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Abstract
This paper introduces a novel framework that integrates

Docker and Kubernetes to address well-known challenges
in federated learning. Federated learning has gained sig-
nificant attention as a privacy-preserving and scalable ma-
chine learning paradigm. However, existing frameworks of-
ten lack portability, scalability, resource efficiency, fault tol-
erance, standardization, and ecosystem integration. To over-
come these limitations, we propose a conceptual framework
that combines Tensorflow FL with Docker’s containerization
capabilities and Kubernetes’ orchestration capabilities. Our
approach fills all the gaps in existing FL frameworks. By
leveraging Docker containers, our model achieves efficient
resource allocation, maximizing computing resources while
maintaining portability and scalability. Kubernetes further
enhances resource allocation by orchestrating the deploy-
ment of these containers, minimizing resource consumption.
Our proposed framework provides opportunities for large-
scale distributed machine learning applications, enabling the
widespread use of federated learning methodologies.

1 Introduction
Internet of Things (IoT) devices are becoming ubiquitous

in our everyday lives. Moreover, thanks to the recent devel-
opments in Machine Learning (ML), these devices can aid
humans in a wide variety of tasks. However, since IoT de-
vices use information from different sensors that may poten-
tially perceive sensitive data, they pose a risk for the privacy
of the users. Federated learning (FL) bears the promise of
addressing this issue by enabling the training of ML models
on edge devices [1]. More specifically, FL is a distributed ap-
proach to ML models that allows the training of ML models
on local devices without transmitting the raw data to a cen-
tral server. In fact, the models’ parameters are updated by
aggregating information about the parameters of the individ-

ual models on the edge, rather than their data. The local edge
devices training process is repeated until the global model
converges to an optimal solution [2]. In FL, clients’ sensi-
tive data are thus effectively preserved, as no private data is
shared among the edge devices and the central server.

However, existing federated learning frameworks face
portability, resource allocation, fault tolerance, and standard-
ization challenges, limiting their scalability and effective-
ness. Existing frameworks such as PySyft, Flower, Pad-
dle FL, and Intel OpenFL suffer from a lack of portability
and fault tolerance and require additional integration sup-
port. The problem addressed in this research is the need for a
comprehensive and efficient framework that overcomes these
challenges and provides a robust solution for federated learn-
ing. Existing FL frameworks lack mechanisms to allocate
computing resources optimally, handle device failures, and
ensure consistent implementation across various scenarios.
These limitations hinder the widespread adoption of feder-
ated learning in real-world applications.

Deploying such a framework for FL systems requires
mechanisms to tackle the following issues:

1. Portability of the framework to heterogeneous de-
vices: In a heterogeneous system, the specific ML model
should be adapted to the capabilities of each device,
e.g. by using quantized or pruned versions of the global
model;

2. Portability: In distributed systems, maneuverability and
compatibility is enabled in applications of different het-
erogeneous systems.

3. Fault tolerance: If a fault happens in one of the edge
nodes, the infrastructure should be able to repair it;

4. Model standardization and versioning: All the nodes
should run different versions of the same model, which
requires central coordination to aggregate the information
coming from each of the edge nodes, and eventually de-
ploy the resulting model;

5. Scalability: The resource allocation mechanism must
scale effectively as the number of edge devices and work-
load complexity increases. This involves designing an
allocation algorithm that can handle large-scale deploy-
ments and accommodate the growing demands of the sys-
tem without sacrificing performance and efficiency.

Our research aims to address these limitations and provide



an advanced framework for federated learning by integrating
Docker and Kubernetes. We aim to enhance resource allo-
cation, fault tolerance, and portability in federated learning.
Docker provides a lightweight and portable containeriza-
tion solution, facilitating the deployment of machine learn-
ing models on diverse edge devices. Kubernetes offers pow-
erful container orchestration capabilities, enabling efficient
utilization of computing resources. The use of Kubernetes
and Docker can in fact simplify the deployment and man-
agement of FL models on the edge devices while providing a
scalable and secure platform for FL [3]. We should note that
some approaches leveraging Kubernetes and Docker for FL
have been already proposed in the recent literature. A useful
federated learning framework is created in [4, 5] to facili-
tate the deployment, aggregation, and device monitoring of
models. According to [6], a federated learning method that
focuses on the on-demand client delivers a greater amount
and heterogeneity of data for the learning process. Due to its
evolutionary technique, the Genetic Algorithm (GA) is used
in [7] to solve the multi-objective optimization problem that
represents the deployment of the client and model.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 describes the proposed
architecture and framework to be used in the implementa-
tion of FedEdge. Section 4 presents the applications for the
proposed framework. In Section 5, we have concluded and
described the future work.

