
Customizing Pre-Processing Algorithms for Streaming Sensor
Data on Embedded Networked Devices

Dragos
,
Lazea, Tudor Cioara, Anca Hangan

{firstname.lastname}@cs.utcluj.ro

Technical University of Cluj-Napoca, Romania

Zsolt István

zsolt.istvan@cs.tu-darmstadt.de

Systems Group, TU Darmstadt, Germany

Abstract
As Internet of Things (IoT) devices generate vast amounts of data,

and most edge intelligence-enabled Machine Learning (ML) mod-

els deployed in the IoT infrastructures require cleaned and pre-

processed data, we propose implementing data pre-processing tech-

niques directly on IoT devices such as smart sensors and 𝜇controllers,

using the already available computing resources. This enables per-

forming procedures like data cleaning, outlier detection and data

aggregation to be performed in a streaming fashion in a predictable

way and meeting real-time requirements. This offers support for

more complex data analysis that happens on the edge nodes which

are placed further from the devices. In this work, we propose a

guideline of tailoring data pre-processing algorithms for operating

on a limited window of most recent sensor readings and for allow-

ing processing data at a high rate to guarantee real-time execution.

We illustrate the tailoring process using two simple statistical out-

lier detection techniques and evaluate the implementations in a

real online setting.

CCS Concepts
• Computer systems organization→ Embedded software; •
General and reference→ Measurement.

Keywords
Anomaly Detection, Internet of Things (IoT), Streaming Data Pro-

cessing

1 Introduction
Networked sensors and IoT devices are increasingly deployed in var-

ious domains and enable innovative applications but they also face

several challenges in terms of providing online and real-time behav-

ior using severely limited computational and storage resources [11].

Furthermore, the high amount of data which is continuously gener-

ated and processed by such devices and sensors can easily conduct

to a network bottleneck [2]. This data often contains outliers gen-

erated by several causes such as device malfunctions, malicious

attacks, extreme or unexpected events and harsh environmental

conditions in which the devices are deployed. These anomalies

should be identified and filtered out as soon as they are generated

in order to ensure both the expected behavior of the system and the

decrease of the volume of data that moves across the network [8].

Therefore, implementing efficient online anomaly detection pro-

cedures closer to the source of the data is of major importance

in modern sensor infrastructures in order to provide the desired

functionalities and meet the real-time constraints without creat-

ing catastrophic network bottlenecks. However, deploying such

algorithms on low-power existing processors that are usually used

at collecting and relaying sensor measurements is a challenging

Figure 1: A data pre-processing step performed at the level of smart
sensors offers support for more complex Machine Learning anomaly
detection models deployed on edge servers or in the cloud

opportunity which faces several issues and involves satisfying two

key conditions. First of all, anomaly detection models designed for

such resource-constrained devices should be able to operate on

reduced amounts of data while providing significant results [4].

In addition, the algorithms should be themselves simple in terms

of performed operations and amount of memory needed to store

the instructions. This is why computationally expensive Machine

Learning (ML) anomaly models are not suitable in this context.

Secondly, such implementations should provide online anomaly de-

tection, by identifying and filtering outliers as the data is collected.

Moreover, the majority of sensor-based systems are time-sensitive.

Thus, low latency has to be highly ensured [1, 2].

In this work, we show how lightweight anomaly detection algo-

rithms can be tailored to fit on low-power and resource constrained

devices to ensure the quality of sensor data and to perform auto-

matic data pre-labeling in real-time before feeding it into more

complex edge embedded ML models, as depicted in Figure 1. Our

proposal aims at handling the streaming data by processing a sub-

window of samples and ensuring low execution time to allow in-

creasing the sensors sampling rate without exceeding the real-time

constraints. We implement alternatives of two statistical anomaly

detection techniques on a Microcontroller Unit (MCU) to guarantee

deterministic execution and predictable behavior and point out

the optimization opportunities that result in lower response time.

To this aim, we look at both data structures and algorithm par-

ticularities, also exploiting the previously computed results. We

comparatively evaluate our implementations regarding both the

execution time and the memory usage, discussing how many sen-

sor data samples can be stored on such a device, depending on the

algorithm implementation with the focus on data structure that we

use at storing the most recent sensor readings. In summary, our

contributions are the following:

• We propose a guideline for tailoring anomaly detection

algorithms for online execution on resource limited de-

vices with the focus on the data structures and reusing

Lazea et al.

previous computations in order to provide a step of data

pre-processing at the level of smart sensors.

