
Hack in an Elevator! Pentesting a Lift Control Web App
Pericle Perazzo

Department of Information Engineering (DII)
University of Pisa
Pisa, Italy, EU

pericle.perazzo@unipi.it

Gianmarco Manfredonia
Department of Information Engineering (DII)

University of Pisa
Pisa, Italy, EU

g.manfredonia2@studenti.unipi.it

Abstract
Imagine taking an elevator to go to the fourth floor, and suddenly
you are stuck inside due to a cyber attack! This can happen since
elevators have become Cyber-Physical Systems (CPS), which in-
volve networked embedded computers, and therefore they are not
anymore immune to hackers. In this research we assess the security
of an elevator CPS designed and developed by an Italian company,
which is deployed on several elevator installations in Italy. The ob-
jective is to evaluate if and to what extent the various cybersecurity
risks are understood by CPS developers. In this paper we present
the results of the first part of a complete penetration test, in which
we focused on the elevator management web site only, which is the
component most exposed to possible attacks due to its public and
remote availability. From our experience we can conclude that the
CPS developers have a good awareness of the most common cyber-
security threats, and they are aware of common defense techniques.
Still, they miss to implement defenses against advanced client-side
attacks, and they do not follow the best practices, which could lead
to vulnerabilities in case some unfortunate conditions are met.

CCS Concepts
• Security and privacy → Web application security; • Com-
puter systems organization→ Embedded systems.

Keywords
Cybersecurity, Cyber-Physical Systems, Penetration Test, Web Se-
curity
ACM Reference Format:
Pericle Perazzo and Gianmarco Manfredonia. 2018. Hack in an Elevator!
Pentesting a Lift Control Web App. In Proceedings of 21st International
Conference on Embedded Wireless Systems and Networks (EWSN ’24). ACM,
New York, NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Cyber-Physical Systems (CPS) represent a new generation of systems
that integrate computational, control and physical components.
CPSes are at the heart of modern industries and critical infrastruc-
tures such as power grids, transportation systems, and healthcare
systems. Unfortunately, the integration of computation, network,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EWSN ’24, December 10–13, 2024, Abu Dhabi, UAE
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

and physical components creates big complexity and expands the
attack surface of the system, making cybersecurity a significant
concern. The problem of cybersecurity in CPSes is critical, because
a security breach could lead to catastrophic consequences, and secu-
rity solutions also need to consider aspects such as safety, reliability,
and real-time constraints. It is paramount that CPSes are designed
and programmed with security in mind. However, the general cy-
bersecurity awareness of the nowadays average CPS developer is
still unclear. Some reasearch in this direction exists, but it focuses
mainly in industrial CPSes or critical infrastructures. Less research
has been devoted to the CPSes that we use in our everyday life, like
those employed in residential or office buildings.

In this research we assess the security of an elevator CPS de-
signed and developed by an Italian company, which is deployed on
non-industrial buildings (homes, offices, etc.) in Italy, by performing
a white-box penetration test. The objective is to evaluate if and to
what extent the various cybersecurity risks are understood by real
non-industrial CPS developers. An elevator CPS is composed of
both physical components (like the elevator car, the electric motor
that moves the car, the physical buttons inside the elevator, etc.) and
computation components (like the embedded computer boards that
controls the movement of the elevator, their firmware, the software
for remote monitoring and management, etc.).

In this paper we present the results of the first part of the pene-
tration test, in which we focused on the elevator management web
site, which is the component most exposed to possible attacks due
to its public and remote availability. The results of the penetration
test on the other CPS components, for example the controller board
firmware, is left for a future paper. From our experience we can
conclude that, for what concerns the web part, the CPS developers
have a good awareness of the most common cybersecurity threats,
and they are aware of common defense techniques like anti-CSRF
tokens [3]. Still, although we did not find any major and easily ex-
ploitable vulnerability, some defenses against advanced client-side
attacks like clickjacking [2] are missing. Developers adopted some
defense techniques without following the best practices (e.g., they
put secrets in URLs), and without being aware of some tricky server-
side language functionalities (e.g., PHP type juggling [15]). They
also do not employ some free defense-in-depth mechanisms, which
could give more security without any impact on performance or
complexity. This negligence could lead to vulnerabilities in future
versions of the site, or in case some unfortunate conditions are met.

