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Abstract
Due to the large amount and diversity of data generated by Inter-
net of Things (IoT) devices, Artificial Intelligence (AI) has seen a
breakthrough in IoT applications in recent years. Traditionally this
implies that data must be sent to the cloud, which increases com-
munication costs, causes delays in system response and makes data
vulnerable to privacy breaches. A solution is to migrate AI models
to constrained devices. However, these devices often have limited
computational resources and have a limited ability to implement
AI models. Besides that, the system also needs to be flexible when
devices fail or reconnect. Therefore, this research project aims to
develop a novel framework for distributing neural networks and
enhancing their resilience on constrained edge devices. During the
realization of the framework, research will be done on how a model
can be efficiently distributed over a network of edge devices, con-
sidering energy consumption, memory footprint and bandwidth
usage. Secondly, the project will explore ways to make neural net-
works adaptable to various combinations of input devices, making
the inference more resilient in case of failing devices. Lastly, the
integration of distributed learning will be investigated to enhance
model performance and personalize predictions without sacrificing
privacy. To demonstrate the valorization potential of this research,
all results will be implemented and validated on two real-world
use cases, from which a software framework will be developed and
made publicly available for use in other applications.

CCS Concepts
• Computing methodologies→ Neural networks; • Computer
systems organization→ Embedded systems; Reliability.
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1 Introduction
Artificial Intelligence (AI) has emerged as a major game-changer,
bringing notable transformations within Internet of Things (IoT) ap-
plications. The increasing number of IoT devices and the enormous
amount and diversity of data they generate have made AI an essen-
tial tool that enhances IoT applications, from process optimization
to patient monitoring solutions.
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In recent years, machine learning at the edge has emerged as a
viable solution to deploy machine learning in IoT applications and
has several advantages over the traditional cloud-centric approach,
where data is offloaded to remote computational infrastructure
housing the machine learning models. As data is processed directly
at the edge devices, edge computing reduces bandwidth usage, de-
creases communication latency and takes away possible privacy
issues [3]. However, the edge environment, especially in IoT appli-
cations, consists of low-cost devices that lack the necessary process-
ing power and available memory to run complex machine learning
models. In addition, edge devices are often battery-powered and
wirelessly connected, creating additional challenges to keep energy
consumption low and limit bandwidth usage. Finally, sudden dis-
connections are not unusual and disrupt the prediction or training
process of the models. This research project addresses the current
challenges and limitations and has, as a result of this, the potential
to advance the current state of the art significantly:

• IoT applications primarily consist of multiple, distributed
low-cost sensing devices. The input data is preferably kept
on these edge devices, requiring new techniques to dis-
tribute neural network models over these devices while
considering their limitations.

• Edge devices can fail or suddenly disconnect, disrupting
the prediction or training process of the deployed models.
Therefore, this research will investigate a novel approach
to make neural networks more adaptive to changes in com-
binations of input, creating a more resilient solution.

• Data drift (temporal changes in data distribution) decreases
the prediction performance of deployed models. After de-
ployment, this will be solved by exploring techniques to
collaboratively perform the training process over the dis-
tributed edge devices within the proposed framework.

2 Limitations of current state-of-the-art
techniques

Several techniques exist to address the earlier mentioned challenges
on the edge. TinyML has recently gained much popularity in re-
search [3]. This paradigm proposes mechanisms to enable the in-
tegration of machine learning on low-cost, low-energy microcon-
trollers. Most state-of-the-art techniques propose compression to
reduce the model size [4]. The authors in [9, 13] use data quan-
tization to reduce the size of the weights and activation. Other
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works propose pruning techniques to remove redundancies in over-
parameterized networks [7, 10].

However, limited resources on edge devices still restrict the use of
complex models and IoT applications often involve multiple devices
providing input data requiring a more distributed, collaborative
solution [4], [12]. This can be achieved by dividing the machine
learning model into smaller segments and distributing the segments
amongst the devices. The authors in [5] propose Neurosurgeon,
a framework for layer-wise splitting of neural networks between
an edge device and an edge server to offload computational tasks
from the constrained device. The framework dynamically defines
an optimal partition point based on the edge device’s inference
delay or energy consumption.

