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ABSTRACT
The increasing integration of Unmanned Aerial Vehicles (UAVs)
across various industries highlights the critical need for reliable
fault detection mechanisms to ensure their safe and continuous
operation. This paper presents a Machine Learning (ML)-based
approach for efficient UAV fault detection on edge devices, address-
ing the limitations of traditional computationally intensive models
often unreliable in real-world conditions. We introduce a scalable,
lightweight fault detection model that dynamically adjusts feature
extraction time windows to balance processing costs and detec-
tion accuracy. Our model employs a series of ten classifiers, each
optimized for different time windows, and utilizes a hierarchical
processing strategy to maintain low latency and high accuracy. Our
methodology uses the “Realistic UAV Fault Dataset” to train and
evaluate the model. The dataset was collected using a Holybro X500
UAV with intentional fault scenarios, providing a robust foundation
for model training. Our model efficiently manages computational re-
sources and enhances fault detection reliability by leveraging Pareto
curves to determine optimal rejection thresholds. The evaluation
demonstrates that our approach significantly improves detection
accuracy while minimizing computational overhead, with an F1
score of 0.985, a False Positive Rate of 2.22%, and a False Negative
Rate of 0.19%, while showing low increases of 8.9% and 11.6% in
CPU and memory usage during analysis.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Fea-
ture selection; • Hardware→ Fault models and test metrics;
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1 INTRODUCTION
The increasing deployment of UAVs across various industries, from
agriculture to logistics, underscores the critical need for reliable and
secure autonomous systems. As UAVs become more integrated into
daily operations, ensuring their continuous and fault-free opera-
tion is paramount[1]. Faults such as broken propellers compromise
mission success and can lead to significant safety hazards and fi-
nancial losses [10]. Therefore, robust fault detection mechanisms
are essential to maintain operational integrity and safety standards
in autonomous UAV.

This paper addresses the challenge of developing a reliable and
efficient ML model for UAV fault detection on edge devices. Tradi-
tional methods often focus on detecting faults by analyzing move-
ment related data from UAV sensors like accelerometers and gy-
roscopes. These methods require extensive data processing and
feature extraction, which can be computationally intensive and
unsuitable for resource-constrained UAV environments [7]. Ad-
ditionally, the effectiveness of these models heavily depends on
the quality and diversity of the training datasets, which are often
difficult to obtain [2].

In our study, we build upon the findings of Katta and Viegas
[4] from our research center, which explored the initial application
of ML for fault detection using accelerometer, gyroscope, and au-
dio data. While Katta and Viegas focused on foundational aspects,
our work extends their approach for UAV fault detection, aiming
to reduce computational costs while maintaining high detection
accuracy. Unlike the previous work that utilized deep learning tech-
niques, we treat the problem as a time series anomaly detection
using lightweight ML-based methods, reducing the number of in-
puts and external hardware, such as a microphone. By utilizing
only accelerometer and gyroscope data, we achieve better accuracy.

Our method involves a two-phase ML model with a reject op-
tion. The first phase uses an ensemble of classifiers optimized for
different feature extraction time windows to classify UAV data.
Low-confidence classifications are rejected and re-evaluated by
classifiers with larger feature extraction windows, enhancing accu-
racy without compromising computational efficiency. The second
phase identifies and signals unreliable classifications for operator
review, facilitating continuous model improvement. By balancing
detection accuracy and computational efficiency, our approach aims
to be more practical for real-time UAV operations. Unlike previous
models that compromise detection accuracy or require extensive
computational resources, our model leverages a dynamic feature
extraction process and a reject option to optimize performance.
Through this mechanism, we create a scalable and reliable solution
for UAV fault detection.

Our evaluation of current ML-based approaches for UAV fault de-
tection, including experiments on a new dataset focused on broken
UAV propeller detection, demonstrates that the feature extraction
timewindow is directly related to detection accuracy and processing
costs. Building on these findings, we propose a reliable ML model
for lightweight UAV fault detection that proactively identifies the
suitable feature extraction time window for the classification task.
This new model can improve true-positive rates by up to 2.22% and
true-negative rates by up to 0.19%.
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The remainder of the paper is organized as follows. Section 2
reviews the related works. In Section 3, the main challenges of the
ML in UAV fault detection. Section 4 describes our proposed model.
Finally, Section 5 concludes our work.