The rest of the paper is structured as follows. Section 3 introduces
some preliminary concepts about the attacks that we will assess
in the following sections. Section 4 describes the elevator CPS in
general and its management web site in particular. Sections 5, 6,
and 7 report our experiences in pentesting the web site respectively
for what concerns authentication and SQL vulnerabilities, cookie

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EWSN ’24, December 10–13, 2024, Abu Dhabi, UAE Perazzo et al.

and clickjacking vulnerabilities, and vulnerabilities related to the
anti-CSRF token. Section 2 reports some related work. Finally, the
paper is concluded in Section 8.

2 Related Work
After the W32.Stuxnet incident [7], the interest on the security of
CPSes has grown considerably [5]. Scientific research about CPS
security broadly divide in two main topics: CPS-oriented intrusion
detection systems [11, 13, 14, 20], and CPS security assessments [4,
16, 18]. Of course, the present paper fits better with the CPS security
assessment track, so in the following we will compare with such
works exclusively.

Apa [4] and, independently, Quarta et al. [18] carried out exten-
sive penetration tests on industrial robots. Apa [4] identified almost
50 crucial security vulnerabilities in top-tier collaborative robots
such as Baxter/Sawyer from Rethink Robotics and UR from Univer-
sal Robots. Quarta et al. [18] conducted a thorough investigation of
the typical structure of an industrial robot and analyzed a specific
implementation (namely the ABB 6-axis IRB140 robot) from a sys-
tem security perspective. The authors modeled a potential attacker
which considers the fundamental requirements of accurate environ-
mental sensing, correct control logic execution, and operator safety.
Quarta et al. also focused on CPS-specific attacks like control loop
alteration and calibration parameters tampering.

Pogliani et al. [16] give a comprehensive view of the security
issues that arise in designing and securely deploying controlled
manufacturing systems. The authors also suggest practical mea-
sures to safeguard industrial cyber-physical systems and discuss the
inadequacies of existing standards in industrial robotics to address
active threats. Notably, past research about CPS security assessment
almost exclusively focused on industrial CPSes (smart factories, con-
nected robots, etc.) and critical infrastructure CPSes (smart grids,
power plants, healthcare systems, etc.). Little research has been
devoted to “civilian” CPSes like elevators installed in residential
buildings and offices. In this paper we assess the security of an
elevator CPS deployed on non-industrial buildings (homes, offices,
etc.).

3 Preliminaries
In the following, we give some preliminary concepts about the
attacks that we will assess in Sections 5, 6, and 7.

3.1 PHP Type Juggling
PHP is a loosely typed programming language, which means that
when the programmer defines a variable, he does not need to declare
a type for it. Internally, PHP will determine the type of a variable by
the context in which such a variable is used. Type juggling in PHP
refers to the automatic conversion of variables from one type to
another [15]. This happens implicitly in certain situations without
needing an explicit conversion. PHP performs type juggling for
example during the comparison of variables of different types and in
arithmetic operations. For instance, the expression 1=="1abc" will
return true, because PHP converts the right operand to the integer
1, in such a way to execute the comparison between variables that
have the same type.

While type juggling can be convenient in some cases, it can
also lead to unexpected results if not handled carefully [10]. Typ-
ically, vulnerabilities can arise in case type juggling is combined
with a deserialization flaw. For example if the application accepts
input via json_decode(), which can produce JSON objects with
non-string fields, without checking the type of such fields. A com-
mon example is a broken authentication vulnerability, in which
the PHP code looks like this: if ($input == "Admin_Password")
{login_as_admin();}, simply submitting the integer input 0would
successfully bypass the password check, since the expression (0
== "Admin_Password")will evaluate to true. To prevent type jug-
gling vulnerabilities it is recommended to always check the type
of the inputs to be the expected one, and to replace loose compar-
isons (==, !=) with strict comparisons (===, !==), which check the
operands’ types and values to be equal.

3.2 Cross-Site Request Forgery and Anti-CSRF
Tokens

Cross-Site Request Forgery (CSRF) is a client-side attack that tricks
an authenticated user into executing unwanted actions on a web
application [8]. The victim is typically induced to click a malicious
link, or visit a malicious third-party site with an auto-submitting
form, etc. The actions involuntary performed by the victim could
include changing a password, making a purchase, or any other state-
changing request that is typically (but not exclusively) performed
via POSTHTTP requests. Note that the session token cannot defend
against CSRF, because it is usually implemented as a cookie (e.g.,
the customary PHPSESSID cookie of PHP) and sent by the browser
along with every request, including the malicious CSRF ones.