• We exemplify the tailoring process on two specific outlier

detection techniques and compare the proposed implemen-

tations with the naive versions.

• We perform an experimental evaluation of the implemen-

tations in an online setting using a 𝜇controller unit and

a temperature sensor and also estimate how many sensor

data samples can be stored at once on the device for each

particular implementation to ensure that the results are

significant in the context of filtering anomalies out.

2 Background and Related Work
Detecting anomalies in sensor networks refers to identifying mea-

surements that notably diverge from the typical data patterns. These

abnormal values can stem from various sources such as noise and

errors, abnormal events, or malicious attacks on the network [11].

In this research we focus on point anomalies or outliers which

are observations placed far from the mean of values taken into

account [7]. We aim at filtering outliers out or labeling them as

abnormal values to ensure a first step of sensor data pre-processing.

The main challenges of detecting anomalies in sensor infras-

tructures which emerge from the streaming nature of sensor data

and the fast increase in the number of networked sensors and IoT

devices were addressed in several research works [3, 8, 11]. The

authors of [11] and [3] identify resource constraints, high communi-

cation costs, dynamic network topology, distributed streaming data

and large-scale deployments as the major difficulties encountered

when looking for outliers in sensor data, while energy consumption

and devices heterogeneity are also pointed out in [8] as significant

issues which have to be taken into account during the anomaly

detection process within IoT and sensor-based networks.

Anomaly detection methods for IoT and embedded sensors data

are described and classified by many related works [1–3, 9, 11].

Even there is no standardized taxonomy for outlier detection tech-

niques used to identify abnormal values within the sensor data, five

main classes of methods can be easily identified: statistical meth-

ods, unsupervised methods, supervised methods, semi-supervised

methods and deep learning-based methods [2]. However, low avail-

ability of pre-classified or pre-labeled sensor data makes supervised

techniques difficult to deploy [11]. Thus, a step of pre-processing

or labeling observations at the level of sensor or IoT device would

offer the necessary support for employing supervised methods to

detect anomalous observations.

Furthermore, as IoT sensors and networked devices generate

increasingly high amounts of data, distilling anomaly detection

processes at the edge of the network and hybrid anomaly detection

becomes the focus of many research papers [1, 3–6]. Deploying

anomaly detection procedures closer to the source of the data in

IoT and sensor-based networks is highlighted in [4] as a solution of

reducing the bottleneck of transferring huge amount of sensor data

to the cloud. Thus, the authors propose filtering data at the edge of

the network by removing outliers to reduce the volume of data sent

to the cloud. The importance of sensor data cleaning and filtering

before it is fed to more computationally intensive algorithms and

ML models deployed on more powerful devices is also highlighted

by the authors of [3]. The ability to identify outliers in an online

fashion as the data is generated is stated by the authors of [1] as the

fundamental requirement of detecting abnormal values in sensor

networks. Additionally, the edge intelligence-powered deploying

of ML anomaly detection models models on novel 𝜇controllers fea-

turing powerful computational and storage capabilities is explored

by the authors in [9] as an emerging opportunity of TinyML.

However, there are numerous recent studies which state that de-

ploying a single model to detect anomalies in sensor data at the edge

does not prevent sending erroneous data to the cloud [5, 6]. There-

fore, hierarchical and hybrid anomaly detection models are getting

more attention in the context of sensor data. A hierarchical solution

of deploying anomaly detection models of different complexities

on different hierarchical layers of IoT-Edge-Cloud infrastructures

is proposed in [5] to provide multi-layer IoT data filtering. The

authors of [6] also propose a three-step hybrid approach of hier-

archical anonaly detection model designed to operate on an IoT

device, incorporating the most relevant anomaly detection steps

(noise reduction, outlier detection, and threat detection).

Recent research shows that deploying anomaly detection pro-

cedures or even ML models closer to the data sources in sensor

networks is a promising solution aiming to reduce the data move-

ment to the cloud as distilling intelligence at the edge of the network

is facilitated by novel powerful 𝜇controller units (MCUs). Even so,

most of existing work does not show how anomaly detection meth-

ods have to be customized to be deployed at the level of smart

sensors and neglect the data pre-processing step. Our work aims to

illustrate how such simple techniques can be tailored to perform

a data pre-labeling step at the level of embedded sensors and net-

worked devices to offer the necessary support for more complex

supervised ML models deployed at level of edge or cloud servers.