2 RELATEDWORKS
Detection of UAV faults is crucial for ensuring their safe operation.
The typical fault detection process consists of four interconnected
modules as illustrated in Figure 1: Data Acquisition, Feature Extrac-
tion, Classification, and Alert. The process starts with the Data Ac-
quisition module, which gathers high-frequency sensor data, such
as readings from the gyroscope and accelerometer, generally at 100
Hz. This data is then processed in the Feature Extraction module,
which compiles a behavioral feature vector from data summarized
over a predefined time window. Subsequently, the Classification
module uses this vector to identify any physical faults, and the
results are communicated via the Alert module to signal detected
issues [8].

Recent studies have explored various ML techniques for UAV
fault detection. These methods typically require building an ML
model through a computationally intensive training process using
a training dataset that is representative enough to ensure reliable
model construction. The effectiveness of these models is assessed
using a test dataset, with the results serving as an indicator of the
model’s real-world performance [9].

Unmanned Aerial Vehicles (UAVs), being resource-constrained
devices, face significant challenges in implementing fault detection
processes. These challenges are compounded by the need to execute
various processing tasks simultaneously [2]. Several researchers
have focused on detecting specific faults like broken propellers
using visual inspections performed pre- or post-mission, thus not
utilizing onboard ML algorithms [3]. Others have proposed col-
lecting audio data during flights, requiring additional hardware
and complex ML algorithms that increase resource consumption,
potentially jeopardizing the mission [4, 5]. Moreover, comparative
studies have shown that data-driven approaches are generally more
accurate than audio-driven methods [6].

The high processing costs are a significant issue with current
fault detectionmethods. Researchers often extend the feature extrac-
tion time window to increase accuracy and employ sophisticated
deep-learning architectures for classification tasks. However, these
approaches are not feasible for deployment on UAVs due to the
excessive computational resources they require [2, 9].

Furthermore, the reliability of fault identification in autonomous
UAVs remains a challenge. Autonomous UAVs can exhibit a wide
array of potential faults that are difficult to reproduce in training
datasets. This makes it challenging for the deployed ML model
to recognize new scenarios as they arise. Constructing a realistic
training dataset is critical, and any shortcomings here can lead to
an ML model that fails to achieve the accuracy observed during
the testing phase when deployed in production environments [8].
Identifying an unreliableMLmodel can be difficult, often discovered
only after manually analyzing false positive events [2].
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Figure 1: Traditional fault detection sequence, composed of
four stages. First, the data acquisition module gathers the
data from sensors. Secondly, feature engineering abstracts
statistical data on processed features, and then the classifica-
tion module executes different machine learning models for
classifying the data. Finally, the alert module is sent to the
flight controller or the operator, signaling the fault.

3 CHALLENGES IN UAV FAULT DETECTION
In this section, we explore the challenges of developing a realistic
UAV fault dataset and assess the performance of traditional ML
models. We begin by describing our data collection process and
then analyze the impact of processing costs on model accuracy,
highlighting the need for optimized fault detection solutions.

(a) Holybro X500 UAV (b) UAV Propeller

Figure 2: Unmanned Aerial Vehicle (UAV) used on the Real-
istic UAV Fault Dataset.

Creating a realistic dataset for ML-based fault detection in au-
tonomous UAV applications presents significant challenges. Related
studies often accomplish this by using simulated environments,
where data collection follows a set of predefined scenarios. How-
ever, this method does not accurately capture the complexities of
real-world conditions, rendering the resulting ML model unreliable
for practical applications.

To address this issue, we utilize the “Realistic UAV Fault Dataset”,
introduced by Katta and Viegas [4] from our research center. This
dataset includes data from an experiment involving a UAV with a
broken propeller fault scenario. We gathered the data using a Holy-
bro X500 UAV, equipped with an Intel UP Xtreme i7 8665UEMission
Compute (MC), managed by PX4 Autopilot software. The UAV flew
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autonomously in an eight-shape pattern for approximately five min-
utes during each experiment. Data was collected using the Robot
Operating System (ROS2) throughout the mission.

Each test involved flying the UAV under normal conditions
with four intact propellers or under fault conditions, where one to
four propellers were intentionally damaged by trimming approxi-
mately one centimeter from the edge of each. In total, we conducted
60 flights, amounting to over five hours of flight time—half of these
in normal conditions and the other half under fault conditions.
Figure 2 illustrates the UAV and the varied propeller scenarios
employed during our tests. Thus, our dataset offers realistic data
from UAV flights under various operational conditions, which sup-
ports the development and validation of ML techniques for fault
detection.

