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Abstract
The integration of machine learning (ML) techniques in

the field of smart buildings has gained significant attention in
recent years. In this paper, we explore recent applications of
machine learning in the context of smart buildings for ther-
mal comfort and energy efficiency optimization. Through
the examination of some papers, we will discuss common
data collection techniques, ML models, and their applica-
tions (e.g., building management systems, energy manage-
ment systems, occupancy-based heating, ventilation, and
air conditioning control, indoor air quality monitoring, and
many more). Finally, the paper wants to emphasize the chal-
lenges associated with integrating ML into building systems
and highlight further research perspectives.

Keywords: Smart Buildings, Machine Learning, Rein-
forcement Learning, Thermal Comfort, Energy Efficiency.
1 Introduction

For decades, smart buildings (SBs) have been a luxury.
Nowadays, people spend 80 to 90 percent of their time inside
buildings, using a significant quantity of energy in various
ways, for example, to heat/cool down their environments. In
this context, energy efficiency is crucial because it will pro-
tect the environment from CO2 emissions as well as save
money. Machine Learning (ML) can play a vital role in opti-
mizing energy consumption while still keeping high the ther-

mal comfort level [2] in SBs.
Thermal comfort is the circumstance of an indoor environ-
ment where residents don’t experience temperatures that are
either too cold or too hot. Thermal comfort is a crucial com-
ponent of creating a harmonious and relaxing indoor envi-
ronment [1]. In SBs, thermal comfort is pivotal because it
directly affects occupants’ health, productivity, and satisfac-
tion [2][22]. Thermal comfort (TC) and energy efficiency
(EE) are both significant factors in SBs, but they have differ-
ent objectives. Energy efficiency focuses on reducing energy
use and expenses, whereas thermal comfort prioritizes occu-
pant satisfaction and well-being. SBs can maximize Heating,
ventilation, and air conditioning (HVAC) system efficiency,
minimizing energy waste and operating expenses by main-
taining ideal temperature conditions. In accordance with
occupant comfort needs, proper insulation, effective control
systems, and modern technology can aid in achieving a bal-
ance between thermal comfort and energy savings.
Internet of Things (IoT) technologies, including sensors, ac-
tuators, and smart objects, [5] are now at the basis of SBs and
smart cities, enabling situational and spatial intelligence for
the tangible control of dynamic occurrences. Such technolo-
gies in the field of TC and EE in SBs can collaborate in the
calculation of specific thermal comfort measures, e.g., the
predicted mean vote (PMV) [10]. Anyway, in the past years,
these measures are often inferred through ML algorithms us-
ing IoT data [3]. Many ML algorithms have been used so
far to optimize TC and EE in SBs, and the most common
ones are highlighted in Figure 1. These algorithms are usu-
ally categorized using three basic ML models, such as Super-
vised Learning, Unsupervised Learning, and Self-supervised
learning (i.e., Reinforcement Learning - RL). These models
usually have, as input, some features coming from the envi-
ronments or the humans.

In the defined context, in order to create ML models, sev-



eral steps have to be followed [15]. In particular, the process
of identification, in which the research questions and objec-
tives are determined, and the experimental stage, in which
data collection is performed and, on such data, is realized
cleaning and handling of missing values. The collected and
cleaned data is usually divided into three parts: training, val-
idation, and test set. The training set is so used to train
the chosen model, the validation set helps in validating the
model created, and the test set is fundamental for the eval-
uation of the created model. Such evaluations are finally
executed by using specific performance metrics, including,
for example, Accuracy, Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
R2 (R-Squared), Area Under the Curve (AUC) [8].

This paper aims to investigate the application of ML algo-
rithms to EE with TC in SBs by taking into account papers
published in the last few years.

In particular, we want to highlight the most used tech-
niques in the recent literature and the performance parame-
ters taken into account to evaluate them, compare the works
analyzed, and discuss future research directions in this field.

The rest of the paper is organized as follows. Section 2
explores ML applications in intelligent buildings. Section 3
discusses the difficulties and potential directions for future
research. Finally, Section 4 concludes the paper.