3 Tailoring Anomaly Detection Algorithms for
the Online Setting

Detecting anomalies in sensor networks aims at catching outliers

as soon as they are generated. The streaming nature of sensor data

and the high rate at which it is generated makes traditional anom-

aly detection techniques inefficient in such a setting. Furthermore,

the considerably limited storage and computing capabilities of net-

worked devices responsible for collecting and forwarding the sensor

measurements do not offer the necessary support for deploying

computationally intensive anomaly detection algorithms and stor-

ing large amounts of data. Sliding window techniques are usually

employed to allow storing only the most recent observations [3].

However, to accurately detect outliers within sensor readings, the

window should be large enough to reflect the real evolution of the

system or monitored phenomenon over time.

On the other hand, low response time of the outlier detection

procedures has to be guaranteed in such an online context [2].

Detecting anomalies on the fly implies labeling the most recent

measurement before another observation is collected. This also

imposes limitations on the number of data samples considered

when the label of the current reading is generated. Therefore, in

most cases there is a trade-off between how many sensor obser-

vations are stored on the device and the time limit for labeling a

single data sample. In what follows, we point out the optimization

Customizing Pre-Processing Algorithms for Streaming Sensor Data on Embedded Networked Devices

opportunities which can be exploited to ensure efficient outlier

detection performed during the data collection process, focusing on

the data structures used at storing the observations and on reusing

the previously computed results. We illustrate the tailoring process

by showing how two simple statistical outlier detection methods

can be improved to guarantee the time constraints imposed when

processing sensor data on networked devices.

3.1 Data Structures Selection
The shape in which sensor data is stored when employing sliding

window techniques can affect the response time of the anomaly

detection process, depending on the operations that are performed

and on how the window is updated when a new sensor reading is

encountered. Because of simple nature of sensor data and storage

limitations, elementary data structures as arrays or linked lists are

used in most cases to store the most recent observations. However,

the complexity of basic operations, such as insertions and deletions,

performed when updating the window of data samples or when

labeling the most recent observation has a major impact on the

response time. Therefore, using different data structures can highly

influence the performance of the anomaly detection algorithm.

In the particular case of time series data, when using sliding

window approaches, linked lists with pointers for both first and

last elements allow performing both deletion of the oldest element

(i. e. first element in the list) and insertion of a newly read sample

(i. e. at the end of the list) in constant time: 𝑂 (1). Thus, using
singly linked list defined using head and tail pointers show great

improvements in this sliding window scenarios compared to using

arrays allowing deleting the first element only in linear time (i. e.

𝑂 (𝑛), for a window of size 𝑛) as it involves shifting all elements

placed to its right. Moreover, linked lists also offer better support

for handling dynamic workloads. However, as we show in what

follows, in some cases simple singly linked lists are not efficient and

have to be augmented to provide real performance enhancements,

at the cost of additional memory.

We show the impact of the data structures on the anomaly detec-

tion process in an online setting using Interquartile Range (IQR) tech-
nique [1] for identifying outliers. The Interquartile Range method

involves ordering the dataset and determining three reference val-

ues within the sorted dataset (the quartiles): 𝑄2 - the value in the

middle position within the sorted dataset (the median or 2
𝑛𝑑

quar-

tile), 𝑄1 - the value on the middle position of the sorted subset of

data between the minimum and median value (the 1
𝑠𝑡

quartile), and

𝑄3 - the value on the middle of the sorted subset of data between

the median and the largest value (the 3
𝑟𝑑

quartile). Based on these

values, 𝐼𝑄𝑅 is computed as:

𝐼𝑄𝑅 = 𝑄3 −𝑄1 (1)

Using this value, the range of normal values is determined as:

[𝑄1 − 1.5 · 𝐼𝑄𝑅,𝑄3 + 1.5 · 𝐼𝑄𝑅] (2)

The values placed outside this range are considered to be outliers.

The pseudocode of the method is shown in Algorithm 1.

