
Competition: Leveraging Hibernus to Manage Intermittent Power
Supply During Hashcash Computation

Firdaus Ritom

mohd-firdaus.hirman-

ritom@newcastle.ac.uk

Newcastle University

United Kingdom

Sergey Mileiko

serhii.mileiko@newcastle.ac.uk

Newcastle University

United Kingdom

Domenico Balsamo

domenico.balsamo@newcastle.ac.uk

Newcastle University

United Kingdom

Abstract
This is the abstract of Team 13’s solution for the EWSN Sustain-

ability Competition. Our solution utilizes Hibernus, an approach

that detects imminent power losses and saves a snapshot of the sys-

tem’s state to non-volatile memory (FRAM) just before the power

is lost. When power is restored, the system resumes from the saved

state, ensuring seamless continuation of computations. In addition,

we optimized the execution of the Hashcash algorithm by adjust-

ing compiler settings and employing XOR shifts for more efficient

random searching of the correct Hashcash solution. These optimiza-

tions slightly accelerated the process of searching for the correct

Hashcash solution. The overall results showed that while Hibernus

introduced some computational overhead due to internal voltage

monitoring, it successfully saved and resumed Hashcash operations

under a sinusoidal power profile.

CCS Concepts
• Computer systems organization→ Embedded software.

Keywords
Energy harvesting, Intermittent computing, Embedded software

1 Introduction
There is increasing interest in promoting sustainability in the In-

ternet of Things (IoT) by replacing battery-powered devices with

low-power intermittent systems. Paper [5] introduces E-Cube, a re-

mote benchmarking facility designed to evaluate the computational

performance of battery-less intermittent devices.

E-Cube serves as the foundation for the sustainability competi-

tion at the EWSN 2024 conference, which aims to stress-test solu-

tions using this facility [4]. Each team is tasked with developing

software capable of performing Hashcash computations while man-

aging various power profiles to simulate intermittent power supply

conditions.

Hashcash is a proof-of-work algorithm designed to impose com-

putational costs as a deterrent to email spamming [1]. The system

must find a Hashcash solution such that the hashed output has a

specific number of leading zero bits, based on the assigned difficulty

level. In the competition, the format for the Hashcash solution or

stamp is provided below:

𝑣𝑒𝑟 : 𝑏𝑖𝑡𝑠 : 𝑑𝑎𝑡𝑒 : 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 : 𝑒𝑥𝑡 : 𝑟𝑎𝑛𝑑 : 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (1)

where 𝑣𝑒𝑟 is always "1", 𝑏𝑖𝑡𝑠 is difficulty level (1 byte), 𝑑𝑎𝑡𝑒 is fixed

"24015" string, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 is a challenge string (15 bytes), 𝑒𝑥𝑡 is empty

and 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is user generated number [4].

In addition to implementing the Hashcash algorithm, the com-

petition requires teams to read from and write to external FRAM

via I2C. The "𝑏𝑖𝑡𝑠" and "𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒" data are read from the external

FRAM at address 0x50, while the solved Hashcash solution must be

written to the external FRAM at address 0x51. The main objective

of the competition is to solve as many challenge strings as possible,

provided by the external FRAM, within a fixed duration and under

varying power profiles.

Due to intermittent nature, the system must save its Hashcash

computation progress and resume when power returns. For our

solution, we implemented Hibernus, an approach developed by

Dr. Domenico Balsamo, one of our team members, as introduced

in [2]. Hibernus saves the system’s state to non-volatile memory

(NVM) just before power loss, entering a low-power mode. When

power is restored, Hibernus restores the system state and resumes

computation seamlessly. Since Hibernus saves and restores system-

level registers, it is application-agnostic and can be used across

different programs. This approach is further discussed in Section 2.1.

We implemented optimizations to enhance the performance of

Hashcash computation. These include migrating from the Ener-

gia IDE to Code Composer Studio (CCS), adjusting the compiler

optimization level, and changing the "counter" values randomly

instead of incrementing sequentially. These optimizations were

made to increase the number of Hashcash solutions found. Detailed

explanations of these methods can be found in Section 2.2.