2 ML for Thermal Comfort and Energy
Efficiency

In this section, we will delve into the application of var-
ious machine learning algorithms in the context of SBs, ex-
amining their objectives, performance, and other relevant
factors. In particular, the next subsection will explore super-
vised and unsupervised learning algorithms for TC and EE.
Nextly, we will go in-depth about some works using RL. It is
worth noting that all the analyzed work has been summarized
in Table 1.

2.1 Supervised and Unsupervised ML
The research in [17] presents a novel personal thermal

sensation method based on the C-Support Vector Classi-
fication (C-SVC) algorithm for personalized conditioning
system (PCS) control. Throughout the modeling process,
the method ”learns” an occupant’s thermal preferences from
feedback, environmental parameters, and physiological and
behavioral factors. The method is verified by comparing ac-
tual thermal sensation votes (TSV) with the modeled one,
and the accuracy of each model is compared to the PMV
model. Finally, the authors suggested that this method is an
effective tool for modeling personal thermal sensations and
could be integrated into PCS for optimized system operation
and control. The TSV prediction achieves an average accu-
racy of over 89%. The paper at [32] focuses on the issue of
keeping high indoor air quality in educational facilities and
how it can affect the productivity of users. The authors dis-
cuss the limitations of existing rating systems in disclosing
specific problems related to people density, usage intensity,
and ventilation conditions in existing buildings. Then, they
aim to create a forecasting tool for CO2 concentration in ed-
ucational facilities using an RNN model to provide better
predictions of time-dependent variables.

The paper in [11] proposes a one-layer Gated Recurrent
Unit (GRU) neural network for occupancy prediction to im-
prove energy efficiency in SBs. The dataset used in the study
was collected from hundreds of passive infrared (PIR) occu-
pancy IoT sensors in a large academic building in California.
The experimental findings reveal that GRU outperforms the
Long Short-Term Memory (LSTM) network by obtaining a
lower error of 1.21% and requiring fewer parameters (about
13.57% less) for training. As a result, GRU can be trained
10% faster and thus is better suited for large-scale occupancy
prediction tasks in emerging SBs.

A few authors worked on the temperature of the skin on
the face to understand individual thermal comfort. To this
purpose, ML algorithms (i.e., GB, LR, SVM, ANN, and RF)
were used in the studies [16] and [33]. The paper in [16]
explores the potential use of human facial skin temperature
as primary physiological data to develop data-driven ther-
mal comfort and uses a series of environmental chambers
to collect data. The study used a gradient boosting algo-
rithm (GBM) and an ANN algorithm for data analysis. In
[33], the work proposes prediction models for thermal com-
fort using infrared images and machine learning algorithms
such as SVM, LR, and RF. The accuracy and area under the
curve (AUC) of each model on the test set were calculated
and used as the main evaluation indexes. The results show
that the prediction accuracy of ML models based on local
skin temperature is close to that of the PMV model and indi-
cates significant feasibility for practical application. Among
the models, the AUC and accuracy of the LR model reflect
a relative advantage compared with other ML models. An-
other study [20] proposes an advanced TC prediction model
by using RF, GBM, and ANN that, as a novelty, considers
blood glucose and salivary cortisol as bio-signal features.
The study proposed an advanced prediction model through
supervised learning (RF, GBM, ANN). The predictive per-
formances of the models were evaluated based on accuracy,
AUROC, and AUPRC. The proposed model showed better
predictive performance than conventional models, with an
accuracy of 73.4%, which is 10% better than the conven-
tional model’s accuracy of 63.4%. The paper [4] proposes
a DNN to predict the indoor thermal comfort of differently-
abled people in real-time to facilitate remote monitoring. It
uses A.P.E.I. building to record thermal comfort data. These
data were then transferred to the remote cloud through gate-
ways and routers for further processing. The deep learning-
based model achieved an accuracy of 94% and a precision
and recall of 98% and 97%, respectively.

In the works reported in [18] and [19], the authors dis-
cuss thermal comfort and privacy concern. In particular, the
paper in [19] discusses the accuracy of the proposed algo-
rithm, namely Fed-NN, for thermal comfort prediction in an
industrial IoT environment. The experimental studies on a
real dataset reveal the robustness, accuracy, and stability of
the algorithm in comparison to other ML algorithms while
taking privacy into consideration. A DNN and an LSTM net-
work are used for modeling and forecasting TC. In [18], the
introduced TC model is used to control the smart building
environment, resulting in less energy consumption within a
comfort zone.
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Figure 1. An overview of the main machine learning algorithms used in SBs to optimize energy consumption and
thermal comfort.