From this dataset, we utilized a comprehensive set of features
extracted from accelerometer and gyroscope data to enhance the
fault detection capabilities of our machine-learning model. The
78-feature set included basic statistical measures and advanced
distribution characteristics within each time window. Each feature
is obtained on the three axes, 𝑥 , 𝑦, and 𝑧. Specifically, we calculated
the count of values, that is, the number of values in that time
window, the maximum and minimum values, the mean, and the
standard deviation to capture the central tendency and variability of
the data. Quartile-based features such as the first, median, and third
quartiles were included to provide a detailed understanding of the
data distribution. Additionally, we counted the number of positive,
negative, and values greater than the mean and less than the mean
to describe the data’s distribution further. The kurtosis was also
measured to assess the “tailedness” of the distribution, indicating
the presence of outliers. This diverse set of features ensured the
model had a robust and detailed representation of the sensor data,
facilitating accurate and reliable fault detection in UAV operations.
Table 1 describes the features used in the model, applying to both
accelerometer and gyroscope data across all axes 𝑥 , 𝑦, and 𝑧.

Feature Description
count Number of values in the time window
mean Mean value in the time window
std Standard deviation in the time window
min Minimum value in the time window
25% First quartile value in the time window
50% Median value in the time window
75% Third quartile value in the time window
max Maximum value in the time window
posMeanCount Number of values greater than the mean
negMeanCount Number of values less than the mean
posCount Number of positive values
negCount Number of negative values
Kurtosis Kurtosis of the distribution

Table 1: Description of Features Used in the Model (Applies
to both accelerometer and gyroscope data across all axes)

Table 2: Classification performance of the selected classifiers
for UAV fault detection using a 5-second feature extraction
time window.

Classifier F-Measure (%) FPR (%) FNR (%)
Random Forest (RF) 98.99 0.85 0.77
Gradient Boosting (GBT) 98.53 0.85 1.51
k-Nearest Neighbors (kNN) 96.83 2.75 2.36
Decision Tree (DT) 97.95 0.58 2.67
Gaussian Naive Bayes (NB) 97.13 0.04 4.45

3.1 ML-based Detection of UAV Faults
Building our model leverages traditional ML techniques for fault de-
tection in UAV applications, utilizing accelerometer and gyroscope
data collected continuously at a 100 Hz frequency. We employ a
sliding window approach for feature extraction, computing statis-
tical features such as the average values from the horizontal axis
accelerometer over the last 5 seconds. A total of 200 distinct fea-
ture values are extracted from this process and are then used for
classification.

For our analysis, we evaluated five widely recognized ML classi-
fiers: RF, GBT, kNN, DT, and NB. The RF and GBT classifiers use
100 decision trees each, with RF and DT utilizing the Gini impu-
rity measure for determining splits, while GBT employs a learning
rate of 0.1 and the Friedman mean squared error. The kNN classi-
fier is configured with 5 neighbors, using the Euclidean metric to
measure distances. These classifiers were implemented using the
sci-kit-learn API version 1.1.1. To prepare the data for classification,
we applied min-max normalization to the features and partitioned
the dataset into training, validation, and testing sets, comprising
40%, 30%, and 30% of the data, respectively. This segmentation
thoroughly evaluates each classifier’s generalization ability across
different data scenarios.

The classifiers’ performance was rigorously evaluated based on
their False-Positive Rate (FPR), False-Negative Rate (FNR), and F-
Measure. Here, False-Positive (FP) represents the proportion of
normal UAV samples incorrectly identified as faults, while False-
Negative (FN) represents the proportion of actual fault instances
that are misclassified as normal. Our initial experiment assessed
the accuracy of traditional ML-based fault detection techniques for
UAVs by using a feature extraction time window of 5 seconds with
a 1-second sliding window for updates. Every second, a new sample
to be classified is generated based on the most recent 5-second
data window, as detailed in Table 2, which shows the classifiers
achieving low error rates.

Despite the promising results, deploying these classifiers in an
autonomous UAV setting demands significantly lower error rates
to avoid critical operational failures, such as incorrect landing de-
cisions triggered by a false positive. Ensuring the reliability of
fault detection systems is crucial, given their potential impact on
autonomous operations, highlighting the ongoing need for enhance-
ments in ML techniques to handle such high-stakes environments
effectively.
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Figure 3: Evaluation of feature extraction time window size
on processing costs and classification accuracy in our dataset.

The second experiment we conducted aimed to analyze the trade-
off between accuracy and processing costs associated with tradi-
tional ML techniques and to evaluate how the system’s accuracy
can be enhanced at the expense of increased processing costs. To
explore this, we examined the effects of varying feature extraction
window sizes on the performance of the selected ML classifiers. The
findings, as depicted in Figure 3, illustrate the relationship between
processing costs and the F-Measure across different feature extrac-
tion window sizes, highlighting how changes in the time window
impact the accuracy of the ML models.