Model partitioning allows input data to be kept on the edge de-
vices [12], [8], [1]. However, the training process still requires data
to be collected. First proposed by Google Research [6], federated
learning enables devices to train a shared model collaboratively
without exchanging their private data. The general idea is that each
device trains its model with its local data and pushes model updates
to a central coordinating server, aggregating the updates into a
common model and sending it back to all devices. Nevertheless,
implementing federated learning and other distributed learning
techniques using constrained edge devices still imposes significant
challenges. Indeed, training models is very resource intensive [9]
and the exchange of model updates and parameters introduces a
communication overhead that is not always feasible in a bandwidth-
limited environment.

Despite recent advancements to bring distributed machine learn-
ing to the edge, current state-of-the-art still shows shortcomings
when applied on the IoT devices at the edge:

• Partitioning techniques assume input data is coming
from one source
Prediction models often rely on input features coming from
multiple data sources. For example, a production line may
have numerous sensing devices distributed over several
machines. While model partitioning can keep the input
data on edge devices, current partitioning techniques in
the literature require that all input data is gathered at a
single point before being fed to the partitioned model. This
approach results in the need to exchange input data, causing
increased communication overhead.

• Current techniques do not integrate any resiliency
against failing edge devices
While some techniques rely on redundant devices to keep
the inference or learning process operational [6, 11], most
do not account for the possibility of device failure which
leads to disruptions. This presents a new challenge of main-
taining the inference or training process operative while en-
suring satisfactory accuracy levels, even when predictions
must be made using data from the remaining connected
devices (graceful degradation).

• Most partitioning and distributed learning techniques
are not suitable for general-purpose microcontrollers
Many studies on distributed neural networks on the edge
focus on devices such as single-board computers, mobile

phones and FPGAs. However, low-cost devices, such as mi-
crocontrollers, are often used in IoT applications to keep the
costs as low as possible. Recent advancements in TinyML
have demonstrated the possibility of implementing basic
machine learning models on these constrained devices, re-
sulting in a research gap in combining TinyML with dis-
tributed machine learning and learning at the edge.

3 Methodology
Limitations in current approaches, coupled with the ongoing trend
of IoT and machine learning becoming ubiquitous, underscores the
necessity for a new approach to distributed AI on the edge to lever-
age current state-of-the-art. This research project, PREDISTINE: A
Privacy-Preserving Resilient Framework for Distributed Mod-
ular Neural Networks on the Tiny Edge, aims to develop a novel
end-to-end framework for distributing neural networks on the edge,
consisting of general-purpose microcontrollers (mainly focusing on
class 2 constrained devices [2]). Given sudden losses in connectivity
of edge devices are not uncommon, the project will explore modular
neural architectures and integrate distributed learning techniques
to address data drift, enhancing model performance while ensuring
privacy. The subsequent sections elaborate more on the different
aspects of the framework.

3.1 Distributed Neural Networks
As mentioned earlier, microcontrollers still limit the implementa-
tion of complex neural networks despite current advancements
and offloading input data to more powerful devices is not always
feasible due to the previously discussed concerns. However, by
distributing the neural network across multiple edge devices, their
collective computational resources can be utilized, allowing bigger
models to be deployed. The distributed architecture ideally needs to
be optimized for the prediction task itself, each of the edge devices’
hardware constraints and the network topology. This research aims
to automate the process of finding such an architecture (Neural Ar-
chitecture Search), utilizing evolutionary search algorithms to solve
this multi-objective optimization problem. This will, consequently,
result in a set of Pareto-optimal solutions, each being optimized for
a subset of objectives.

3.2 Modular Exchangeable Blocks
The model should be able to continue functioning even during edge
device failures or disconnections, which result in only a subset of
input features being available. One way to tackle this challenge is
to maintain different neural network architectures for each subset
of input combinations. However, this approach introduces an enor-
mous storage overhead, making it unfeasible to implement on the
edge. Therefore, this project investigates the possibility of reusing
certain parts of the model while defining exchangeable blocks to
process different combinations of input features. This would achieve
a modular architecture that can handle device failures elegantly,
albeit with a slight drop in accuracy due to information loss in the
input data.
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3.3 Distributed Learning
Once a model is deployed on edge devices, it may need to learn from
the data in its operational environment. Traditionally, this involves
collecting data and labels from the edge, retraining the model on a
central server and then redeploying it to the edge devices. However,
this approach raises significant privacy concerns as user data must
be transmitted to the server. Training on the edge can mitigate
this issue and some studies have demonstrated its feasibility [9].
Nonetheless, further research is required to explore how these
techniques can be integrated into this framework.
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