Table 1. Comparison of the analyzed work.
Paper Objectives Algorithms Environment Performance metric Limits

[11] Occupancy prediction
and EE LSTM Academic Building MAE, Precision, recall Real implementation missing

[17] Personal TC C-SVM Not mentioned Accuracy No real-world scenarios considered

[32] EE and comfort
improvement RNN Educational Institute R2 Limited ML model considered

[18] Privacy concern and
TC prediction LSTM CU-BEMS Home,

Thailand MAE Low accuracy

[19] Privacy concern and
TC management NN Not mentioned MAE, MSE Low accuracy

[13] Occupancy Prediction
for TC and EE LSTM Laboratory dataset R2, MAE, RMSE, SD Limited generalizability of the model

[31] Forecasting Indoor air
quality for TC ANN Not mentioned R2 Limited training data used

[16] Forecast Skin Temperature
with individual TC GBM, ANN Environment Chamber Small application scenario considered

[33] Prediction of TC
and EE KNN, ANN, SVM, RF - AUC Data source is not described

[20] TC estimation blood
glucose and salivary cortisol RF, GBM, ANN - Accuracy Data source is not described

[4] Indoor TC and EE DNN Building Accuracy, Recall, Precision Does not discuss real implementation
[25] EE and TC ANN Not mentioned MAE The use case considered is too specific
[21] EE and TC for HVAC 2 Layer NN Two rooms R2 The use case considered is too specific
[26] EE and TC (Inertia weight) Bat Algorithm Educational (University) Not mentioned Misses comparison with the state of the art

[28] EE and TC Non-dominated Sorting
Genetic Algorithm Office Not mentioned Performance metrics are not discussed

[12] Heating controller optimization
for EE and TC DQN DNN Building Not mentioned Some limits in the simulations

[24] Control Home Appliances
for EE and TC TRPO DNN Home Not mentioned Performance metrics are not discussed

[30] TC and EE for HVAC DRL Office Effective The use case considered is too specific

The authors of [13] propose an IoT framework with data
analysis using an LSTM network for occupancy prediction
in a building considering factors such as TC and EE. The
LSTM model’s accuracy is 96% on the tested multivariate
captured data, which is nearly 16% better than other algo-
rithms compared in the paper (i.e., SVM and NB).

The authors of [31] propose a data-driven approach for
predicting indoor air quality in educational facilities using
an IoT network. The paper proposes the use of predictive
models in Building Energy Management System (BEMS)
and Building Automation System (BAS)s. The paper used
ML techniques, such as neural networks, to define hourly
load profiles and energy consumption in university buildings.
Distributed Sensing has been adopted to confirm the models.
The Smart Campus of the University of Brescia has been
used for the experiments.

In the study at [25], authors developed a multi-objective
optimization model for controlling air-conditioning and ven-
tilation systems to balance TC and energy conservation or
sustainability. An ANN is constructed as a prediction model

of TC and energy consumption. A semi-empirical model is
used to build the component power consumption pattern of
the ACMV system (fan, pump, and compressor). Also, in the
study in [21], the authors used a side-by-side experimental
approach to quantify the performance of occupancy-based
control in commercial buildings. Three state-of-the-art oc-
cupancy sensing technologies were integrated into real-time
HVAC system control, analyzing their accuracy and effec-
tiveness in energy-saving and thermal comfort. The study
found that occupancy-based control maintains good thermal
comfort and perceived indoor air quality, with a satisfaction
ratio greater than 80%. The research paper used a two-layer
neural network model to predict energy-saving. The model
was trained using ten days’ outdoor temperature as input and
energy savings as the target. The results showed a good over-
all performance of the model with an R2 value of 0.96795.

