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Abstract
TinyML enables the execution of machine learning models on
resource-constrained devices, offering benefits in privacy and en-
ergy consumption. However, current research often limits TinyML
to single-device, single-task scenarios, hindering the potential for
collaborative edge computing. In this respect, we believe that sys-
tems where TinyML-enabled devices collaborate directly with one
another remain largely unexplored, presenting significant opportu-
nities for innovation in cooperative edge computing. This doctoral
research investigates collaborative TinyML systems comprised of
highly constrained devices (e.g., < 1000 KB RAM, < 2000 KB flash
storage), with objectives such as: developing methods for intelligent
computation offloading, creating a lightweight networking system
for node communication, and investigating protocols for enhanced
interoperability.

CCS Concepts
•Networks→Network protocols; •Computer systems organi-
zation → Embedded hardware; Embedded software; • Computing
methodologies→ Neural networks.
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1 Research Overview
Machine Learning (ML) at the edge has progressed to the point
where it is now possible to shrink ML models and execute them
on resource-constrained devices, invoking a paradigm known as
TinyML [6, 9]. This advancement has opened up new possibilities
for data processing and sensing at the edge. For example, in terms
of privacy and energy consumption, TinyML is favourable, as data
processing is performed on-device and, generally, the algorithms ex-
ecuted on such devices are less resource-intensive [9]. Nonetheless,
TinyML is usually perceived as a single-device, single task para-
digm [13]. Such a setup prevents TinyML-enabled devices from
collaborating with heterogeneous edge nodes to tackle complex
tasks, such as optimizing system performance, enhancing data accu-
racy, or improving energy efficiency. Lack of collaboration restricts
the potential of edge computing, as the isolated operation of indi-
vidual nodes fails to exploit the synergies that could be achieved
through coordinated efforts (e.g., personalization [7]).

Related work typically follows three main patterns: 1) edge de-
vices used for this type of research often fall under general purpose
device group (J) depicted in Table 1, which are powerful enough to
execute ML models running with the support of software unavail-
able to more constrained devices [8]; 2) considered edge devices fall
under the microcontroller device group (M), performing inference

Group Name Data Size Code Size
M C0 « 10 KB « 100 KB
M C1 10 KB 100 KB
M C2 50 KiB 250 KB
M C3 100 KB 500..1000 KB
M C4 300..1000 KB 1000..2000 KB
J C10 (16..)32..64..128 MB 4..8..16 MB
J C15 0.5..1 GB (substantial)
J C16 1..4 GB (substantial)
J C17 4..32 GB (substantial)
J C19 (substantial) (substantial)

Table 1: Classes of constrained devices (KB = 1024 bytes).
Adapted from [3]

solely on-device, without considering the benefits of leveraging the
knowledge or capabilities of proximate edge nodes [9]; 3) different
device group nodes are used for the task of federated learning (see,
for example [14]). These common approaches do not bridge the
gap between two device groups. The existing gap restricts efficient
utilization of the edge environment especially for use cases where
having contextual information matters.

Considering the limitations of these devices (e.g., lacking ca-
pacity to run sophisticated software and network stacks, limited
resources), we see the need to investigate edge systems comprised
of actually constrained nodes (i.e., (M) group devices) that interoper-
ate, share local knowledge, and leverage proximate nodes within the
bounds of the edge environment. Such approach could invoke a new
generation of edge use cases with additional opportunities to opti-
mize different aspects of such systems (e.g., intelligent warehouse
environment management, autonomous vehicles). Nonetheless, to
complete the puzzle, we identify pieces related to software and
networking missing. Ultimately, we seek to answer the following
research questions:

• RQ1: How can resource-constrained edge systems perform
inference in a more sustainable manner without performance
degradation from the application point of view?
We seek to understand how to minimize the energy foot-
print of resource-constrained devices as inference remains
a resource-intensive task.

• RQ2: What are the networking protocol requirements for
collaborative, resource-constrained edge systems?
We will analyze state-of-the-art application layer protocols,
identify gaps, and extend them in order to facilitate practical
communication between nodes, enabling them to discover
each other and integrate seamlessly.

• RQ3: How can device capabilities be represented among het-
erogeneous resource-constrained devices to maintain interop-
erability?
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We will explore the potential for interoperable data repre-
sentation solutions to represent both device and application
capabilities. This aims to ensure uniform knowledge among
heterogeneous devices, requiring minimal adaptation and
maintenance.