Notably, the NB classifier demonstrated a significant increase in
F-Measure, improving from 0.89 in a 1-second window to 0.98 in
a 10-second window, as detailed in Figure 3b. This improvement,
however, comes with a corresponding increase in processing costs.
On average, each additional second added to the feature extraction
window increased 8.95% in processing costs, as shown in Figure 3a.
This experiment underscores the critical balance between enhanc-
ing model accuracy and managing the computational resources
required, especially in real-time applications like UAV fault de-
tection. It highlights the necessity to consider the implications of
extended processing times on the overall system performance and
operational efficiency.

4 OUR PROPOSED MODEL
We introduce a reliable, efficient UAV fault detectionmodel designed
to overcome the limitations of high-error, computationally intensive
MLmodels highlighted in Section 3. Our approach, depicted in Fig 4,
dynamically adjusts the feature extraction time window to strike an
optimal balance between processing costs and detection accuracy.
At the heart of our model lies a sequence of ten trained classifiers,
each configured to operate over incrementally increasing feature
extraction windows from 1 to 10 seconds.

The model initiates fault detection by gathering real-time data
into a queue, where it first processes features and performs classi-
fication using the briefest, 1-second window. This approach mini-
mizes latency and computational overhead under normal operating
conditions. The model discards this result if the classification from
this initial window lacks sufficient confidence—falling below a set
reliability threshold. It then escalates to the next time window, ex-
tending the feature extraction to 2 seconds, and reclassifies using
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Figure 4: Proposed reliable, lightweight fault detectionmodel
for autonomous UAVs.

this expanded dataset. This hierarchical processing strategy ensures
efficient use of computational resources while maintaining high
detection accuracy.

As illustrated in Fig 3b, the RF model achieves 100% accuracy at
the ten-second mark. This iterative process methodically increases
the feature extraction window by one second at each stage, striving
to achieve classification confidence above a predetermined thresh-
old or until it reaches the maximum limit of 10 seconds. Should
the predictions remain unreliable at this extended time, they are
categorized as unclassified. This indicates that the model could not
confidently assess the UAV’s condition with the available data. This
adaptive strategy enables our system to dynamically balance com-
putational load and accuracy, optimizing for rapid, cost-effective
processing where feasible and escalating to more resource-intensive
analysis only when essential for ensuring reliable fault detection.

A key advantage of our model is its efficiency in operation,
conserving computational resources by allocating more extensive
processing only to lower-confidence predictions that cannot be
resolved in shorter time windows. Our approach significantly en-
hances the UAV fault detection, providing a scalable model that
balances computational efficiency with reliable classification. With
this advanced strategy, we aim to redefine standards for lightweight,
dependable fault detection systems in autonomous UAVs, promot-
ing safer and more effective operations in diverse conditions.

4.1 Selection of Rejection Thresholds Using
Pareto Curves

In optimizing our UAV fault detection model, the Pareto curves
play a pivotal role by delineating the optimal rejection thresholds
for each classifier across various time windows. These curves illus-
trate the trade-off between error rates and rejection percentages,
serving as a visual guide to strategically select thresholds that min-
imize error while efficiently managing computational resources.
The plots for kNN, GBT and RF, classifiers, spanning feature extrac-
tion windows of 1, 5, and 10 seconds as shown in Fig 5, are crucial
for this analysis. By examining the progression of these curves,
we can discern the relationship between the rejection percent-
age—represented on the 𝑥-axis as the proportion of data classified
below the confidence threshold and consequently discarded—and
the error rate depicted on the y-axis as the percentage of incorrect
predictions.

The curve closest to the origin represents the most favorable
balance, indicating that the classifier can achieve the lowest error
rate with a minimal rejection rate. We determine our rejection
thresholds at these optimal points nearest to the origin for each
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Figure 5: The Pareto curves of three different classifiers for 1, 5, and 10 seconds.

curve, reflecting a precise balance between maintaining accuracy
and reducing computational demands for each classifier and feature
extraction window. By meticulously analyzing these Pareto curves
and setting these critical thresholds, we ensure that our UAV fault
detection system operates efficiently and leverages high-confidence
predictions for quick processing. This strategy allows for a more
intensive analysis only when necessary, preserving the integrity
and reliability of the fault detection process while ensuring the
system remains responsive and effective under varying operational
demands.