2 Related work
Edge Computing (EC) is a paradigm that allows comput-

ing tasks to be performed close to the data source, instead
of transmitting data to data centers or the cloud. By pro-
cessing data locally, EC enables edge nodes to respond to
service requests quickly, thus reducing bandwidth usage and
network latency [8]. This approach is especially relevant in
the context of the IoT, where a vast number of interconnected
devices are used by people on a daily basis [9]. EC can dra-
matically improve location and context-aware apps as it is
placed closer to user devices and data sources. It has been
acknowledged as a key technology in 5G networks, support-
ing a number of network applications [10], and it is projected
to be a key element in the upcoming 6G network. However,
the open-source EC ecosystem is currently experiencing its
most competitive growth phase, with numerous open-source
platforms, portability measures, and convergence initiatives.
This trend underscores the pressing need to develop more ef-
ficient systems that can handle the surging demand for cloud
computing on the edge [8].

Recently, container technology [11] has gained signifi-
cant attention in the domain of cloud services. Previously,
server virtualization technology [12] had been extensively
used in this field. Similarly to server virtualization, container
technology also provides the benefit of resource isolation
and allocation. Containers package code, system libraries,
and configurations required in a lightweight, standalone ex-
ecutable package. Typically, a container instance is only a
few dozen MB in size. This allows the creation of numer-
ous servers from a single server. In contrast, virtualization is
an abstraction of physical hardware that frequently takes up

several GB of space and includes a full copy of the operating
system [12, 13].

Kubernetes, often abbreviated as K8s, is a cluster man-
agement system that is available as an open-source tool. This
system can automatically deploy, extend, and maintain a
cluster of containers. It was developed by Google in 2014
as an open-source version of the Borge system [14]. The
Kubernetes architecture comprises Master components and
Node components. The hosts that have the master compo-
nents installed are referred to as the Masters, while the hosts
with node components are labeled as Nodes. The Master is
the central computer controlling the entire platform’s opera-
tion. Kubectl, API-Server, Etcd, Controller Manager, Sched-
uler, and add-ons are among its components. API-Server
provides a variety of interfaces for executing resource op-
erations, whereas Kubectl is a management tool for man-
aging Kubernetes cluster data. The scheduler oversees the
scheduling of resources, and the controller manager ensures
that the facilities and pod details (a “pod” is a fundamental
unit that provides a service) are in real-time linked by im-
plementing multiple controls [3]. Additionally, the plug-in
Addons provide a user interface for monitoring information
on the Kubernetes platform. Node components collaborate
with the Master to manage the server. These components
include kubelet, which manages the Node’s pod operation
and upkeep. Kub-proxy manages communication within the
cluster between the pods, while Cluster denotes all the pods
linked to the same Master.
2.1 Federated Learning

FL depends on synchronized computing (for client model
training and server model aggregation) and communication
(for local model uploads and aggregated model distribution
to clients). Thus, communication and computational effi-
ciency are crucial for FL within an EC context [15, 16]. Fig-
ure 1 presents a typical FL scheme consisting of clients (data
owners) engaging in cooperative learning and an FL server
(model owner) overseeing the process. The FL process can
be seen as a sequence the following phases:
Step 1 The server sends an initial model to the clients.

Step 2 Each client refines its own model, based on its data.

Step 3 Each client sends a revised version of the model to
the server.

Step 4 The server combines all the versions in a new model.

Step 5 Restart from Step 1.
A comparison of the existing open-source frameworks for

FL supporting Docker and Kubernetes is shown in Table 1.
In the following, we summarize the main aspects of each
of these frameworks. In the table, we compare the existing
frameworks w.r.t. the following properties:

• PyTorch support: PyTorch [17] is one of the most pop-
ular Deep Learning frameworks. Thus, supporting this
library is crucial for compatibility with a wide variety
of deep learning algorithms;

• Tensorflow (TF) and Keras support: TF [18] and Keras
1 are other widely used deep learning libraries;

1https://keras.io/



Table 1. Open-source frameworks based on Kubernetes and Docker for Federated Learning

Framework ML libraries Portability Fault
tolerance Standardization Ecosystem

Integration Maintained Batching
PyTorch TF + Keras Scikit-Learn

Tensorflow FL ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓
PySyft ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓
Flower ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗
PaddleFL ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓
Intel OpenFL ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗
FedEdge (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 1. Conceptual scheme of Federated Learning.