The time complexity of the technique depends on the sorting

algorithm that is used and on the need to resort the dataset each time

a new sensor measurement is recorded. Taking into consideration

the fact that at each moment the most recent sensor readings have

Algorithm 1 Interquartile Range

1: procedure IQR(𝑥) ⊲ 𝑥 is de unlabeled dataset

2: 𝑥𝑠 ← Sort(𝑥) ⊲ 𝑥𝑠 is the sorted dataset

3: 𝑛 ← 𝑥 .𝑙𝑒𝑛𝑔𝑡ℎ

4: 𝑄1 ← 𝑥𝑠 [𝑛
4
]

5: 𝑄3 ← 𝑥𝑠 [3·𝑛
4
]

6: 𝐼𝑄𝑅 ← 𝑄3 −𝑄1

7: for 𝑡 ← 0, 𝑥 .𝑙𝑒𝑛𝑔𝑡ℎ do
8: if 𝑥 [𝑡] > 𝑄3 + 1.5 · 𝐼𝑄𝑅 or 𝑥 [𝑡] < 𝑄1 − 1.5 · 𝐼𝑄𝑅 then
9: 𝑥 [𝑡] .𝑙𝑎𝑏𝑒𝑙 ← 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙

10: else
11: 𝑥 [𝑡] .𝑙𝑎𝑏𝑒𝑙 ← 𝑛𝑜𝑟𝑚𝑎𝑙

12: end if
13: end for
14: end procedure

to be stored on the device, the observations must be stored both

sorted and ordered by the moment of time they were read by the

sensor to allow deleting the oldest sample each time a new value is

recorded.

Arrays. Using an array as a data structure for storing the values

within the window imposes storing an additional array to store the

sorted samples. A single array is not sufficient as the time ordering

of measurements is lost after sorting the observations. This also

requires resorting the window when recording each measurement

or identifying its position in the sorted window and moving to the

right of all the elements that are on the following positions in order

to be able to insert the value on the correct position. Therefore,

two arrays are required, one that stores the data samples in the

order in which they are recorded and an auxiliary array that stores

the sorted data samples. When each new value is recorded, array

array containing the data in the order of registration is updated by

removing the first item and inserting the most recent measurement

at the last position. Subsequently, the values are sorted and stored

in an auxiliary array, based on which the 𝑄1, 𝑄3, 𝐼𝑄𝑅 reference

values are computed and the most recent observation is labeled.

Ordered Linked Lists. To avoid sorting the window each time

a new value is recorded by the sensor, the measurements can be

stored in a singly linked list ordered in ascending order. Even so,

a simple linked list is not sufficient to keep track of the order in

which the samples were recorded. Thus, we propose augmenting

the list as shown in Figure 2 so that each element consists of a

three-field structure:

• value, representing the actual value of the data sample;

• index, the unique number identifying the moment of time

at which the sample was recorded;

• next, a pointer to the next element in the linked list.

Figure 2: Augmented singly linked list for storing the window of
observations.

Lazea et al.

The advantage of such a data structure is that the window can

be updated in linear time and it does not require resorting the data

after inserting a new value as each value is smaller than or equal

to the value of the next element in the list. The actual deletion

and insertion operations occur in constant time (i. e. 𝑂 (1)), but a
search for the position where the element will be inserted or for

the element to be removed is necessary and it can be performed

in linear time. However, this data structure comes at the cost of

𝑂 (𝑛) (for a list of 𝑛 elements) additional memory to store the next
pointer and index fields.

3.2 Reusing Previous Computations
Maintaining the context in resource-constrained environments is a

major challenge of processing streaming sensor data. Employing

sliding window techniques is a promising solution of preserving

context in sensor data and keeping track of the historical evolution

only of data which is still relevant to the current state of the system.

Even though the number of samples taken into consideration when

performing computations in a sliding window fashion is fairly small,

the time constrains imposed by high sampling rates of sensors

make online data processing a challenging task. Thus, reusing the

computations performed in previous steps, when possible, leads to

a significant gain in term of execution time. In the following, we

propose looking for possibilities to discover recurrent formulas in

algorithms and to use them in order to reduce the execution time

in the case of time-constrained online execution. However, not all

algorithms allow for reusing previous results in a recurrent manner.

We show how already computed results can be used to lower

the computational cost of a simple statistical anomaly detection

method called Z-Score [1], also known as Grubb’s test. The main

idea of this technique is that, assuming that the data follows a

normal distribution, the majority of the data samples are expected

to be located around the mean. More specifically, according to this

method, the data samples found at a distance of at least three times

the standard deviation of the data set from the mean are outliers.