On the other hand, anti-CSRF tokens are designed to specifically
prevent CSRF [3]. An anti-CSRF token is a unique and unpredictably
random code generated by the server and inserted intoHTML forms,
typically as a hidden field. The browser mirrors back the anti-CSRF
token through the request body when submitting the form, and the
server must check its presence and correctness before performing
the action. This mechanism effectively prevents CSRF attacks, as
long as the attacker cannot steal or guess the anti-CSRF token itself.

3.3 Clickjacking
Clickjacking is an interface-based client-side attack where a user is
tricked into clicking on actionable content of a honest web site by
clicking on some other content of a malicious decoy web site [2].
Typically, an attacker incorporates the target site as an iframe layer
overlaid on the decoy site. The iframe is positioned within the user
interface in such a way that there is a precise overlap between the
actionable content of the honest site and an innocuous-looking
content of the decoy site. When a user interacts with what he
believes to be the decoy website, he is actually interacting with
the hidden target site, performing unwanted actions on it. Note
that neither the session token nor the anti-CSRF token can defend
against clickjacking, because the user session is established with
content loaded from an authentic (though framed) site and with all
requests happening on-site. Therefore, both session and anti-CSRF
tokens are included into requests and passed to the server as part
of a normally behaved session.

Hack in an Elevator! Pentesting a Lift Control Web App EWSN ’24, December 10–13, 2024, Abu Dhabi, UAE

To prevent clickjacking vulnerabilities, it is recommended to use
Content Security Policy (CSP), and in particular the frame-ancestors
CSP directive with a value of none for all the returned pages. In
this way, the client will be prevented from embedding any page
inside an iframe or similar HTML elements.

4 System Description and Design
The target of our penetration test is a CPS composed of a series of
elevators installed on various buildings of different customers. Each
elevator is equipped with a series of embedded computer boards:
two of them are inside the elevator car, one is at the bottom of
the shaft, and one is at each floor’s door. One of these boards pro-
vides Internet connectivity for the others, via authenticated Wi-Fi.
The boards periodically download commands from a management
web site, through an authenticated connection. The elevator man-
agement site is intended to be used by maintenance technicians
equipped with appropriate credentials. Through this site, the tech-
nician can control installation parameters, check the status of each
elevator, and consult a log containing errors and activities.

In this first part of the penetration test we focused on the elevator
management site only, because it is the component most exposed
to possible attacks due to its public and remote availability. Testing
the other components, for example the embedded computers, their
firmware and their Wi-Fi connectivity, is left for a future work. The
experiences reported in the present paper focus exclusively on the
elevator management site penetration test.

The web site is written in the HTML and JavaScript languages,
and it uses PHP for the back-end logic. It also uses a MySQL data-
base for storing credentials, elevators information, etc. Figure 1
shows the site page transition scheme. Before doing anything the

Login
Select

installation
Control
panel

Remote
control

Installation
parameters

Installation
wiring

Reports &
diary

Errors

Telemetry

About
(from any) (to any, if auth’ed)

(if not auth’ed)

Figure 1: Page transition scheme of the elevator management
web site

user has to log in on the “Log in” page with a username and a
password, after which the flow will be redirected to the “Select
installation” page, which make the user select an elevator that he
wants to monitor and manage. After choosing the elevator, the
“Control panel” page will be loaded with information regarding the
chosen elevator. From this page, the user can freely move between
various other pages (“Remote control”, “Installation parameters”,
etc.), thanks to a menu. The most critical of these pages is the
“Remote control” one, through which the user can close and open
the elevator car’s door, move the elevator, or make it stop at any
moment. The user cannot select another elevator unless he logs out.
The logout action can be performed at any page except “Login”,
and it redirects the user to the “Login” page. The “About” page is
always accessible, by authenticated as well as anonymous users.