In [26], the authors introduce a solution using the Bat al-
gorithm (BA), which is a swarm intelligence algorithm in-
spired by the communication of bats via echolocation, with
exponential inertia weight to optimize comfort and energy



consumption in SBs. The algorithm tries to find the best
set of values for three main parameters that influence the
occupant’s comfort, namely, temperature, illumination, and
indoor air quality. An exponential increase of the inertia
weight is introduced to BA for performance improvement.
The performance of the introduced BA with exponential in-
ertia weight is proven as significantly better than the original
BA and other variants of inertia weight. Moreover, the com-
fort level achieved by BA with exponential inertia weight is
found to be better than previously reported works using the
firefly algorithm, genetic algorithm, ant colony optimization,
and artificial bee colony algorithm [35]. The superior perfor-
mance is achieved due to better convergence behavior. Au-
thors of [28] presented a multi-objective genetic algorithm
to reduce energy use in an office building, resulting in a 50%
improvement in TC and a 2% reduction in energy use com-
pared to scheduled control.
2.2 Reinforcement Learning

RL is one of the ML models which acts according to a
trial and error process, where an agent can learn from the
environment through different policies or rules. Deep Rein-
forcement Learning (DRL), Deep Q-Network (DQN), Deep
Deterministic Policy Gradient (DDPG), and Trust Region
Policy Optimization (TRPO) are some of the most famous
RL algorithms. We will discuss in the following some works
made for SBs to reach EE with TC by using RL algorithms.

For single buildings, the paper at [12] aims to design an
energy-efficient heating controller for smart buildings using
DRL. The DRL-based heating controller is designed using
a neural network that learns the optimal control policy for
the heating system. The paper presents simulation experi-
ments using real-world outside temperature data to evaluate
the performance of the DRL-based smart controller. The re-
sults show that the DRL-based smart controller outperforms
a traditional thermostat controller by improving TC between
15% and 30% and reducing energy costs between 5% and
12% in the simulated environment.

In [24], the authors propose an approach for scheduling
household appliances to minimize electricity costs while en-
suring user comfort. They propose a DRL approach that
is based on trust region policy optimization (TRPO) and
uses a neural network to learn the optimal scheduling policy.
The paper used real-world data on electricity prices and out-
door temperature during the same period in 2017 for train-
ing. Some different sets of simulation data of the appliance’s
working time and hot water flow rate are generated for test-
ing. The average rewards of the proposed approach increase
quickly at the beginning and converge after 1500 iterations.
The paper uses real-world data for training and simulation
data for testing.

The paper in [30] proposes the use of DRL for the au-
tomatic control of heating, ventilation, and air conditioning
systems in an office to manage TC. The learning process is
driven by a reward that includes multiple components related
to energy consumption, indoor temperature, and user per-
ceptions, which are inferred by human interactions with the
system. The authors made several experiments in the paper
but the approach that they used may not be applicable to all
building types and may require customization for different

environments.
The authors of [7] developed an RL model starting from

the interactions of SB residents with their thermostats. They
also used the transfer learning technique to transfer the
knowledge of the RL-trained model to other buildings with
different HVAC control systems. The model predicts the be-
havior of modifying the thermostat set point with R2 from
0.75 to 0.8, and the (MAE) is less than 1.1 °C in an office
building.

The authors of [9] used a (DDPG) algorithm to imple-
ment a DRL-based system to reduce energy consumption
while maintaining the occupant in their preferred environ-
ment. The system implemented in the paper achieved an
economic control strategy for both cooling and heating sce-
narios. In the paper, the DRL system is compared with a
rule-based benchmark case and a single-task deep determin-
istic policy gradient algorithm to verify its effectiveness in
optimizing HVAC operation. The model was tested in a two-
zone residential HVAC building.

The authors of [23] proposed a framework that uses
a Branching Dueling Q-network (BDQ) as a learning
agent. They used a tabular-based personal comfort model-
ing method to emulate human-in-the-loop operations. So,
the BDQ agent is pre-trained in a virtual environment, and
it is then deployed online in a real office space. Real-time
comfort votes are collected during the running of the system.
The results showed a 14% reduction in cooling energy and
an 11% improvement in total thermal acceptability.