2 System Design
The test platform was set up using an MSP430FR5994 microcon-

troller (MCU) connected to a power supply via a Schottky diode [4].

The competition provided an initial version of the Hashcash appli-

cation, compiled for the Energia IDE. Section 2.1 covers the imple-

mentation of Hibernus, while Section 2.2 outlines the optimization

strategies we applied.

2.1 Hibernus Implementation
Hibernus requires specific voltage threshold levels, 𝑉𝑆 and 𝑉𝑅 , to

indicate when to trigger the saving and restoring of the system

state. This necessitates constant monitoring of the input voltage,

𝑉𝑐𝑐 . However, during this competition, we were unable to create

an external voltage divider connected to the Analog-to-Digital

Converter (ADC) input pin, as described in paper [2]. Therefore,

we needed an internal method to monitor 𝑉𝑐𝑐 .

The MSP430FR5994 features a built-in, configurable 12-bit ADC

module (ADC12_B). To monitor 𝑉𝑐𝑐 internally, we configured 𝑉𝑐𝑐

as the reference voltage and set an internal reference voltage of 1.2𝑉

at the ADC input channel. This configuration allows for accurate



Ritom et al.

𝑉𝑐𝑐 measurements between 1.8𝑉 and 2.2𝑉 , enabling lower 𝑉𝑠 and

𝑉𝑅 values for a broader operating range during computations. We

enabled the ADC12_B interrupts ADC12HIIE and ADC12LOIE to

trigger saving and restoring, respectively. ADC measurements are

taken every 100𝑚𝑠 using the built-in timer module, Timer_A1.

To save the system state, since the operating voltage of the

MCU is 1.8𝑉 , we set the ADC12LOIE trigger to 1.9𝑉 . The internal

FRAM is utilized as non-volatile memory (NVM) for saving the

system state. We save core registers (R1-R15), the stack pointer (SP),

general-purpose registers (GP), and RAM into FRAM, creating a

snapshot. Memory blocks of 4 bytes are compared with the previous

snapshot to identify any differences, reducing the number of writes

during the saving process. After saving, the MCU enters low power

mode (LPM4).

To restore the system state, we configured ADC12HIIE to trigger

at 2.1𝑉 . When this voltage is reached, the MCU exits LPM4 and

begins reading from the internal FRAM to restore the system state

from the saved snapshot. Since the SP, core registers, and RAM

have been restored and the GP registers have been reconfigured, the

MCU can resume executing the previous cycle’s instructions. This

makes the Hibernus method application-agnostic, as no changes to

the application are necessary.

2.2 Hashcash optimization
As mentioned in Sec. 1, several optimizations were made to increase

Hashcash solutions. Due to Energia IDE’s limited configuration

capabilities on the MSP430FR5994 platform, we ported the code to

CCS, which offers more control over memory and compiler settings.

The CCS linker command file allowed us to define a fixed FRAM

memory region for system state saving. Additionally, CCS compiler

settings enable us to balance size and speed so we set the speed

optimization level to maximum
′
5
′
as application size is small.

During Hashcash computation, the stamp changes each time a

solution is not found. In initial Hashcash application, the "𝑐𝑜𝑢𝑛𝑡𝑒𝑟 "

portion of the stamp was incremented by 1 until a solution was

discovered. To hasten the search, we modified the approach to

randomly change the "𝑐𝑜𝑢𝑛𝑡𝑒𝑟 " using the XOR shift method, as

introduced in [3]. This method generates a random number quickly

by performing three shifts: first, it left shifts the number by 13

bits, then right shifts by 17 bits, and finally right shifts by 5 bits.

This combination was determined to be optimal for producing

randomness [3]. Utilizing the XOR shift method helps to evenly

distribute the search for the correct "𝑐𝑜𝑢𝑛𝑡𝑒𝑟 " value increasing the

probability of quickly finding the Hashcash solution.

3 Current Results
This section discusses the measurements taken during development

and compares the initial and latest code versions. Measuring the

saving time of Hibernus was crucial, as the system needs to save

its state before the power supply drops below operational levels.

