requires a delay cycle. Faster execution significantly reduces
the volatile application state to be retained across reboots which
helps improve performance.

2.3 Results
Figure 2 shows the number of correct solutions for the reference
code, i.e., without optimizations (w/o OPT) and after implementing
optimizations (OPT) and energy-aware mapping of code and data
(MixedMem). The application ran for a duration of 60 seconds on each

of the traces. We can clearly see that the number of correct solutions
provided by the application is at least 2.7× more than that of the
reference code on all of the traces. We can also observe that the
reference code could not finish one iteration for SuperCap_500_50.
However, after optimizations, it was able to finish one iteration, and
with state-retention, it was able to provide 517 correct solutions.

Figure 1 shows that, with all optimizations and mixed memory,
our design decisions enable us to compute 3.5×-4.4× more chal-
lenges than a double buffering-based approach commonly used in
the existing literature [1, 7].

2.4 Conclusion
We designed system support to enable speedup computations to pro-
vide a hashcash solution for different difficulty levels. We showed
that we can compute at least 2.7× more number of solutions com-
pared to the reference implementation. This improvement stems
from system’s ability to perform faster execution and avoid appli-
cation state tracking by employing a mixed memory model.
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