5 Authentication and SQL Injection
Vulnerabilities

The elevator management site authenticates the user by means of
username and password information, which the user provides as
request body parameters. The back-end script then takes these pa-
rameters and checks for the validity of such credentials by querying
the MySQL database. In particular, it performs a SELECT query on
a credential table, with a WHERE clause that selects the row with the
specified username. If the query returns at least a row, then a hash
of the password is retrieved from such a row, and the password pro-
vided by the user is verified against it. If this final check succeeds,
then the authentication is successful. The web site uses the bcrypt
randomized hash algorithm for the passwords, to avoid possible
rainbow attacks against the database content [17].

The MySQL query is not carried out by means of prepared state-
ments, which is the most safe and recommended technique to avoid
SQL injection attacks [1, 9]. However, the username input is san-
itized with the mysqli_real_escape_string() function, which
escapes characters that can be interpreted as string delimiters or
can cause the legitimate string delimiters to be ignored, namely
single quotes (’), double quotes ("), and backslashes (\). Conse-
quently, the login functionality turned out to be immune to SQL
injection attacks. SQL queries are used in other parts of the site as
well, but the back-end scripts extensively use a series of escaping
functions on inputs before placing them into any query. In particu-
lar, string inputs which are not employed in LIKE operations are
escaped by the mysqli_real_escape_string() function. Those
which are employed in LIKE operations are escaped on two ad-
ditional characters, namely percentages (%) and underscores (_),
thanks to the addcslashes() function. Finally, the string inputs
which are used as names of tables and columns are sanitized by
stripping dangerous characters selected by a regular expression,
thanks to the preg_replace() function. The employed regular ex-
pression matches any character that is not a lowercase or uppercase
letter, a number, or an underscore, and it removes it from the input.

We conducted a series of injection probes with the SQLMap
tool, launched with various configurations. We also tried to mount
well-known SQL injection techniques, such as piggybacked queries,
tautologies, union operators, error-based SQL injections, and blind
SQL injections. From the provided tests and code analysis, no ev-
ident SQL injection vulnerability emerged from any part of the
site. Nevertheless, developers should use prepared statements [9]
instead of escaping in SQL queries whenever possible. Escaping
defenses are sometimes error-prone and difficult to apply correctly,
and they could produce severe vulnerabilities in future versions of
the site.

Coming back to the login functionality, we observed that there is
no control over the number of login attempts made, neither taking
into account the IP address they come from nor the username that
is trying to log in. This leaves room for brute-force attacks using
publicly available wordlists of common passwords [12]. The at-
tacker could also use a wordlist specifically crafted for the elevator
management site, by retrieving and combining various information
regarding the company and its employees, obtained by social engi-
neering. The web site does not have a user registration functionality,
and new users can be registered only by the site administrator, by

EWSN ’24, December 10–13, 2024, Abu Dhabi, UAE Perazzo et al.

5.7 11.5

147.0

0

20

40

60

80

100

120

140

160

hydra our tool
(1 thread)

our tool
(10 threads)

Figure 2: Login brute-force throughput

interacting directly with the MySQL server and manually adding tu-
ples into the credentials table. Therefore, the actual strength of the
authentication mechanism relies on the users’ capacity of creating
strong passwords, or the administrator’s capacity of creating strong
passwords for them. Of course, this policy scales badly in case the
number of users increases, so the site should be equipped with a
user registration functionality, employing an automated password
strength estimation.

We noted that the webspace provider employs a mild protection
against login brute-force attacks (and automated attacks or scans in
general) by limiting the number of HTTP requests per unit of time
coming from the same IP address. If the rate of requests exceeds a
certain threshold, the web server will respond with the status code
429 (“Too Many Requests”) for a period of time between seconds
and minutes. Of course, this IP address block can be easily bypassed
by attacking the elevator management site through a proxy server,
and automatically change the proxy when its IP address is blocked.
As a proof of concept, we developed a Python script which submits
several passwords from a specified wordlist, and cyclically rotates
the proxy from a configurable list of active proxies when a 429
status code is received. The script can also run several threads in
parallel to improve the throughput of the brute-force attack.

