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Abstract
Lane detection is a critical component of autonomous

vehicles, and essential for ensuring their safe and efficient
navigation. In recent years, several models have been pro-
posed to improve the accuracy and performance of this activ-
ity, however, little is known about practical real-time imple-
mentations of these models in small-scale vehicles and low-
cost devices, with limited computing and memory resources.
This work presents an overview of the models and techniques
used for lane recognition in autonomous vehicles. Addition-
ally, an experimental evaluation was conducted for testing
different models for lane detection in real-time on miniature
cars, identifying the best-performing models. Three methods
were analysed: (1) a model using traditional image process-
ing techniques, (2) an end-to-end deep learning (DL) model
proposed by Nvidia, which directly predicts angles, and (3)
an ultra-fast lane detection DL model, which predicts lane
boundaries. In summary, the results demonstrate the ade-
quacy of DL models for addressing the lane detection recog-
nition, even on low-cost devices, as long as minimum ca-
pacity and memory requirements are met. It was observed
that the ultra-fast lane detection DL model outperformed the
other 2 methods with predicting accuracy of 95% compared
to 86% and 92% by traditional and deep learning method by
Nvidia, respectively.

1 Introduction
The autonomous vehicle (AV) industry has attracted sig-

nificant investment from manufacturers and technology com-
panies, with approximately $206 billion spent between 2010
and 2020 on AVs and smart mobility technologies [4]. How-
ever, critical steps need to be overcome before the adoption
of completely autonomous vehicles. It is necessary to in-
crease the reliability of current systems, develop and imple-
ment appropriate regulations, review the traffic code, and de-

fine liability for road accidents. Furthermore, the success
of automated vehicle technology depends on the strategies
adopted and collaboration between different disciplines and
stakeholders. Questions on how to deal with the coexistence
of human-driven and self-driving cars, how to deal with se-
curity issues, such as hackers and criminal actions on the
system, and how to prevent significant harm to life and prop-
erty must be evaluated.

While these challenges have yet to be overcome, ad-
vanced driver assistance systems (ADAS) have already been
made available to consumers. These features offer sev-
eral functionalities, such as lane centering, automatic lane
changes, adaptive cruise control, semi-autonomous naviga-
tion for specific lanes, self-parking, and smart summon. It is
estimated that in the last decade $36 billion were invested in
ADAS components [4].

The edge-cloud computing continuum that is explored in
various research areas, can play a crucial role in address-
ing these challenges and advancing the capabilities of au-
tonomous vehicles [10, 5]. The performance of the vehic-
ular networks and ADAS in autonomous vehicles, can be
further enhanced by utilizing the edge resources and cloud
computing. Cloud computing support data analysis and com-
plex tasks which require substantial resources while Edge
computing allows for real-time data processing within the
edge devices (vehicles). Moreover, the continuum provides
management/coexistence between autonomous vehicles and
human-drivers and addresses security concerns.

Lane detection and motion planning play a relevant role in
the performance of ADAS functionalities, being crucial for
the autonomy of these cars. It allows autonomous vehicles
and robots to understand their position and road boundaries
while navigating safely and efficiently. Miniature car proto-
types have been designed and implemented by researchers in
academia and industry to test autonomous driving, enabling
the evaluation of new products and systems under more real-
istic scenarios, with smaller budgets and in a safer environ-
ment. Moreover, the use of low-cost devices has led to an
increase in the development of new technologies and appli-
cations, which include lane recognition in miniature cars, in
robots for cargo handling, inspection, or maintenance activi-
ties; in traffic lights and radars for traffic control systems in
simpler autonomous vehicles such as bicycles and scooters
and in-car warning frameworks. Such systems can contribute
to more affordable and accessible autonomous mobility and



Figure 1. The self-driving robotic car and the road lane

road safety systems, leading to new possibilities for innova-
tion in this area.