In an online setting, applying this technique requires computing

the z-score (𝑧) for each newly sampled value (𝑥𝑡𝑛), as:

𝑧 =
𝑥𝑡𝑛 − 𝜇

𝜎
(3)

where 𝜇 is the mean and 𝜎 is the standard deviation of the win-

dow ({𝑥𝑡1 , 𝑥𝑡2 , ..., 𝑥𝑡𝑛 }) of most recent observation. If the computed

score, 𝑧, is less than −3 or greater than 3, the value is placed outside

the interval [𝜇−3 ·𝜎, 𝜇+3 ·𝜎] and is labeled as anomalous. However,

𝜇 and 𝜎 have to be recomputed at each update of the window, as:

𝜇 =

∑𝑛
𝑘=1

𝑥𝑡𝑘

𝑛
(4)

𝜎 =

√︄∑𝑛
𝑘=1
(𝑥𝑡𝑘 − 𝜇)2

𝑛
(5)

Recomputing 𝜇 and 𝜎 as shown above at each update of the

window of values is time consuming and can lead to considerable

increases in the response time. Thus, we propose recurrently com-

puting the mean and standard deviation as an adaption ofWelford’s
online algorithm [10] for sliding window scenarios. This online

algorithm is used to incrementally compute the mean (𝜇𝑛+1) and

Figure 3: Recurrent approach for updating the mean and standard
deviation.

standard deviation (𝜎𝑛+1) of a data set consisting of 𝑛 + 1 samples

using the previously computed mean (𝜇𝑛) and standard deviation

(𝜎𝑛), corresponding to the subset containing only the first𝑛 samples.

The recurrent formulas for 𝜇𝑛+1 and 𝜎𝑛+1 are given by:

𝜇𝑛+1 = 𝜇𝑛 +
𝑥𝑡𝑛+1 − 𝜇𝑛

𝑛 + 1 (6)

𝜎2𝑛+1 = 𝜎2𝑛 +
(𝑥𝑡𝑛+1 − 𝜇𝑛) · (𝑥𝑡𝑛+1 − 𝜇𝑛+1) − 𝜎2𝑛

𝑛 + 1 (7)

However, employing this technique in the sliding window fash-

ion to handle the streaming nature of sensor data requires removing

the effect of the oldest data sample in the mean and standard devia-

tion when it is removed from the window. Therefore, each time a

new sensor reading is encountered, we have to update the mean

and standard deviation not only by including it in the computation

of the mean and standard deviation but also by removing the effect

of the measurement which is deleted from the set of most recent

observations, as depicted in Figure 3. Moreover, in a sliding win-

dow context where each time a new data sample is recorded the

oldest observation is removed from the data set, the size of the data

set is constant, unlike the general context for which the Welford’s

algorithm was designed. Thus, we propose updating the mean and

the standard deviation after recording a new observation 𝑥𝑡𝑛+1 and

deleting the oldest observation 𝑥𝑡1 , as:

𝜇𝑛+1 = 𝜇𝑛 +
𝑥𝑡𝑛+1 − 𝑥𝑡1

𝑛
(8)

𝜎2𝑛+1 = 𝜎2𝑛 −
(𝑥𝑡1 − 𝜇𝑛) ·

(
𝑥𝑡1 −

(
𝜇𝑛 −

𝑥𝑡𝑛+1−𝑥𝑡1
𝑛

))
𝑛

+
(𝑥𝑡𝑛+1 − 𝜇𝑛+1) ·

(
𝑥𝑡𝑛+1 −

(
𝜇𝑛+1 −

𝑥𝑡𝑛+1−𝑥𝑡1
𝑛

))
𝑛

(9)

Equation 8 shows how we update the mean by adjusting the

previous mean with the difference between the latest sampled value

and the removed value, divided by the window size. In Equation

9 we propose updating the standard deviation by subtracting the

effect produced by the oldest observation (i. e. the one which was

removed when the most recent value was sampled) and add the

effect produced by the most recent sample. To avoid cases in which

the results of the computations conduct to a negative value of 𝜎2𝑛 ,

we set the value to 0 if the result is negative. As Welford’s online
algorithm, our method leads to an estimated value of the standard

deviation, but the error is nearly irrelevant given the precision of

computations performed on resource constrained devices.

The major gain of such a recurrent approach is that it reduces

both execution time and computational overhead by reusing previ-

ously computed values. Thus, the response time can be considerably

improved by reducing the time complexity of the algorithm: from

Customizing Pre-Processing Algorithms for Streaming Sensor Data on Embedded Networked Devices

linear time to constant time in the case of the described technique.