Figure 2 shows the performance of the described attack in terms
of number of passwords tried per minute, compared to the classic
Hydra tool [19]. Hydra cannot use proxy rotation, so we had to
downtune it to make a login attempt every 10 seconds, in such
a way to avoid the IP block. We configure our brute-force script
to use 1 thread with 10 proxies, or 10 parallel threads with 10
proxies. With the latter configuration we reach 147 login attempts
per minute, which corresponds to more than 211K passwords per
day, and we completely avoid the IP block. If the passwords are
not strong enough, this brute-force attack could guess one of them
in a reasonable amount of time. To avoid this, the web site should
implement a functionality that blocks a username when it attempts
too many failed logins per unit of time. A username-based block is
more difficult to bypass than an IP-based one. Indeed, in order to

change the attacked username, the attacker should have a list of
valid usernames. Moreover, even if the attacker has such a list, he
must restart the password brute forcing from scratch every time he
changes the attacked username.

6 Cookie Security and Clickjacking
After successful authentication, the elevator management site re-
leases a random session token to the user through the customary
PHPSESSID cookie of the PHP language, to re-identify him through
the various requests. From our tests, it turned out that no cookie
(neither the PHPSESSID cookie as well) has the Secure nor the
HttpOnly flags set, and no cookie has the SameSite attribute set.
The Secure flag tells the browser not to transmit the cookie in
requests performed over unencrypted connections. Such a flag is
important to avoid that the browser discloses the session token
to a man-in-the-middle attacker if the user requests a page of the
unencrypted version of the site (i.e., the http:// one). Note that it
does not matter whether such an unencrypted version exists or not,
because the session token is compromised just as soon as the user
performs the request. The site developers should set the Secure
flag, at least for the PHPSESSID cookie, as a free defense in depth
against man-in-the-middle attacks.

The absence of the HttpOnly flag means that the cookie is acces-
sible to client-side scripts (e.g., JavaScript). Such a flag is a defense
in depth against cross-site scripting (XSS) attacks, in which the
attacker injects a client-side script leveraging a bug in the back-end
logic. The injected script typically steals the PHPSESSID cookie of a
legitimate user by submitting it to a site controlled by the attacker,
which can then hijack the ongoing session of the user. After exten-
sive tests, no evident XSS bug has been found on the site. Indeed,
due to the nature of the site, user input is rarely used to construct
return pages. Nevertheless, the elevator management site should
set the PHPSESSID cookie as HttpOnly as a free defense in depth
against XSS.

Finally, the SameSite attribute tells the browser when to trans-
mit the cookie in case of cross-site requests. With the None value,
the cookie will be always sent within all requests. With the Strict
value, the cookie will be sent only within in-site requests, and not
within cross-site ones. With the Lax value, the cookie will be sent in
cross-site requests only if the request method is a safe one (e.g., GET,
but not POST) or if the request is triggered by a top-level navigation
event (e.g., clicking on a link, but not loading an iframe). Since 2020,
the most widespread browsers decided to use Lax rather than None
as the default value for the SameSite attribute, thus forbidding
by default the transmission of cookies within dangerous cross-site
requests. This helps counteracting cross-site request forgery (CSRF)
attacks in new browsers. However, an outdated browser will au-
tomatically attach the cookie to cross-site requests, for example
when a legitimate user follow a malicious link or submits a ma-
licious form, or when he navigates a malicious site that contains
the elevator management site as an iframe. Even here, the eleva-
tor management site should explicitly set the PHPSESSID cookie
as SameSite=Strict as a free defense in depth against CSRF. We
noted also that an explicit protection against CSRF is implemented
by the site, by means of an anti-CSRF token. The implementation

Hack in an Elevator! Pentesting a Lift Control Web App EWSN ’24, December 10–13, 2024, Abu Dhabi, UAE

Figure 3: Malicious clickjacker site, opaque version (above)
for attack deployment, and semi-transparent version (below)
for attack debug

of such an anti-CSRF token shows some weaknesses, that will be
analyzed in Section 7.

From further tests, it emerged that the elevator management
site did not use any Content Security Policy (CSP) directive, par-
ticularly those intended to mitigate XSS and clickjacking. To test
the feasibility of the latter attack, we developed a malicious web
site that frames the elevator management site into an <iframe>
HTML element, and it induces a legitimate user to perform unwit-
ting actions on it. Our clickjacker web site was built by extending
the code automatically outputted by the Clickbandit tool [2]. The
malicious decoy site is apparently a simple video game. The user
is asked to click on an icon of an elevator that moves within the
game area, to “free” some men trapped in an elevator. Clicking
on the elevator icon causes a click on the underlying (and hidden)
frame containing the original elevator management site. After each
click, the elevator icon moves in a different place inside the game
area, in such a way to steer the user’s clicks on different links and
buttons of the original site. In practice, the user thinks he is playing
a game about elevators, while he is sending commands to the real
elevators, possibly causing damage and harm. Figure 3 shows two
screenshots of the malicious game. In the second screenshot the
game area was purposefully made semi-transparent to show the
underlying original site.