4.2 Evaluation
To assess the performance of our model, we conducted an extensive
testing regime involving ten distinct Random Forest (RF) classifiers,
each tailored to operate over a progressively increasing feature
extraction time window from 1 to 10 seconds. Based on the Pareto
curve analysis outlined in Section 4.1, each classifier’s rejection
threshold was established to optimize performance and minimize
error rates.

During the testing phase, designed to emulate real-world oper-
ational conditions, we employed a test dataset where the initial
classification was attempted using the 1-second time window clas-
sifier. If the prediction at this stage failed to achieve the confidence
level mandated by the predefined rejection threshold, the model
would escalate to the 2-second classifier, continuing this sequential
increase up to the 10-second classifier as required. This methodical
approach ensures that each prediction is refined and reassessed,
enhancing the accuracy of the fault detection process.

The performance metrics derived from this evaluation reveal
the robustness of our model. The F1 score of 0.985 highlights a
good balance between the precision in identifying true positives
and the efficacy in minimizing false negatives. Regarding error
rates, the Random Forest classifiers demonstrated a FPR of 2.22%,
indicating a minimal misclassification of non-fault conditions as
faults. More impressively, the FNR was recorded at a mere 0.19%,
showcasing the model’s high reliability in detecting fault conditions.
This robust performance underscores the effectiveness of our model
in providing reliable and precise fault detection under conditions
that closely simulate actual UAV operations.

Figure 6 illustrates the distribution of samples classified at each
time window, notably excluding the 1-second window, where all
initial classifications occur, with subsequent samples advancing
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Figure 6: Percentage of points classified by each time window
and the processing time of the model

to longer windows only if rejected. The “Rejected” category de-
notes instances where the model’s classifications did not meet the
confidence threshold at any stage of the various time windows.
This setup simulates the operational environment by conducting
feature extraction and model classification on a continuous stream
of unprocessed test data in a fixed-size queue, ensuring that the
experiment closely replicates real-world conditions on a drone.

The overall processing time for this experiment was 30.46 sec-
onds, demonstrating the model’s efficiency and lightweight design.
Within this framework, 1.78% of points initially rejected by the
1-second window were successfully classified at the 2-second win-
dow, while only a minuscule 0.04% of points required the 3-second
window for classification. These results underscore the efficacy of
our model in managing computational resources effectively, min-
imizing processing time by accurately classifying most samples
during the earliest stages. Tailored rejection thresholds for each
time window ensure that extensive data analysis is employed judi-
ciously, optimizing processing power without compromising the
detection capabilities of the UAV fault detection system.

Figure 7 illustrates the system’s performance by comparing CPU
usage, RAM usage, and energy consumption in idle and active
analysis states. During analysis, the system’s CPU usage peaks
at around 8.9%, which is only less than. one order of magnitude
from its minimal usage when idle. Similarly, RAM usage increases
only 11%, reflecting the demands of active processing and memory
allocation. Despite these demands, energy consumption remains
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Figure 7: Percentage of points classified by each time window
and the processing time of the model

low, up to 0.6 watts during analysis. This minimal increase under-
scores the lightweight nature of the solution. The system’s ability
to manage resources efficiently and handle intensive analysis tasks
with such low power usage highlights its suitability for applica-
tions in autonomous systems. Maintaining low energy consumption
while performing demanding computational tasks emphasizes the
system’s efficiency as a lightweight solution.

5 CONCLUSION
This paper presented a reliable and efficient UAV fault detection
model that leverages a tiered classification system guided by se-
lected rejection thresholds. The model showed a good performance,
as evidenced by an F1 score of 0.985, alongside low false positive
and negative rates of 2.22% and 0.19%, respectively. These results
highlight the model’s ability to balance high detection accuracy
with minimal computational costs, making it well-suited for real-
time applications in resource-constrained UAV environments. A
key achievement of this study is the innovative approach of dynam-
ically adjusting feature extraction time windows, which optimizes
the trade-off between processing speed and detection accuracy. The
model effectively manages computational resources while main-
taining robust fault detection capabilities by progressively increas-
ing the feature extraction window and employing a reject option
for low-confidence classifications. This strategy ensures that most
faults are accurately identified in the earliest stages, significantly

reducing processing time and enhancing the overall efficiency of
the fault detection system.

This research has limitations. The dataset was recorded exclu-
sively indoors, which may affect the model’s generalizability to
outdoor conditions. Additionally, the model is tuned to detect faults
related to slightly broken propellers, which are less common than
other faults like crashes or wear and tear. Future research should
include outdoor data and a broader range of fault types to enhance
the model’s applicability and robustness for UAV fault detection.
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