Nevertheless, not all algorithms allow for recurrent computations.

4 Experimental Evaluation
We evaluate the performance and scalability of our proposed so-

lutions on a NodeMCU development board which integrates an

ESP8266 𝜇controller having 4 MB of Flash memory for storing the

program, 98 KB of DRAM for storing variables and constants and a

clock frequency of 80 MHz. The DRAM memory is split into stack,

used at storing statically allocated data, and heap, which stores

the dynamically allocated data. To evaluate the implementations in

a real online setting, we use a DHT11 humidity and temperature

sensor, which we connect to the NodeMCU board through the serial

interface.

We comparatively evaluate the implementations using arrays

and ordered linked lists of the IQR and the straightforward and

recurrent versions of Z-Score in terms of both execution time and

memory usage and show the improvements of our tailored solu-

tions for detecting anomalies in sensor data on resource-constrained

devices during the data collection process. We also perform a quan-

titative evaluation to determine how many sensor measurements

can be stored at once on the device depending on the data structure

used to implement the sliding window. For this purpose, we com-

pute the maximum number of measurements which can be stored

on the device depending on the implementation as:

𝑁𝑚𝑎𝑥 =

⌊
𝐷𝑅𝐴𝑀𝑡𝑜𝑡𝑎𝑙 − 𝐷𝑅𝐴𝑀𝑢𝑠𝑒𝑑

𝐷𝑅𝐴𝑀𝑠𝑎𝑚𝑝𝑙𝑒

⌋
(10)

where 𝐷𝑅𝐴𝑀𝑡𝑜𝑡𝑎𝑙 is the total available DRAM (only around 80192

B out of the 98000 B can be used to store the application data

due to a constant overhead of around 18000 B), 𝐷𝑅𝐴𝑀𝑢𝑠𝑒𝑑 is the

amount of memory used by the data excluding the window of sensor

measurements and 𝐷𝑅𝐴𝑀𝑠𝑎𝑚𝑝𝑙𝑒 is the implementation-dependant

size of a sample.

Interquartile Range. We demonstrate the impact of data struc-

tures on the performance of online anomaly detection in the case

of IQR technique by measuring the memory the time taken to label

a sensor reading in case of both implementations (using arrays and

using ordered singly linked lists) for several sizes of the window.

As shown in Figure 4, the execution time is significantly shorter

for the implementation of the IQR algorithm that uses linked lists

ordered in ascending order, compared to the alternative that stores

the values in arrays. The second alternative is considerably slower

as it requires resorting the values each time a new measurement

is recorded. We used Bubble Sort algorithm in the case of array-

based implementation. Moreover, as the window size increases, the

difference between the execution times of the two implementa-

tions is more noticeable. For instance, an increase of the size of the

window from 120 to 150 samples leads to an increase from 3825𝜇s

to 5970𝜇s in the execution time of the array-based version, while

the same increase in the window size results in an increase from

180𝜇s to only 184𝜇s in the execution time when using the ordered

linked lists alternative. This difference is the result of reducing the

complexity of the algorithm from quadratic time (i.e. 𝑂 (𝑛2)) in the

case of array-based solution to linear time (i.e.𝑂 (𝑛)), using ordered
linked lists.

30 60 90 120 150

1,000

2,000

3,000

4,000

5,000

Number of observations

P
r
o
c
e
s
s
i
n
g
t
i
m
e
[
𝜇
s
]

Arrays

Linked Lists

Figure 4: IQR: Execution time of array-based (requiring re-sorting
the window each time a new sample is recorded) and ordered linked
lists.

30 60 90 120 150

31

32

33

34

35

Number of observations

U
s
e
d
D
R
A
M

[
K
B
]

Arrays

Linked Lists

Figure 5: IQR: DRAM Memory usage of array-based (requiring re-
sorting the window each time a new sample is recorded) and ordered
linked lists.

Figure 5 shows the memory used to store the variables and con-

stants for each of the two alternative solutions of the IQR algorithm.