To perform the attack we had to induce the user to authenticate
with his password to the framed site. However, this was quite
easy to do by leveraging the password autocompletion mechanism
of the browser, which works even if the web site is framed into
another one. The hardest technical issue to address was detecting
the user’s clicks, in order to move the elevator icon and make
the game progress. Adding a listener directly on the iframe to
detect clicks is not possible due to same-origin policy restrictions,
which prevent a web document’s code from directly accessing the
content of an iframe loaded from a different site. We tried to evade

the restriction by taking a screenshot of the web page with the
html2canvas JavaScript library. However, the same-origin policy
again made the trick ineffective. Finally, we solved the problem by
intercepting the event of the mouse pointer being over the game
area, after which we forcefully move the focus on an invisible
“clickjack focus” input. Then, we intercept the successive event
of the focus moving away from it. This sequence of events can
be easily intercepted, and it indicates that a click occurred on the
framed original site1.

To avoid the clickjacking attack, the elevator management site
should attach a frame-ancestors CSP directive with a value of
none to each returned page. In this way, the client’s browser is not
allowed to embed any page of the site within an iframe or similar
embedding HTML elements.

7 Anti-CSRF Token Issues
In addition to the PHPSESSID cookie, the elevator management site
uses an URL parameter named “x” to control the page sequence and
to re-identify the user through different requests. The parameter is
a base64-encoded JSON object, which contains three fields named
respectively “aid”, “lang”, and “auth”. The first two fields identify
respectively the page requested by the user and the language of
such a page. The x.auth field is an anti-CSRF token [3], which
is randomly chosen by the server after the authentication, saved
as a session variable at the server side, and checked again at each
request by the server.

We noted that the anti-CSRF token is submitted and checked by
the server also in case of innocuous GET requests, which suggests
us that developers could be not fully aware of the real purpose of
the token. More crucially, using an URL parameter as anti-CSRF
token is a bad practice, because URLs are not designed to keep
secrets in general. Indeed, the requested URLs can be revealed by
the Referer header in cross-site requests. They are also logged
by the server, by possible proxies and load balancers, and by the
browser itself in its navigation history. The elevator management
site should transmit the anti-CSRF token in a more secure way,
for example as a parameter in the request body or in the request
headers.

We found more weaknesses in the way the anti-CSRF is managed
at the server side. Fortunately, none of these weaknesses is immedi-
ately exploitable, but they could become so in future versions of the
site. For example, the token is created by the mcrypt_create_iv()
PHP function, which has been deprecated since PHP 7.1 and re-
moved since PHP 7.2 due to security concerns and lack of mainte-
nance. The site should instead use the openssl_random_pseudo_bytes()
function, which is based on the OpenSSL library. More interestingly,
the anti-CSRF token is checked as shown in Figure 4.
We first note that the strcmp() function does not run in constant
time, but rather its running time depends on the position of the first
differing character. This could lead to possible side-channel attacks
to discover the anti-CSRF token [6]. However, these attacks are
rarely exploitable in a real web application, because the network
and processing delays are so variable that they make the tiny timing
differences in the token comparison extremely difficult to measure.

1This trick does not work if the victim user uses Firefox, because a click on the iframe
does not cause the “clickjack focus” input to lose focus.

EWSN ’24, December 10–13, 2024, Abu Dhabi, UAE Perazzo et al.

if (strlen($submitted_token) > 0) {
if (strcmp($submitted_token, $real_token) == 0) {

\\ perform the action and return the page
}

}

Figure 4: Code that checks the anti-CSRF token

However, other weaknesses are present in the code of Figure 4.
Since the token is passed as a JSON object’s field, it can have a
type different from string, leading to possible PHP type juggling
vulnerabilities. In particular, submitting an array (array()) as to-
ken leads strcmp() to produce null independently from the real
token value, which in turn produces true when loosely compared
(note the == operator) to 0. This could allow an attacker to bypass
the CSRF defense by simply submitting array() as anti-CSRF to-
ken in the URL. This behavior is prevented in PHP 8.0, because
strcmp() raises an exception in case one of the two arguments is
not a string. However, the elevator management site runs over PHP
5.6, therefore strcmp() only raises a warning in this case, and then
it continues executing the code.

