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ABSTRACT
Adversarial attacks pose a significant threat to the robustness and
reliability of machine learning systems, particularly in computer
vision applications. This study investigates the performance of ad-
versarial patches for the YOLO object detection network in the
physical world. Two attacks were tested: a patch designed to be
placed anywhere within the scene – global patch, and another patch
intended to partially overlap with specific object targeted for re-
moval from detection – local patch. Various factors such as patch
size, position, rotation, brightness, and hue were analyzed to under-
stand their impact on the effectiveness of the adversarial patches.
The results reveal a notable dependency on these parameters, high-
lighting the challenges in maintaining attack efficacy in real-world
conditions. Learning to align digitally applied transformation pa-
rameters with those measured in the real world still results in up
to a 64% discrepancy in patch performance. These findings under-
score the importance of understanding environmental influences
on adversarial attacks, which can inform the development of more
robust defenses for practical machine learning applications.

CCS CONCEPTS
• Computer systems organization→ Embedded software; • Se-
curity and privacy→ Systems security; • Computing method-
ologies → Object detection; Machine learning algorithms.

KEYWORDS
Adversarial attacks, adversarial patches, object detection, YOLO,
adversarial robustness

1 INTRODUCTION
The rapid advancement ofmachine learning algorithms, particularly
in computer vision domain, has revolutionized various applications,
from autonomous driving to medical imaging and secure face recog-
nition. However, the widespread adoption of these algorithms has
brought to light significant security concerns, notably the suscepti-
bility to adversarial attacks [8, 17]. These attacks involve deliberate
modifications to input data to mislead machine learning models
into producing incorrect outputs.

A prominent example of a computer vision system is the You
Only Look Once (YOLO) [19], which is, like many other machine
learning models, vulnerable to adversarial attacks [2].

In addition to adversarial attacks, the robustness of machine
learning models, including YOLO, is also challenged by environ-
mental conditions such as weather, lighting, camera location, and
viewpoint changes [3]. Variations in lighting conditions can lead
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(a) Physically changed hue (b) As in (a) + patch = not effective

(c) Digitally changed hue (d) As in (c) + patch = effective

Figure 1: Discrepancy between the hue transformation ap-
plied in the real world (top) and digitally (bottom).

to overexposure or underexposure, which in turn can affect the
model’s ability to correctly detect and classify objects. Similarly,
changes in the camera’s location and viewpoint can introduce new
perspectives and angles that the model may not have been trained
on, further reducing its detection accuracy. Environmental condi-
tions also affect the performance of adversarial patches [14].

This study focuses on the stability of adversarial patches in the
physical world, aiming to understand how various environmental
conditions and patch attributes affect their performance. Two types
of adversarial patches were evaluated: a global patch designed to
suppress all correct detections when placed anywhere in the scene,
and a local patch targeting specific objects by partially overlap-
ping them. The patches were tested on the same static scene with
YOLOv3 and YOLOv5 as the detection networks, respectively. These
versions were chosen due to the availability of pre-existing frame-
works for generating adversarial patches tailored to them ([35] and
[26], respectively). While other lightweight YOLO versions, such as
YOLOv3-tiny [24], are better suited for resource-constrained edge
devices, they were not chosen for this research due to the significant
modifications required to adapt the adversarial patch generation
frameworks. Although the optimizations in these lightweight YOLO
versions often result in a noticeable reduction in accuracy, partic-
ularly in complex tasks or when detecting small or overlapping
objects, this would not be a critical factor in our study, as our scene
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setup was relatively straightforward. Our primary objective was
to focus on the effectiveness and robustness of adversarial patches,
as well as the broader influence of environmental conditions on
their performance. Our experimental setup included a controlled
indoor environment with a standardized set of objects and lighting
conditions. Performance was evaluated based on the mean average
precision (mAP) for the global patch and detection confidence for
the local patch. Key variables such as patch size, position, rota-
tion, brightness, hue, blurriness and reduced color palette were
systematically altered to assess their impact on patch efficacy. The
experiments revealed significant dependencies between the perfor-
mance of adversarial patches and these variables when applied in
the digital and in the real worlds. While patch performance with re-
spect to geometric transformation is consistent across both worlds,
color transformations unveil substantial differences, which can’t be
easily matched, and indicating a gap between these both worlds. An
example in Figure 1 shows the same scene, where the hue parame-
ter was altered using a RGB light source (top) and digitally using
the best parameters to match a physical change (bottom). YOLOv3
performance differs significantly when hue is changed physically
and when hue is changed digitally. These findings highlight the
sensitivity of adversarial patches to real-world conditions.