This work aims to investigate the current state of the field
of lane detection models for miniature cars or low-cost de-
vices. It will analyse practical experiments that have been
conducted in the field, including the methods, devices, hard-
ware, systems, and metrics that have been used. The study
will also test three lane detection models for use in real-time
applications and evaluate their performance. Each model
will be analyzed and optimized to enhance its robustness and
accuracy in providing results.

The experiment was conducted in the following manner:
first, a study was conducted to investigate the current state
of the art in the field and understand the practical solutions
adopted, as well as their challenges and limitations. Based on
this mapping, three lane detection algorithms were selected
for empirical evaluation using miniature cars (Figure 1).

Thus, the remainder of this research can be divided into
several sections. An overview of relevant works in the area is
provided in section 2. Section 3 describes the methodologies
and the experimental setup used for model evaluation. It also
describes the steps taken to ensure accuracy and reliability
of the results. The analysis of each model is presented in
section 4, while section 5 summarizes the major conclusions
and presents some outlooks for further work.
2 Related Work

Most of the studies apply classical image processing
methods to identify lane segments [12, 9]. However, these
methods do not respond well to scenes with significant light-
ing and contrast variations, shadows, and obstructions [13].
Furthermore, these models rely on a combination of tech-
niques and configurations, which vary with the diversity of
scenarios, demonstrating scalability issues.

Several Deep Learning (DL) models for lane detection
have been proposed to address these problems [8, 15], in-
cluding architectures such as Convolutional Neural Net-
works (CNNs) [1, 11], Long Short Term Memory (LSTMs)
[17], and generative adversarial networks (GANs) [2, 7].

New deep-learning models have increasingly been pro-
posed to enhance lane detection accuracy and performance,
as observed on the “Papers with Code” website. Among
their best-performing benchmark models, are: (1) the Cross-
Layer Refinement Network for Lane Detection (CLRNet),
which utilizes both high and low-level features for lane de-
tection and uses Residual Neural Network (ResNet) or Deep
Layer Aggregation (DLA) as pre-trained backbones [16];
(2) the SCNN UNet ConvLSTM2, a hybrid spatial-temporal
deep learning architecture for lane detection; (3) the Cond-

Figure 2. Model 1, the Traditional Model, which uses
image processing techniques for feature extraction

LaneNet, a top-to-down lane detection framework based on
conditional convolution [6]; and (4) YOLOPv2, a multi-task
learning network to simultaneously perform the task of traf-
fic object detection, drivable road area segmentation and lane
detection [3].

However, usually, to apply in real-time applications, these
models require to run in high-end GPU platforms. Little is
known about DL lane detection algorithms in embedded sys-
tems with limited computing and memory resources. Fur-
thermore, DL models in miniature cars can require data and
labels from similar environments for training, representing
the correct steering angles or road markings for the images.
However, these labels must be produced manually or semi-
manually, which is a time-consuming task.

An important observation obtained from the mapped stud-
ies with practical lane detection implementations in low-cost
devices is that comparisons among models and results of
these studies is challenging due to the different methods em-
ployed, variation in accuracy calculation criteria, and a va-
riety of hardware used. This reinforces the importance of
this study, which provides a thorough comparison of differ-
ent models, isolating the hardware effects, which serves as a
valuable reference for selecting a solution for a specific de-
vice.

3 Lane Detection Models
This section describes the selected three different real-

time lane detection models and the experimental setup used
to evaluate their accuracy.

3.1 A traditional model
This model uses feature extraction techniques to detect

lanes on the road. It employs traditional image processing
techniques to recognize lanes, which are among the most
widely used methods for this task. The reason for choos-
ing this model is that these techniques are well-established
and have been shown to be effective in lane detection.

This model employs a variety of feature extraction tech-
niques to detect lane segments including color space conver-
sion, image noise and detail reduction, filters, edge detec-
tion, geometric shape recognition, and polygon reconstruc-
tion. Additionally, the model uses trigonometry to calculate
steering angles. Photos of each step in the process were taken
and are presented in Figure 2.