2 Research Approach and Methodology
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Figure 1: A high-level representation of the envisioned sys-
tem encompassing the research questions

Figure 1 situates the research questions within the context of an
edge environment that includes both constrained (M) and general-
purpose (J) devices. In the remainder of this section, we elaborate
on our research approach and methodology for addressing each of
these questions.

During the initial stage of the project, we investigate the potential
for constrained devices to intelligently offload their computations
using a combination of Hierarchical Inference (HI) [1] and Early-
Exit (EE) [11] models. This approach, illustrated in Figure 2, enables
TinyML-enabled devices to transfer tasks to more capable nodes
when Quality of Service (QoS) metrics are not met by on-device
inference, thus aiming to improve both the accuracy, efficiency
and sustainability of the system. To gain insight into how well the
approach works, we benchmark and compare on-device, HI, EE, EE-
HI models in terms of accuracy, latency, and energy consumption,
thus addressing RQ1.

Nonetheless, the initial work is limited due to the fact that it
considers cloud as the offloading target without being aware of
other proximate devices that could be a more sustainable choice for
offloading computations. As a result, we explore the possibilities of
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Figure 2: HI appraoch for inference at the network edge.
Adapted from [1]

building a network backbone – a lightweight, gossip-based network-
ing system. This system, illustrated in Figure 3, will enable nodes to
communicate, spread their local knowledge, thus discovering peers,
verify membership, and transfer computations using well-known
and established algorithms [4, 5]. Moreover, with such software
solution we seek to provide the nodes the capability to seamlessly
integrate into the environment. This task involves investigating
networking solutions for TinyML-enabled resource-constrained
devices and determining the most appropriate protocols, data types
and formats, and implementation aspects, thereby addressing RQ2.
We will conduct extensive benchmarks and compare our solution
to the state-of-the-art.
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Figure 3: The workflow of a lightweight, gossip-based net-
working system. This enables peer edge nodes to be discov-
ered, etc.

To tackle RQ3, we will build on top of the solution of RQ2 and
investigate lightweight application layer protocols and means to
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Figure 4: Contextualization of IPSO objects within the col-
laborative edge environment. Device resources and AI capa-
bilities can be represented in standardized way within the
cluster of devices

extend them to represent device capabilities in a standardized man-
ner for enhanced interoperability. One example of such an enabler
is IPSO Smart Objects that leverage standardized objects among
various devices [12]. Such objects can be created to encompass infor-
mation about deviceML capabilities as discussed in [10]. Leveraging
such an approach can provide the means to represent constrained
TinyML-enabled device inherent capabilities that can be further
used to either offload computations to more capable devices or
collaborate with other devices on joint tasks as shown in Figure 4.

3 Preliminary Results
Preliminary results for the initial phase during which we set out
to build a system employing HI with the addition of EE models
showing that exiting the neural network early and offloading com-
putations is, in certain cases, advantageous [2]. The strategy allows
for energy savings and reduced latency compared to solely per-
forming inference on the device or offloading the data to a more
capable device for remote inference. We conducted experiments
to analyze the latency, energy and accuracy metrics with 5 differ-
ent constrained devices for image classification tasks leveraging
models for two datasets: CIFAR-10 and ImageNet. The experiment
results demonstrated that the EE-HI approach can achieve even
better performance than HI, with the reduction of latency and en-
ergy consumption to up to 60%. Although this work used image
classification as the main task, HI and EE-HI are can be applied to
other use cases, such as audio classification, object detection.

4 Challenges and Feedback Needs
Based on the current experiences in carrying out research at a Ph.D.
faculty level, some technical and non-technical challenges desired
to be discussed are:

• Implementation work can be quite challenging and time-
consuming. It is certainly difficult to do it alone and also
to find peers to collaborate with, especially considering
that the topic of interest is quite different than of other
students in the faculty. It would be useful to discuss of how
to approach and find potential collaboration opportunities
within such an environment.

• Moreover, the stream of new ideas can be quite distracting,
especially when reading new research. It begs a question
asking how not to fall into the trap of the “new trend” and
instead focus on the main line of work or balance between
the two.

• Beyond the aspects above, it would be useful to discuss time
management and how to approach tasks that are similar in
priority and also, how more experienced members of the
faculty approach this issue.
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