Contributions. Our study provides a comprehensive and sys-
tematic analysis of how adversarial patches perform under various
physical-world conditions, including lighting, patch sizes, and view-
points. The findings underscore a significant impact of environmen-
tal conditions, such as lighting, on the effectiveness of adversarial
patches. We show that the real-world effects differ from applying
these transformations digitally using the best matching parame-
ters. This study highlights the importance of addressing adversarial
vulnerabilities as a critical aspect of MLOps, focusing on improv-
ing the robustness of machine learning models against real-world
environmental variability, which is essential for ensuring reliable
deployment in diverse operational contexts. Furthermore, it em-
phasizes the need for advanced adversarial methods and improved
defenses, contributing to more resilient machine learning systems
capable of withstanding real-world adversarial conditions.

2 RELATEDWORK
Object detectionmodels and their robustness. YOLO [19] is one
of the most popular real-time object detection algorithms. Its high
speed and good accuracy make it widely used in the community.
The original YOLOv1 object detector was first released in 2016 by J.
Redmon et al. [18], and quickly became state-of-the-art. Over time,
the algorithm was significantly improved, so different versions
are now available [5, 7, 9, 13, 36]. In order to achieve the optimal
performance of the object detection model, each YOLO version was
trained with geometric (perspective change, scaling, translation,
flipping, and rotation), color (HSV), and more advanced [12, 15, 28,
33] augmentations. This made YOLOmodels resilient to challenging
environments. Lightweight YOLO versions are optimized for fast
execution and reduced power availability in resource-constrained
IoT devices. This is achieved by utilizing significantly fewer layers
and neurons, resulting in a decrease in accuracy. However, they
still face the same challenges as full YOLO versions when adapting
to varying environmental conditions.

Adversarial attacks and adversarial patches. Adversarial
patches were first introduced in 2018 by Brown et al. [29], demon-
strating the ability to mislead image classifiers using round stick-
ers [32]. This concept was extended to object detection in 2019 by
Liu et al. [31] with the Dpatch, although it was initially tested only
in digital settings. Subsequent studies, such as the work by Lee
and Kolter [35], adapted these patches for physical-world scenarios,
highlighting challenges like maintaining attack efficacy across dif-
ferent environmental conditions. This type of attack is referred to as
a global attack in this study, as it targets the entire image. The paper
proposes a way to generate a global patch attack, by maximizing
the YOLO loss function. This global adversarial patch is primarily
used for the experiments in this study. A different approach for
attacking object detectors is proposed in [26]. In this method, the
patch must overlap the object that is intended to be hidden from
the object detection network. This technique is referred to as local
attack because it targets individual objects within the scene. The
current research builds on these works by systematically evaluating
the performance of both global and local adversarial patches.

Defenses against adversarial patches. Adversarial attacks
pose a substantial threat to object detection algorithms. Their vul-
nerability to real-world conditions and environmental changes
increases when deployed on resource-constrained IoT devices [39],
which often lack the computational power and memory for ad-
vanced adversarial defenses. Due to the disruptive potential of
adversarial attacks, they have attracted considerable attention,
with numerous researchers striving to devise innovative defense
strategies [2, 37]. A common approach involves localizing and neu-
tralizing or removing adversarial patches. Jing et al. [22] propose
PAD - a patch-agnostic defense mechanism that combines semantic
independence localization and spatial heterogeneity localization;
Xu et al. [21] developed defense pipeline against white-box adversar-
ial patches that zeros out the patch region by repainting with mean
pixel values; Naseer et al. [23] proposed local gradient smoothing
scheme that regulates gradients in the estimated noisy region of the
image before inference; Scheurer et al. [11] address defence against
adversarial attacks in motion detection applications. In contrast to
previous works, our carefully constructed experiments demonstrate
that failure cases for existing adversarial patches can be determin-
istically constructed. These findings highlight the necessity for
further research on more robust adversarial patches and stronger
defense mechanisms.