For a fortuitous coincidence, the strcmp() invocation is pre-
ceded by a strlen() invocation, which was put there to check
whether the user jumped on that page before authentication. In
case the argument is not a string, the strlen() function also pro-
duces null. For the type juggling rules, null is converted into 0
before the >0 comparison, which in turn returns false. In other
words, by checking that the length of the submitted anti-CSRF to-
ken is greater than zero, the site prevents the strcmp() bug from
being triggered, and thus it luckily defends against type juggling
attack. To defend more securely, the site should check the exis-
tence and the type of the anti-CSRF token before using any string
function, respectively by means of the isset() and is_string()
functions. Then, it should check the strcmp()’s result with a strict
comparison (===). Using a more recent version of PHP would also
serve as a defense in depth.

8 Conclusions
In this paper we carried out a white-box penetration test of the web
site deputed to the monitoring and management of a CPS composed
of a series of elevators deployed in non-industrial buildings. The
security of the management web site is critical, because it is the
CPS component most exposed to possible attacks due to its public
and remote availability. From our experience we can conclude that,
for what it concerns the web part, the CPS developers have a good
awareness of the most common cybersecurity threats, and they a
aware of common defense techniques like anti-CSRF tokens [3].
Still, although we did not find any major and easily exploitable
vulnerability, some defenses against advanced client-side attacks
like clickjacking [2] are missing. Developers adopted some defense
techniques without following the best practices (e.g., they put se-
crets in URLs), and without being aware of some tricky server-side
language functionalities (e.g., PHP type juggling [15]). They also do
not employ some free defense-in-depth mechanisms, which could

give more security without any impact on performance or complex-
ity. This negligence could lead to vulnerabilities in future versions
of the site, or in case some unfortunate conditions are met.

Acknowledgments
Work partially supported by project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the
European Union – NextGenerationEU.

References
[1] PortSwigger Web Security Academy. 2023. SQL Injection. https://portswigger.

net/web-security/sql-injection
[2] PortSwigger Web Security Academy. 2024. Clickjacking (UI redressing). https:

//portswigger.net/web-security/clickjacking
[3] PortSwigger Web Security Academy. 2024. How to prevent CSRF vulnerabilities.

https://portswigger.net/web-security/csrf/preventing
[4] Lucas Apa. 2017. Exploiting Industrial Collaborative Robots. https://ioactive.com/

exploiting-industrial-collaborative-robots/
[5] Deval Bhamare, Maede Zolanvari, Aiman Erbad, Raj Jain, Khaled Khan, and Nader

Meskin. 2020. Cybersecurity for industrial control systems: A survey. Computers
& Security 89 (2020), 101677. https://doi.org/10.1016/j.cose.2019.101677

[6] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.
Computer Networks 48, 5 (2005), 701–716. https://doi.org/10.1016/j.comnet.2005.
01.010 Web Security.

[7] Martin Brunner, Hans Hofinger, Christoph Krauß, Christopher Roblee, Peter
Schoo, and Sascha Todt. 2010. Infiltrating critical infrastructures with next-
generation attacks. Fraunhofer Institute for Secure Information Technology (SIT),
Munich (2010).

[8] OWASP Foundation. 2024. Cross Site Request Forgery (CSRF). https://owasp.org/
www-community/attacks/csrf

[9] OWASP Foundation. 2024. SQL Injection Prevention Cheat Sheet.
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_
Cheat_Sheet.html

[10] The SecOps Group. 2022. PHP Type Juggling Simplified. https://secops.group/php-
type-juggling-simplified/

[11] Song Han, Miao Xie, Hsiao-Hwa Chen, and Yun Ling. 2014. Intrusion Detection
in Cyber-Physical Systems: Techniques and Challenges. IEEE Systems Journal 8,
4 (2014), 1052–1062. https://doi.org/10.1109/JSYST.2013.2257594