As the figure presents, even though both solutions show a constant

increase in the amount of DRAM used to store the data, the ordered

linked list not only uses more memory but also leads to a higher

increase in the memory used to store the data when the size of the

window storing the measurements grows. This is due to the fact

that for each observation, besides the 4 bytes required to store the

actual sensor reading as a floating point number represented in

single precision, we need 4 more bytes to store the next pointer

and 8 more bytes to store the index field of type long, while in the

case of array-based implementation only 4 bytes are required to

store each sensor reading in the time-ordered array and another

4 bytes to store it in the sorted array. Thus, each sensor measure-

ment requires 16 bytes in the ordered lists-based solution and 8

bytes in the array-based one. The maximum allowed number of

observations which can be stored on the device, computed as in

Equation 10, is 𝑁
(𝐴)
𝑚𝑎𝑥 = 3003 for the array-based version of IQR and

𝑁
(𝐿𝐿)
𝑚𝑎𝑥 = 2929 for the ordered linked lists solution.

Z-Score.Weperform a similar execution time andmemory usage

analysis to demonstrate the performance improvements achieved

by reusing prior computations with reference to Z-Score anomaly

detection technique. We compare the amount of memory needed

to store the data and the time required to process a sensor reading

between the iterative solution which recomputes the mean and the

standard deviation at each update of the window and our proposed

recurrent solution.

As depicted in Figure 6, the execution time of the iterative so-

lution grows linearly with the size of the window of values taken

into account as it requires recomputing the mean and standard

deviation each time a new sensor measurement is recorded. On the

other hand, the recurrent solution which computes the mean and

estimated standard deviation based on the previously computed

mean and standard deviation has a constant and significantly lower

Lazea et al.

30 60 90 120 150

100

200

300

400

500

Number of observations

P
r
o
c
e
s
s
i
n
g
t
i
m
e
[
𝜇
s
]

Iterative

Recurrent

Figure 6: Z-Score: Execution time of both iterative and recurrent
implementations.

30 60 90 120 150

31.2

31.4

31.6

31.8

Number of observations

U
s
e
d
D
R
A
M

[
K
B
] Iterative

Recurrent

Figure 7: Z-Score: DRAM Memory usage of both iterative and recur-
rent implementations.

execution time. However, the data labeling process starts only after

there are enough sensor readings to fill the window. Therefore, even

the recurrent solution requires computing the standard deviation

in an iterative way when the number of recorded measurements

reaches the size of the window for the first time as there is no pre-

computed standard deviation. Even so, the mean can be recurrently

computed followingWelford’s online algorithm.

The memory usage of both versions of Z-Score is presented in

Figure 7. It is noticeable that the amount ofmemory used to store the

data increases linearly with the size of window for both solutions.

Furthermore, the two alternatives of implementation use almost

the same amount of memory to store the constants and variables.

The recurrent solution requires additional 8 bytes compared to

the straightforward implementation used to store the previous

mean (4 B) and standard deviation (4 B). Each sensor reading is

represented as single precision floating point value and takes 4 bytes

of memory and we use an array to store the most recent sensor

readings. Therefore, the maximum size of the window computed

according to Equation 10 is 𝑁
(𝐼)
𝑚𝑎𝑥 = 12206 for the iterative solution

and 𝑁
(𝑅)
𝑚𝑎𝑥 = 12204 for the recurrent implementation.

5 Conclusions
In this paper, we propose a methodology of tailoring simple data

pre-processing models targeting to run at the level of smart sensors

or resource-constrained networked devices in order to perform data

filtering and pre-labeling before sending it to more computationally

expensive ML models. We illustrate the tailoring process using two

basic statistical-based anomaly detection techniques, demonstrat-

ing the impact of data structures and reusing previous computations

on the performance of the algorithm in order to ensure meeting the

time constraints of an online setting. The performance improve-

ments emerging from using proper data structures at the cost of

additional memory are presented in the case of Interquartile Range
method, while the enhancements of recurrent computations are

illustrated by means of Z-Score outlier detection technique. We

experimentally evaluate the proposed improvements in a real on-

line setting which uses a humidity and temperature digital sensor

connected to a MCU. Our results show that the time complexity of

the such algorithms can be significantly lowered by using proper

data structures and reusing already computed results. Moreover,

we perform a quantitative analysis to determine how many sen-

sor readings can be stored on the device depending on the outlier

detection method implementation.

This research provides a new perspective on anomaly detec-

tion performed at the level smart sensors as an emerging need of

providing a first step of pre-processing and filtering observations

before feeding them to a more sophisticated and computationally

demanding ML models. In future work, the proposed method of cus-

tomizing anomaly detection methods will be further expanded and

optimized for different sensor data to handle data and device het-

erogeneity and to ensure online outlier detection on more complex

or aggregated sensor data.