3 METHODOLOGY
Adversarial patch generation. The attack patches used in this
work were generated in [26, 35] using variants of local and global
projected gradient descent running the following optimization:

argmax
𝛿
E(𝑥,𝑦)∼D,𝑡∼T [𝐽 (ℎ𝜃 (𝐴(𝛿, 𝑥, 𝑡)), 𝑦)], (1)

where D is the distribution over samples, and 𝐴 is the patch ap-
plication function. The function 𝐴 applies a transformation 𝛿 with
parameters 𝑡 ∈ T to the patch during training to ensure robust
patch performance (for example, the global patch was trained with
rotation augmentation). The patch is then integrated into the image
𝑥 at a desired location. The optimization is solved essentially by
using gradient descent [26, 31, 35].
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Figure 2: Global (left) and local (right) adversarial patches.

Global and local patches. This study evaluates two types of
patches: a global patch and a local patch. The global patch, designed
to attract the attention of the object detection network and suppress
correct detections, can be placed anywhere in the image and was
generated as described in [35] using YOLOv3 [36]. The local patch,
which must overlap the target object, was generated according to
[26] using YOLOv5 [13]. Both patch generation processes used the
COCO2014 dataset [30]. The generated patches (Figure 2) are spe-
cific to their respective detection networks and are not transferable.
All physical patches were printed on regular paper using a standard
printer.

Hypothesis. Following recent findings that adversarial patches
may fail in the physical world [14], we conducted a dedicated set of
experiments to better understand these failure cases. To achieve this,
we (1) carefully constructed our experiments, and (2) investigated
the differences between the effects observed in the physical world
and their reproducibility through digital transformations. We used
sensors, and two cameras operating in well-documented modes to
run reproducible real-world experiments. Our main hypothesis is
that failure cases of adversarial patches in the physical world in
general differ significantly from similar experiments conducted dig-
itally, i.e., by embedding the patch into an image and transforming
the result using the same parameters as measured physically, or the
best matching parameters computed by an optimization algorithm.
We present this analysis next.

4 DISCOVERING VULNERABILITIES OF
ADVERSARIAL PATCHES

4.1 Experimental setup
Controlled real-world environment.We evaluated the perfor-
mance of adversarial patches by conducting physical attacks in a
controlled indoor setting and reproducing them digitally for com-
parison. This controlled environment allowed us to easily adjust
testing conditions. Lighting was controlled using an IKEA® Tradfri
LED1924G9 RGB light source. We primarily used the Microsoft
LifeCam HD-3000 camera, which records 720p HD videos at up
to 30 fps. To ensure results were not camera-specific, we repeated
experiments involving brightness and hue with the Ausdom AF640
camera, which records 1080p HD videos at up to 30 fps. Our scene
setup is shown in Figure 1. The test included a bottle, cup, potted
plant in a vase, tennis racket, spoon, and a picture of a person.
Occasionally, a dining table was detected with low confidence but
excluded from consideration due to inconsistency.

Evaluation metrics. To evaluate the performance of the global
patch, we primarily use the mean average precision (mAP) as the
metric. mAP is calculated by generating precision-recall curves and
determining the area under these curves, providing insights into
the overall performance of an object detection system. In this study,
a lower mAP indicates better patch performance in suppressing
detections. For the local patch, we measure performance by the de-
tection confidence of the targeted object. This confidence describes
the probability of a detected object belonging to a particular class.
Lower detection confidence signifies higher patch effectiveness.