[12] Christopher Harper. 2024. Biggest password database posted in history spills
10 billion passwords — RockYou2024 is a massive compilation of known pass-
words. https://www.tomshardware.com/tech-industry/cyber-security/biggest-
password-leak-in-history-spills-10-billion-passwords

[13] Haider Adnan Khan, Nader Sehatbakhsh, Luong N. Nguyen, Robert L. Callan,
Arie Yeredor, Milos Prvulovic, and Alenka Zajić. 2021. IDEA: Intrusion De-
tection through Electromagnetic-Signal Analysis for Critical Embedded and
Cyber-Physical Systems. IEEE Transactions on Dependable and Secure Computing
18, 3 (2021), 1150–1163. https://doi.org/10.1109/TDSC.2019.2932736

[14] Hongwei Li and Danai Chasaki. 2021. Ensemble Machine Learning for Intrusion
Detection in Cyber-Physical Systems. In IEEE INFOCOM 2021 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). 1–2. https:
//doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484479

[15] PHP Manual. 2024. Type Juggling. https://www.php.net/manual/en/language.
types.type-juggling.php

[16] Marcello Pogliani, Davide Quarta, Mario Polino, Martino Vittone, Federico Maggi,
and Stefano Zanero. 2019. Security of controlled manufacturing systems in the
connected factory: the case of industrial robots. Journal of Computer Virology and
Hacking Techniques 15 (09 2019). https://doi.org/10.1007/s11416-019-00329-8

[17] Niels Provos and David Mazières. 1999. A future-adaptive password scheme. In
Proceedings of the Annual Conference on USENIX Annual Technical Conference
(Monterey, California) (ATEC ’99). USENIX Association, USA, 32.

[18] Davide Quarta, Marcello Pogliani, Mario Polino, Federico Maggi, Andrea Maria
Zanchettin, and Stefano Zanero. 2017. An Experimental Security Analysis of an
Industrial Robot Controller. In 2017 IEEE Symposium on Security and Privacy (SP).
268–286. https://doi.org/10.1109/SP.2017.20

[19] van Hauser. 2023. Hydra. https://github.com/vanhauser-thc/thc-hydra
[20] Wenzhuo Yang, Zhaowei Chu, Jiani Fan, Ziyao Liu, and Kwok-Yan Lam. 2023. A

Practical Intrusion Detection System Trained on Ambiguously Labeled Data for
Enhancing IIoT Security. In Proceedings of the 9th ACM Cyber-Physical System
Security Workshop (Melbourne, VIC, Australia) (CPSS ’23). Association for Com-
puting Machinery, New York, NY, USA, 14–23. https://doi.org/10.1145/3592538.
3594270

https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/clickjacking
https://portswigger.net/web-security/clickjacking
https://portswigger.net/web-security/csrf/preventing
https://ioactive.com/exploiting-industrial-collaborative-robots/
https://ioactive.com/exploiting-industrial-collaborative-robots/
https://doi.org/10.1016/j.cose.2019.101677
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.comnet.2005.01.010
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://secops.group/php-type-juggling-simplified/
https://secops.group/php-type-juggling-simplified/
https://doi.org/10.1109/JSYST.2013.2257594
https://www.tomshardware.com/tech-industry/cyber-security/biggest-password-leak-in-history-spills-10-billion-passwords
https://www.tomshardware.com/tech-industry/cyber-security/biggest-password-leak-in-history-spills-10-billion-passwords
https://doi.org/10.1109/TDSC.2019.2932736
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484479
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484479
https://www.php.net/manual/en/language.types.type-juggling.php
https://www.php.net/manual/en/language.types.type-juggling.php
https://doi.org/10.1007/s11416-019-00329-8
https://doi.org/10.1109/SP.2017.20
https://github.com/vanhauser-thc/thc-hydra
https://doi.org/10.1145/3592538.3594270
https://doi.org/10.1145/3592538.3594270

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 PHP Type Juggling
	3.2 Cross-Site Request Forgery and Anti-CSRF Tokens
	3.3 Clickjacking

	4 System Description and Design
	5 Authentication and SQL Injection Vulnerabilities
	6 Cookie Security and Clickjacking
	7 Anti-CSRF Token Issues
	8 Conclusions
	Acknowledgments
	References