• Scikit-Learn support: Scikit-Learn [19] is one of the
most popular general machine learning libraries. There-
fore, it is necessary to support this library to equip our
framework with a wide variety of well-tested ML algo-
rithms;

• Portability to heterogenous devices: Our framework
should be able to tailor ML models to the capabilities
of each edge device;

• Fault tolerance: The framework must be able to repair
faults occurring at the edge;

• Portability: It is crucial that all the nodes in the network
use the same model, even if using different (tailored)
versions;

• Scalability: Scaling is a fundamental property in smart
distributed systems, as it ensures that the system can
keep working even when the number of devices grows;

• Maintainance: Too ensure compatibility, the library
should be maintained;

• Ecosystem integration:Docker and Kubernetes have a
vast ecosystem of tools and services that can be in-
tegrated with TensorFlow Federated, such as logging,
monitoring, and security solutions, enhancing the over-
all functionality and manageability of the federated
learning system.

2.1.1 TensorFlow FL
TensorFlow2 is a widely used framework that integrates

seamlessly with the TensorFlow ecosystem. It offers porta-
bility, fault tolerance, and standardization support. However,
it has limited resource efficiency and orchestration in dis-
tributed and scalable environments.
2.1.2 PySyft

PySyft3 is a powerful framework built on top of PyTorch,
enabling FL and securing multi-party computation. It pro-
vides privacy-preserving techniques and supports decentral-
ized training, but it lacks standardization and may require
additional effort for integration.
2.1.3 Flower

Flower4 is an open-source framework that simplifies FL
system development. It offers flexibility in ML library
choices and provides fault tolerance mechanisms. However,
it has limited standardization and may require intervention
for resource allocation.
2.1.4 PaddleFL

PaddleFL5 is an FL framework developed by PaddlePad-
dle. It supports efficient large-scale FL and provides fault
tolerance mechanisms. However, it has limited standardiza-
tion and may require customization for specific use cases.
2.1.5 Intel OpenFL

Intel OpenFL 6 is an FL framework for privacy-preserving
collaborative AI. It offers privacy-enhancing techniques and
supports distributed learning. However, it may require ad-
ditional effort for integration and lacks comprehensive stan-
dardization.

3 Proposed FedEdge framework and tools
As discussed earlier, this research aims to design a frame-

work that enhances the edge network efficiency and guaran-
tees proper resource allocation using Docker and Kubernetes
for deployments of FL schemes. Therefore, the proposed
FedEdge framework consists of two main components:
• Edge Devices: These devices host data that is used to train

the ML models. Each device will be equipped with Kuber-
netes and Docker, enabling the deployment of containers
for efficient resource management.

• Central Server: The central server store the global model
and provide an initial model for edge devices to train on.

2https://www.tensorflow.org/federated
3https://github.com/OpenMined/PySyft
4https://flower.dev/
5https://github.com/PaddlePaddle/PaddleFL
6https://github.com/securefederatedai/openfl



It also manage the distribution of the global model to edge
devices for further training.
The use of Kubernetes (or more lightweights distributions

such as K3s7) and Docker in the proposed framework en-
ables easy deployment, scalability, and portability. The pro-
posed solution can be easily evaluated using real-world data,
allowing us to compare the performance of a FL approach
(see Figure 2) to that of a traditional ML approach.

The proposed approach is graphically described in Fig-
ure 3, which illustrates the integration of Kubernetes and
Docker within the FedEdge framework.
3.1 Implementation

In this section, we explain the framework and tools that
can be used to implement the proposed FedEdge infrastruc-
ture.
3.1.1 Framework
3.1.1.1 TensorFlow FL

TensorFlow is a strong contender among the existing FL
frameworks. It offers seamless integration with popular ML
libraries like TensorFlow and Keras, ensuring compatibility
and flexibility in model deployment. In our framework, Ten-
sorFlow FL is the main building block, which allows us to
perform FL. Integrating Docker and Kubernetes with TFF
enhances portability, scalability, resource efficiency, fault
tolerance, and ecosystem integration, making it a powerful
combination for deploying and managing large-scale feder-
ated learning applications.

• Portability: Docker enables easy deployment of Ten-
sorFlow Federated (and ML models) across different
environments, while Kubernetes allows for seamless
management of the application.

• Scalability: Kubernetes enables easy scaling of Tensor-
Flow Federated to handle large-scale federated learning
tasks.

• Fault tolerance: Kubernetes provides fault tolerance
features, ensuring the continuous availability of Tensor-
Flow Federated.