Acknowledgments
This research received funding from the European Union’s Horizon Europe

research and innovation program under the Grant Agreements number

101136216 (Hedge-IoT). Views and opinions expressed are, however, those

of the author(s) only and do not necessarily reflect those of the European

Union or the European Climate, Infrastructure, and Environment Executive

Agency. Neither the European Union nor the granting authority can be held

responsible for them.

References
[1] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:

A survey. ACM Comput. Surv. 41, 3, Article 15 (jul 2009), 58 pages. https:

//doi.org/10.1145/1541880.1541882

[2] Laura Erhan, M Ndubuaku, Mario Di Mauro, Wei Song, Min Chen, Giancarlo

Fortino, Ovidiu Bagdasar, and Antonio Liotta. 2021. Smart anomaly detection in

sensor systems: A multi-perspective review. Information Fusion 67 (2021), 64–79.

https://doi.org/10.1016/j.inffus.2020.10.001

[3] Federico Giannoni, Marco Mancini, and Federico Marinelli. 2018. Anomaly

detection models for IoT time series data. arXiv preprint arXiv:1812.00890 (2018).
[4] Yi Li, Zhangbing Zhou, Xiao Xue, Deng Zhao, and Patrick C. K. Hung. 2023.

Accurate Anomaly Detection With Energy Efficiency in IoT–Edge–Cloud Col-

laborative Networks. IEEE Internet of Things Journal 10, 19 (2023), 16959–16974.
https://doi.org/10.1109/JIOT.2023.3273542

[5] Mao V. Ngo, Hakima Chaouchi, Tie Luo, and Tony Q. S. Quek. 2020. Adap-

tive Anomaly Detection for IoT Data in Hierarchical Edge Computing.

arXiv:2001.03314 [cs.LG] https://arxiv.org/abs/2001.03314

[6] Paul D. Rosero-Montalvo, Zsolt István, Pınar Tözün, andWilmar Hernandez. 2023.

Hybrid Anomaly DetectionModel on Trusted IoT Devices. IEEE Internet of Things
Journal 10, 12 (2023), 10959–10969. https://doi.org/10.1109/JIOT.2023.3243037

[7] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly

detection in time series: a comprehensive evaluation. Proc. VLDB Endow. 15, 9
(may 2022), 1779–1797. https://doi.org/10.14778/3538598.3538602

[8] Arnaldo Sgueglia, Andrea Di Sorbo, Corrado Aaron Visaggio, and Gerardo

Canfora. 2022. A systematic literature review of IoT time series anomaly de-

tection solutions. Future Generation Computer Systems 134 (2022), 170–186.

https://doi.org/10.1016/j.future.2022.04.005

[9] Sergio Trilles, Sahibzada Saadoon Hammad, and Ditsuhi Iskandaryan. 2024.

Anomaly detection based on Artificial Intelligence of Things: A Systematic

Literature Mapping. Internet of Things 25 (2024), 101063. https://doi.org/10.

1016/j.iot.2024.101063

[10] Barry Payne Welford. 1962. Note on a method for calculating corrected sums of

squares and products. Technometrics 4, 3 (1962), 419–420.
[11] Yang Zhang, Nirvana Meratnia, and Paul Havinga. 2010. Outlier Detection

Techniques for Wireless Sensor Networks: A Survey. IEEE Communications
Surveys & Tutorials 12, 2 (2010), 159–170. https://doi.org/10.1109/SURV.2010.

021510.00088

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.inffus.2020.10.001
https://doi.org/10.1109/JIOT.2023.3273542
https://arxiv.org/abs/2001.03314
https://arxiv.org/abs/2001.03314
https://doi.org/10.1109/JIOT.2023.3243037
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.1016/j.future.2022.04.005
https://doi.org/10.1016/j.iot.2024.101063
https://doi.org/10.1016/j.iot.2024.101063
https://doi.org/10.1109/SURV.2010.021510.00088
https://doi.org/10.1109/SURV.2010.021510.00088

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Tailoring Anomaly Detection Algorithms for the Online Setting
	3.1 Data Structures Selection
	3.2 Reusing Previous Computations

	4 Experimental Evaluation
	5 Conclusions
	References