4.2 Experimental variables
Following setups described in the literature [4, 20, 25, 27], we varied
key parameters that can also easily change in uncontrolled real-
world settings: (1) geometry (patch size, observation angle, distance
to the target), (2) color transformations (scene brightness and hue),
and (3) information reduction (blurriness and limiting the number
of colors in an image).

Geometric transformations.We first experimented with dif-
ferent patch sizes. For global attacks, patch sizes ranged from 10%
to 30% of the image width to avoid object overlap. For local attacks,
we tested patch sizes varied from 4cm x 4cm to 16cm x 16cm. For all
other experiments (geometric, color or information reduction), by
default, we used a 25% image width-sized patch for global attacks
and the smallest patch that significantly reduced object detection
confidence for local attacks (11cm x 11cm for the tennis racket,
7cm x 7cm for the other objects). We explore patch rotations up
to 90◦ around X, Y, and Z axes (see Figure 7). We also explore the
impact of the global patch position within the scene on its detection
suppression ability depending on the distance from the target.

Color transformations. Ambient brightness was varied from
4 to 61 lux (measured with a light sensor). With automatic camera
exposure, there is a trade-off between the image brightness and
noise. To mitigate this, we fixed the exposure time, thereby enabling
overexposure – a common problem in real-world applications like
autonomous driving [16]. The camera exposure was calibrated to
produce a uniform, naturally looking image at a measured bright-
ness of 15 nits. However, a discrepancy persists between the mea-
sured lux in the room and the illuminance calculated from the scene
image. To address this issue and facilitate comparisons with our
digital experiments, we performed an illuminance scale correction
based on the calculated image illuminace. This adjustment shifted
the real-world range of 4 to 61 lux to an approximate range of 68
to 243 lux as measured in the images. We varied the hue values of
the scene with an IKEA Tradfri LED1924G9 RGB light source (see
Figure 1 for an example). Note that this light source also influences
the other colour properties of the environment (e.g., brightness).

Information reduction. We conducted a series of information
reduction experiments in the digital domain to analyze the perfor-
mance of a low-quality patch due to possible camera or printing
effects. A low-pass filter is often used in digital image processing
domain to smooth the image, soften the sharp regions, and remove
the noise while preserving important image features. We varied
the filter size from 0 to 500. Color reduction filtering aims to en-
hance image compression, optimize storage efficiency, and decrease
computational complexity in image analysis tasks by reducing the
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(a) Physical patch left (b) Physical patch right (c) Digital patch left (d) Digital patch rotated

(e) Digital patch 12% of the image (f) Digital patch 30% of the image (g) Brightness 110 lux (h) Brightness 196 lux

Figure 3: Global patch performance under different conditions. (a)-(b): relocating physical patch; (a)-(c): physical vs digital
patch; (c)-(d): patch rotation; (e)-(f): patch size; (g)-(h): environmental brightness.

Figure 4: Confidence over patch position (left), and patch
edge to bounding box distance (right) for "tennis racket".

number of distinct colors in an image while maintaining its essen-
tial visual features. The number of reduced colors was varied from
2 to 600, whereas a natural-looking image of a scene contains more
than 50’000 different colors.

4.3 Exploration based on a fixed indoor scene
To get a better understanding of the stability of the attacks in the
real world, we run comprehensives experiments and attempt to
reproduce the results in the digital world. The observations below
relate to the global patch, while the discussion about local patch is
out of the scope of this paper.

Distance dependence. The first stability issue is the patch’s
effectiveness depending on its distance from the object. Experi-
ments show an attack is successful only if the patch is within a
reasonable distance from the target. Comparing Figure 3(a) and
Figure 3(b) confirms the patch is more effective when closer to the
object. The original paper [35] claims that while the patch is some-
what location-invariant, its influence weakens with distance. We
further investigated the effect by digitally inserting the global patch

at various positions. Figure 4(left) displays tennis racket detection
confidence, with the x and y positions indicating patch placement
and confidence levels. The red rectangle is the ground truth bound-
ing box. Results show the patch must be within a certain radius,
dependent on the size of the patch, resolution of the scene, and
the object itself, to suppress detection effectively. Figure 4(right)
illustrates detection confidence relative to the distance from the
patch’s edge to the bounding box edge, showing the patch loses
its adversarial properties when positioned too far away from the
object (∼400px).