• Ecosystem integration: Docker and Kubernetes have a
vibrant ecosystem, offering various tools and services
that can be leveraged for monitoring, logging, security,
and more.

3.1.2 Tools
3.1.2.1 Kubeflow

To create and deploy ML workflows, including FL work-
flows, Kubeflow8 is an open-source ML toolbox for Kuber-
netes. Kubeflow offers a scalable and flexible solution to
deploy and maintain ML models on edge devices while max-
imizing communication and compute efficiency.
3.1.2.2 Seldon

FL on the edge can be implemented using Seldon9, an
open-source framework for deploying and managing ML
models on Kubernetes. Seldon provides various features that
can be used to enhance ML workflows on edge devices, in-
cluding model versioning, monitoring, and scaling.

7https://k3s.io
8https://www.kubeflow.org
9https://www.seldon.io

3.1.2.3 Istio
Microservices on Kubernetes can be managed and se-

cured using the open-source service mesh technology Is-
tio10. Istio can offer a method for streamlining communica-
tion across various FL process components on edge devices
while preserving data confidentiality and privacy.

3.1.2.4 Harbor
For organizing and storing container images used in FL

workflows on Kubernetes, Harbor11 is an open-source con-
tainer registry. Harbor provides various features that can be
used to ensure the consistency and security of container im-
ages on edge devices, including role-based access control
and vulnerability testing.

3.1.2.5 KubeEdge
The open-source EC platform KubeEdge can be used to

execute containerized workloads on edge devices, including
FL workloads. KubeEdge12 provides various capabilities
that can be used to enhance communication and computa-
tion on edge devices, including edge intelligence and device
management.

4 Applications
In this section, we describe a number of potential appli-

cations for the proposed infrastructure.

4.1 Smart buildings
Edge devices in a smart building, such as temperature,

motion, and occupancy sensors, can collect a lot of data that
can be utilized to increase energy efficiency and the well-
being of people in an indoor environment. ML models can
be trained locally on sensor data using FL at the edge, pro-
tecting user privacy and consuming less network bandwidth.
Once the model is trained, it can be used to enhance building
management systems e.g. for optimized lighting and HVAC
(heating, ventilation, and air conditioning).

4.2 Traffic management
The condition of traffic, the state of the roads, and the

behaviour of automobiles can all be observed using edge de-
vices such as traffic cameras, GPS units, and car sensors in
a smart transportation system. FL on the edge can make it
possible to train ML models locally on the data, ensuring
privacy while also consuming less network bandwidth. The
trained models can then be used to improve the timing of
traffic lights, reroute cars, and find and predict crashes and
traffic jams.

4.3 Health monitoring
The health and behaviour of patients can be studied using

edge devices in healthcare, such as wearable, smart medical
equipment, and medical sensors. FL on the edge can en-
able ML models to be trained locally on the data, ensuring
privacy while also consuming less network bandwidth. The
trained models can then be used to find and predict health
problems, check if patients take their medications, and give
specific health advice.

10https://istio.io
11https://goharbor.io
12https://kubeedge.io/en/
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4.4 Industrial Internet of things
In a smart industrial system, edge devices such as sen-

sors, cameras, and robots can collect data on workers’ be-
havior, equipment condition, and production processes. FL
at the edge can enable ML models to be trained locally on the
data, ensuring privacy and reducing network traffic simulta-
neously. Once trained, the models can be used to increase
production efficiency, identify and stop machine faults, and
ensure worker safety.

5 Conclusions and future works
In this paper, we presented the FedEdge framework, a

conceptual solution for implementing intelligent distributed
systems, such as smart buildings, smart traffic management
systems, smart healthcare monitoring systems, and intelli-
gent transportation systems, through Federated Learning in-
tegration on large-scale applications. The FedEdge frame-
work, which integrates Docker and Kubernetes with Tensor-
Flow Federated, presents a compelling solution for address-
ing the challenges of portability, scalability, fault tolerance,
and ecosystem integration in federated learning systems. By
leveraging the containerization and orchestration capabili-
ties provided by Docker and Kubernetes, we have demon-
strated improved deployment flexibility, efficient resource
allocation, seamless scalability, robust fault tolerance, and
enhanced integration with existing tools and services. These
advantages position our framework as a promising approach
for researchers and practitioners in the field of federated
learning. Future work will focus on further optimizing re-
source allocation strategies, enhancing fault tolerance mech-
anisms, and exploring novel techniques for performance op-
timization.
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