Stage Function
Colour space
conversion

cv2.cvtColor,
cv2.COLOR BGR2GRAY

Image noise
and
detail reduction

{cv2.morphologyEx, }
cv2.MORPH HITMISS,
cv2.MORPH DILATE,
cv2.threshold,
cv2.THRESH OTSU,
cv2.adaptiveThreshold,
cv2.ADAPTIVE - THRESH GAUSSIAN C

Filters and edge
detection

cv2.divide,
cv2.bitwise not,
A customized function to define the
region of interest

Geometric shape
recognition

cv2.HoughLinesP
A customized function to detect left
and right segments

Angles A customized function to detect angles
and avoids abrupt variations of them

Table 1. Functions used in the Traditional Model Algo-
rithm

To build the model, several functions were analysed to
identify which ones were most effective in extracting the im-
age features and detecting the lanes for the controlled en-
vironment of the experiment. Table 3.1 presents the most
effective functions employed in each stage.

3.2 An end-to-end model
This model proposed was by proposed by Nvidia [1]

which uses a CNN to directly predict the angle of the car.
This model receives an input image of 66x200 pixels and ex-
ecutes a regression task through a CNN, which consists of 9
layers (one normalization layer, 5 convolutional layers, and
3 fully connected layers). The first three convolutional layers
use a 2×2 stride and a 5×5 kernel, while the final two convo-
lutional layers are non-strided convolution with a 3×3 kernel
size (Figure 3).

In this model the system learns the car’s steering angle
directly, without the need to first detect the lane and plan the
route at hand. This was one of the reasons for choosing this
model. It is a straightforward solution, which streamlines
the steps and maybe leads to better performance in simpler
systems, which is the case. Additionally, this was the most
commonly referenced machine learning model in the map-
ping study conducted.

To pre-process the images before running the model, the
following steps were followed as suggested by [14]:

• The top half of the images were removed, as they were
not relevant for lane following.

• The images were converted to the YUV colour space.

• Denoising was performed, using Gaussian Blur, remov-
ing noise from the data.

• Images were resized to (200, 66, 3) and normalized (di-
vided by 255).

Figure 3. Model 2, the End-to-end Model, a CNN archi-
tecture, which directly outputs the steering angle of the
car [1]

3.3 An ultra-fast model
The ultra-fast Lane detection model [11] is a CNN model

which uses Resnet 18 as the backbone. The architecture
contains residual blocks with feature extractors (blue box);
an auxiliary branch with a segmentation task used only for
training (orange box); and a module which selects prede-
fined cells in rows and executes a classification task (instead
of segmenting each pixel of the image), and thus, reducing
the computational cost (green box) (Figure 4).

In this method, the images are arranged in a grid pat-
tern and the lanes are represented as locations on predefined
rows, referred to as row anchors, along the y-axis, and in
cells along the x-axis. The method predicts the probability
of selecting gridding cells for the i-th lane, j-th row anchor.

To pre-process the images before running the model, the
following steps were followed, as suggested by [11]: (1) Im-
ages are resized to 288 pixels of height and 800 pixels of
width, in RGB format. (2) Transformed to tensor. (3) Nor-
malized using the mean and standard deviation of Imagenet.

The reason for selecting this model is its high process-
ing speed and low computational cost, which allows it to be
trained and tested on a standard machine. Moreover, it can
be used in demanding scenarios such as those involving road
obstructions and curved roads. This is due to the model’s
unique characteristics and its loss calculation formula, which
incorporates both global and local features.

The local feature approach is a way to identify and extract
relevant information from images focuses on their small sec-
tions. For example, for training, the model performs an aux-
iliary task and compute the loss formula, segmenting each
pixel of the lanes.