Rotation dependence. Due to the nature of physical experi-
ments, the position of the patch relative to the camera is crucial in
an adversarial attack. Figure 3(d) illustrates a large rotation around
the z-axis, resulting in a significant reduction in adversarial per-
formance compared to Figure 3(c). Rotation is often included in
training neural networks for computer vision as a data augmenta-
tion strategy [1]. Rotation transformation was also applied in the
global patch generation software [26, 34]. Consequently, we expect
the patch to exhibit some robustness to rotations. Figure 5 shows
the mAP over rotation angles across the three axes in the real world
(left) and digitally (right). The patch sizes were aligned across these
two settings. In both cases, the patch shows robustness to rotations
around x and y axes within± 40◦, yet loses its adversarial properties
for rotations around z axis larger than 20◦. Adversarial effects of
the patch in the digital domain is stronger.

Size dependence. The patch size positively correlates with its
effectiveness. Figure 3(e) and Figure 3(f) show a significant differ-
ence in performance when scaling a global patch from 12% to 30% of
the image. This trend is confirmed digitally, as Figure 6(left) shows
larger patches suppress more detections than smaller ones, with
the effect being stronger in the digital domain.

Brightness dependence. Another issue with attack stability
becomes apparent when lighting conditions change. If the camera’s
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Figure 5: Mean average precision for patch rotations (size
aligned): physical (left) and digital (right) experiment.

Figure 6: Mean average pre-
cision over patch size.

Figure 7: Axes placed rela-
tive to the camera.

Figure 8: Mean average precision over scene brightness: phys-
ical (left) and digital (right) experiment.

exposure time is set to automatic, there is a trade-off between image
brightness and noise. Setting this to manual removes this dynamic
adaptation and enables us to emulate overexposure. The exposure
time is fixed and calibrated to produce a uniform and naturally look-
ing image for the baseline of the experiment at 15 nits. Figure 3(g)
shows an example of patch performance at reduced brightness,
while Figure 3(h) shows an example at increased brightness. Here,
the adversarial patch loses effectiveness if the image becomes too
bright and starts clipping. Conversely, decreasing brightness does
not significantly impact the patch’s performance. Figure 8 clarifies
how patch performance is affected by brightness. The digital patch
shows consistent performance unaffected by lighting changes over
the whole range of values. The physical patch, however, looses its ef-
fectiveness with higher brightness when clipping occurs, matching
the mAP of a clean image without a patch.

Hue dependence.Here we investigate patch performance when
changing hue lightning. Figure 1 provides examples of images with
physically and digitally altered hue and the corresponding detec-
tion results. YOLO achieves a mAP of 0.4 in real-world (Figure 1(b)),
and a mAP of 0.14 in the digital world (Figure 1(d)), resulting in
approximately 64% discrepancy in patch performance. In the real
world, we used a RGB light source to change hue. To get the hue
value of the light source, the value reported in the companion app

Figure 9: Mean average precision over scene hue: physical
(left) and digital (right) experiment.

Figure 10: Mean average precision over low pass filter size
(left) and number of colors in the image (right).

(IKEA® Home smart 1) to the LED was used. To digitally repli-
cate physical world scene images as accurately as possible, i.e., to
digitally generate the scene images that are the best match to the
physical scene images, we train a small neural network. Our neural
network outputs suggest that color transformations alone do not
fully capture the changes introduced by an additional hue light
source. To support this, we present the performance of the patch
across the complete hue range in Figure 9. Figure 9 (left) shows the
results from physical experiments, where the hue value is reported
by the additional light source app. Figure 9 (right) displays results
from digital experiments, where only the hue value of the image is
digitally altered. Notably, YOLO performs consistently across all
hue values in the physical world, whereas digital experiments ex-
hibit some fluctuations in YOLO performance. Additionally, in the
physical world, there is a clear range in the hue spectrum, between
200 and 300 degrees, where the patch fails to perform effectively.
In contrast, digital experiments show only slight disturbances in
patch performance between 150 and 200 degrees.