It was found that saving the states to FRAM took approximately

7𝑚𝑠 , while it took about 11.45𝑚𝑠 for the voltage to drop from 3𝑉 to

1.8𝑉 when the supply was abruptly turned off. The saving time for

Hibernus is adequate to handle square waveform power profiles.

Table 1 shows the comparison between the initial code and the

latest version regarding the number of Hashcash solutions solved

Table 1: Hashcash performance for each power profiles

Power Profile Duration No. of Hashcash Solved
(s) Initial code Latest code

Constant 120 734 633

Sinusoidal 120 199 347

Duty50_60 120 442 341

Sinusoidal 300 199 538

Duty50_60 300 442 341

under various power profiles and testing durations. With a constant

power supply of 3𝑉 for 120 seconds, the latest code produced a

lower number of Hashcash solutions. This decrease is attributed

to the additional initialization processes for the ADC and Timer

modules, as well as the interrupts triggered every 100𝑚𝑠 for 𝑉𝑐𝑐
monitoring. Additionally, using the XOR shift method instead of

incrementing the "𝑐𝑜𝑢𝑛𝑡𝑒𝑟 " by 1 resulted in an increase in Hashcash

solutions from 627 to 633 during tests with a constant power supply

over 120 seconds.

The sinusoidal power profile demonstrated the system’s capabil-

ity to handle intermittency. In the initial code, the system yieled

the same number of solutions for 120 seconds and 300 seconds

durations. However, the Hibernus yielded more Hashcash solutions

when increasing from 120 seconds to 300 seconds under the sinu-

soidal power profile confirming that Hibernus could successfully

save and restore the system state.

Hibernus unable to handle Duty50_60 power profile (50% duty

cycle square waveform), as there was no increase in Hashcash

solutions when duration was extended. This issue stemmed from

the slow sampling time of the ADC module, which monitors 𝑉𝑐𝑐

every 100𝑚𝑠 . MCU was unable to quickly save the system state,

especially since the voltage drops from 3𝑉 to 1.8𝑉 in just 11.45𝑚𝑠 .

4 Conclusions
The current implementation of Hibernus is capable of handing

intermittent power supply. However, it has limitation for worst

case scenario such as abrupt power loss. Further enhancements can

be made by changing the 𝑉𝑆 and 𝑉𝑅 as well as the sampling rate to

monitor 𝑉𝑐𝑐 .

5 Acknowledgment
This work is supported by the UK EPSRC NIA EP/W022877/1 and

UK EPSRC IAA EP/X525601/1, the British Academy’s Researchers

at Risk Fellowship.

References
[1] Adam Back. 2003. Hashcash. http://www.hashcash.org/.

[2] Domenico Balsamo et al. 2015. Hibernus: sustaining computation during inter-

mittent supply for energy-harvesting systems. IEEE Embedded Systems Letters,
7, 1, 15–18. doi: 10.1109/LES.2014.2371494.

[3] George Marsaglia. 2003. Xorshift rngs. Journal of Statistical Software, 8, 14, 1–6.
doi: 10.18637/jss.v008.i14.

[4] Markus Schuß. 2024. Ewsn’24 sustainability competition: competition format &

how to use the e-cube testbed. https://iti-ecube.tugraz.at/wiki/images/f/f5/Ecub

e_tutorial.pdf.

[5] Markus Schuß and Carlo Alberto Boano. 2024. E-cube: towards a first bench-

marking facility for battery-free systems. In Proceedings of the 2024 International
Conference on Information Technology for Social Good. Association for Computing

Machinery, New York, NY, USA, 399–403. doi: 10.1145/3677525.3678688.

http://www.hashcash.org/
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.18637/jss.v008.i14
https://iti-ecube.tugraz.at/wiki/images/f/f5/Ecube_tutorial.pdf
https://iti-ecube.tugraz.at/wiki/images/f/f5/Ecube_tutorial.pdf
https://doi.org/10.1145/3677525.3678688

	Abstract
	1 Introduction
	2 System Design
	2.1 Hibernus Implementation
	2.2 Hashcash optimization

	3 Current Results
	4 Conclusions
	5 Acknowledgment