On the other hand, another branch used for training and



Figure 4. Model 3, the Ultra-fast Model, a CNN architec-
ture, which 2 branches, one for auxiliary segmentation
and another for classification

testing performs a classification task, applying a global fea-
ture approach. Instead of analyzing each individual pixel,
this approach selects the location of the lanes on a grid,
which reduces the computational cost compared to the lo-
cal feature approach and uses a broader understanding of the
entire image. This seeks to ensure the continuity of lanes and
the definition of their shape.
3.4 Experimental Research

The main objective of this experimental research is to
compare three different real-time lane detection models for
miniature cars and low-cost devices presenting their perfor-
mance, with respect to their accuracy, memory consumption
and processing rate. This study provide insights into the re-
lationship among accuracy, memory, and FPS to help select
the best model for specific needs and constraints.

To train the DL models, this research utilized an approach
for automatically estimating the labels, thereby streamlining
the process and saving time by using the results of the tradi-
tional model to train the other two deep learning models.

The experiments were conducted using a miniature car on
a designed track in a controlled environment (Figure 1). The
model tests were performed on a laptop in a environment
simulating the same characteristics of this setting in which
the data were acquired.

The self-driven miniature car was built by students and
researchers from the Free University of Bozen-Bolzano, fol-
lowing the recommendations suggested by Donkey Car, an
open source self-driving car platform for small scale cars.
The main components of the car are presented in Figure 5.

Each model was developed using Python and trained and
tested using the image sets. To ensure smooth integration
with the other functionalities of the Raspberry Pi and real-
time processing of individual images, a dedicated code was
written for each model.
3.5 Data collection

To develop model (1), pictures were captured by position-
ing the car in different road locations . Using this model, the
vehicle was driven in real settings capturing numerous pic-
tures, of which 6692 were selected (4679 for training and
2013 for tests). These pictures, in addition to the results of

Figure 5. Components of the miniature car

Figure 6. Visualization of the predictions

model (1) were then used as input and labels for predicting
steering angles and lines for models (2) and (3). Images and
labels that were not correctly predicted in the training of the
first model were removed from the training of the other two
models.

Two sets of photos were taken of a car driving on a track
at different times. To enhance the models’ ability to han-
dle challenging scenarios, a diverse set of photos was also
included in the experiments, with varied lighting conditions
(i.e. sunlight, shadows, darkness) and track geometries (i.e.
sharper curves, straight lines, only one track lane visible).
To remove redundant images from the dataset, steps were
taken before randomly splitting it into training and testing
sets. Data augmentation techniques, such as zoom, width
and height shift, changes in brightness, and rotation, were
used to train the machine learning models and increase their
robustness, while avoiding over-fitting.

4 Results and Discussions
A significant emphasis was placed on the analysis of the

accuracy because it is a crucial factor in determining the ef-
fectiveness and reliability of the models, directly impacting
their ability to perform the intended task and deliver accurate
results. Hence, it is important to evaluate and compare the
accuracy of the models in a thorough and systematic manner.

These are the visualization of the predictions for the 3
models (Figure 6).

A visual inspection was carried out on all the images pre-
dicted in the test set for the three models. To avoid bias a
line was drawn at one-third of the image’s height to check if
the car would stay on the track. Even if the prediction was
not perfect, it was assumed that the car would have time to
adjust its direction in the next frame (Figure 7).

Based on the results presented in table 2, the following
considerations can be made:

• All three models performed satisfactorily, with the low-
est performing model achieving an average accuracy



Figure 7. Examples of correct and incorrect predictions for one model

Group Scenarios Nº Pict. Nº Pict. Correct Angle % Pict. Correct Angle
Trad. End Ultra Trad. End Ultra

(1) Dataset 1 680 631 658 680 93% 97% 100%
(2) Dataset 2 530 404 507 530 76% 96% 100%
(a) Sunlight incidence 94 94 83 94 100% 88% 100%
(b) Lighting variance 84 60 76 84 71% 90% 100%
(c) Darkness 150 134 131 147 89% 87% 98%
(d) Curves 300 250 257 266 83% 86% 89%
(e) Diagonal straight 23 18 22 23 78% 96% 100%
(f) Car off centre line 120 118 82 119 98% 68% 99%
(g) One line visible 20 12 8 14 60% 40% 70%

2013 1731 1834 1969 86% 92% 95%
Table 2. Correct angle prediction rates among the different models and scenarios

rate of 86% in determining the correct angles.