Information reduction. This set of experiments shows that
the patch requires a certain amount of information to be effective.
In the low-pass filter experiments in Figure 10(left), the detection
efficiency for the unpatched scene and the scene with the simulated
physical patch (labeled as "physical" patch) align closely up to a
point – i.e., the patch has no impact. Beyond this point, the presence
of the patch decreases detection efficiency. In the color reduction
experiments in Figure 10(right), the results for the simulated physi-
cal patch align almost perfectly with the digital patch.The detection
algorithm also requires a certain amount of color details to achieve
its full detection potential. While performing these experiments, we
observed that the colors on the patch are quite diverse and mixed.
Consequently, when a color reduction filter is applied, the patch re-
tains a relatively large number of colors compared to the real-world
environment. This allows the patch to maintain the maximum of
it’s efficiency and remain as efficient as the original digital patch.
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5 DISCUSSION, LIMITATIONS, AND OUTLOOK
Discussion. Our experiments reveal significant dependency of
patch effectiveness on environmental variables, such as patch size,
position, rotation, brightness, and hue, highlighting the challenges
in maintaining attack efficacy in real-world scenarios. While some
failure cases are intuitive (e.g., a positive correlation between the
patch size and its effectiveness), many of our observations are not.
Despite the efforts to match the transformation parameters between
the physical and digital domain, performance discrepancies remain,
leaving many questions open.

Lighting conditions, particularly brightness and hue, were found
to be critical for patch performance. Changes in brightness, whether
from natural or artificial lighting, can alter the patch’s appearance
and its interaction with the detection model. Overexposure or un-
derexposure can reduce patch’s effectiveness. Variations in hue
from different light sources also impact the patch’s ability to dis-
rupt detection. In the physical world, light interacts with materials
in complex ways, influencing the object appearance. Geometrical
and physical optics, including reflection, scattering, interference,
and absorption affect color perception [38]. The color seen, i.e.,
light that is leaving the object, is primarily determined by the en-
ergy of the light wave and material’s properties - the energy of
the incident wave, surface roughness and texture. Modeling these
interactions digitally presents significant challenges, as highlighted
by Musbach et al. [6].

The impact of training data on patch performance is a critical
consideration. The COCO dataset’s 80 classes are highly imbalanced.
Person is the most frequent class, occurring over 250’000 times,
while bottle and cup appear approximately 25’000 times each, and
tennis racket only about 5’000 times. Our experiments showed that
concealing the tennis racket is challenging, often requiring larger
and closer patches, likely due to this imbalance. Furthermore, patch
behaviour under varying hues may be attributed to the absence
of red and violet images in the COCO dataset - most images are
yellow and green hue.

Limitations.Our study has several limitations. Firstly, the exper-
iments were conducted in a controlled indoor environment, which
does not capture the variability of a real outdoor settings. Factors
like weather, outdoor lighting, and movement dynamics were not
considered. The physical patches were printed on standard paper
and evaluated under specific conditions, without exploring varia-
tions in patch materials and printing quality. Secondly, the study
focused on a limited set of objects and scenes. While the selected
objects provided a good baseline, a more diverse set of objects and
scenes could reveal more insights. The experiments were limited to
two types of adversarial patches and specific versions of the YOLO
network. Exploring other types of patches and different, especially
lightweight object detection models that could run on edge devices
(e.g., smart cameras), could further generalize the findings.

Future Work. The findings call for a deeper understanding of
the interplay between adversarial strategies and environmental
factors. Future research should focus on developing more sophisti-
cated adversarial methods that can adapt to changing conditions,
and on improving the robustness of detection models to withstand
such attacks, thereby enhancing the security and reliability of ma-
chine learning applications in real-world settings. While adversarial

patches are static, object detection models can take advantage of on-
device adaptation and reconfiguration to improve their resilience
to adversarial attacks, e.g., [10, 37].
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