• In general, the Traditional Model performed worse than
the others. During testing, it was noted that this model
struggled in certain conditions where there was varia-
tion in illumination, causing the car to lose control at
the same track marker on each lap.

• The Ultra-fast Model demonstrated superior accuracy
across all testing conditions, while the End-to-end
Model exhibited inferior performance in certain situa-
tions, including instances of bright sunlight, darkness,
off-center vehicle position, or absence of visible lines.
To enhance the model’s performance in these challeng-
ing scenarios, additional training and increased data
sampling are recommended.

• The End-to-end Model, which directly estimates steer-
ing angles, showed higher autonomy than the Tradi-
tional Model, despite being trained on data produced
by the Traditional Model. Additionally, the End-to-end
Model is more sensitive to the distribution of input im-
ages and features compared to the Ultra-fast Model.

• The Ultra-fast Model is more complex, but even with
training labels generated by the first model, it was
able to achieve better accuracy in determining angles.
The automatic label generation did not compromise the
identification of the main direction line.

Figure 8 provides a comprehensive overview of the per-
formance of the three models across various metrics, includ-
ing accuracy, FPS, memory usage, and GPU requirements.It
is important to note that the actual FPS may be limited when
using a Raspberry Pi camera or any other equipment due to
hardware constraints. During our testing, a maximum of 99

frames per second was achieved due to the limitations of the
hardware.

The results showed that the Traditional Model had the
best performance in terms of memory usage and process-
ing time. The End-to-end Model also performed well in
these criteria, however, the Ultra-fast Model had a less fa-
vorable outcome regarding processing time, obtaining a rate
of 0.18 frames per second when running without GPU, but it
achieved a good frame rate of 26 FPS when used with GPU.

5 Conclusions & Future Work
5.1 Concluding Remarks

The results of this study demonstrated the suitability of
deep learning models for lane recognition tasks, with the
two evaluated deep learning models achieving the highest
levels of accuracy compared to the traditional method. The
approach used for label generation proved to be effective.

Overall, the End-to-end model was relatively easy to im-
plement and had fast processing speed, but its accuracy is
highly influenced by the quality of the training data used.
The distribution of the images and their features during train-
ing can strongly influence the accuracy of the algorithm.
Therefore, it is crucial to ensure the training data used is rep-
resentative of all types of relevant scenarios and actions.

The Traditional model achieved high accuracy without
requiring training or labels and uses less memory than the
other two model, but is less scalable. The Ultra-fast model
achieved high accuracy, provided ample resources and time.
However, this model required more GPU for appropriate pro-
cessing time and higher FPS. DL methods require label gen-
eration, which can require extra time and effort if the labels
are not readily available in a comparable setting. For in-
stance, in this experiment, we had to employ the traditional



Figure 8. Comparison among the performance of the three models

model to generate the required labels.
Choosing the appropriate model application depends on

several factors, including the available time and resources.
The results of this study provide a useful guide for selecting
the appropriate model based on the requirements of memory,
GPU, accuracy, and processing time. In addition to these
factors, it is important to consider other non-functional re-
quirements such as the time required for code development
and label generation.
5.2 Future Work

For future work, improvements for each algorithm studied
are proposed: (1) Enhancing the Traditional Model’s ability
to detect lanes under varying lighting conditions. (2) Incor-
porating techniques to handle imbalanced data in the End-to-
end Model. (3) Enhancing the Ultra-fast Model algorithm to
reduce its memory consumption, and to increase processing
speed.

Furthermore, It is recommended investigate alternative
deep learning models to identify more efficient and straight-
forward methods.Finally, other proposals are: developing
specialized models; new equipment’s; backbones and plat-
forms for low-cost devices.
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