The authors of [34] propose a real-time control algo-
rithm based on attention-based multi-agent DRL to solve
the coordination control problem of personal comfort sys-
tems (PCSs) and heating, ventilation, and air conditioning
(HVAC) systems in a shared office space. Formulate an ex-
pected energy consumption minimization problem related to
PCSs and an HVAC system. Reformulate the problem as
a Markov game with heterogeneous agents. The proposed
algorithm can reduce energy consumption by 0.7%-4.18%
and reduce average thermal comfort deviation by 64.13%-
72.08% simultaneously compared with baselines. The sim-
ulation results based on real-world traces show the conver-
gence, flexibility, effectiveness, robustness, and versatility of
the proposed algorithm.

The paper in [27] presents a DRL-based model for build-
ing energy management that addresses the challenges of non-
stationary behaviors and inefficiency problems. The paper
also introduces a relearning loop triggered by performance
degradation detection. The proposed approach is tested on
the standard ASHRAE 5-zone testbed and in a real build-
ing and is compared with state-of-the-art algorithms, such
as Guideline-36, Proximal Policy Optimization, DDPG, and
Model Predictive Path Integral control. The introduced ap-
proach performs significantly better than the other control
strategies.

3 Discussion and Future Directions
This section will discuss some important points and will

introduce some future directions of research in the consid-
ered domain.

Since ML offers a variety of different algorithms to use,



it’s important to select ones that are appropriate for the
study’s goals. Black-box machine learning models such as
SVM and ANN learning methods are better suited for han-
dling complex problems but are not easily interpretable and
can be time-consuming, while white-box models such as NB,
KNN, and DT are interpretable but may not capture the sub-
jective nature of comfort levels [14].

What is also very important in designing and realizing
ML models is the integration of a plethora of devices to mon-
itor the environment effectively. Moreover, advanced tech-
niques for controlling appliance usage could be integrated
with this. IoT devices would be very important to this scope
because they can help in the process of data gathering so as
to have large and significant datasets to train ML models to
reach TC and EE in building environments.

By reviewing the state of the art, it is clear the importance
of RL algorithms for reaching in SBs both TC and EE. This
is due to the fact that RL can take into account the users’
preferences in any environment together with other IoT data.
Anyway, RL techniques still need to be refined so to reach
very good results with a limited amount of input data. More-
over, RL algorithms are sensitive to hyper-parameters, mak-
ing it challenging to determine the best-performing hyper-
parameters for SBs.

Since much data is actually required by RL algorithms to
be trained, several researchers are already looking for meth-
ods to have RL models already available for new SBs, in
which historical data may be very limited. To address this
issue, a solution that is impacting the ML community is to
introduce transfer learning, which means transferring knowl-
edge from one task to another [36]. While some efforts
have been made to use transfer learning in existing works,
they have mainly focused on simple scenarios where there
is a small similarity gap between the source and target SBs.
When the similarity gap is large, such as when the dimen-
sions of state spaces and action spaces in two SBs are much
different, designing an efficient intertask mapping function
and selecting the proper form of transferred knowledge be-
comes very challenging.

Since ML algorithms applied to TC and EE were, until
now, just research efforts, researchers didn’t take care so
much about privacy concerns [18]. This is why some works
in literature are trying to start the implementation of ML
techniques to the edge [29] so as to decentralize model
training and keep all the sensitive data close to where the
data itself is produced. In this direction, several works based
on Federated Learning (FL) [6] [19] are also appearing. FL
is a technique on which researchers are focusing a lot in
the last few years that allows to train models at the edge
of the network and then merge such models in the cloud.
This allows exchanging with the cloud model weights only
(instead of the training data), but the model aggregation
allows to increase in the performances with respect to the
single models.

4 Conclusions
Nowadays, Machine Learning is considered the most ef-

fective instrument to optimize energy consumption in smart

buildings, still keeping into account the comfort required by
the buildings’ inhabitants. Indeed, many works in the liter-
ature focus on applying several kinds of Machine Learning
algorithms for this scope with very good results.

In this direction, this paper examined some works pub-
lished in the last few years, with the aim of highlighting the
most used techniques and the performance parameters taken
into account to evaluate them. Moreover, a quick comparison
of the works analyzed was made, and some future research
directions in this field were discussed. It should be noted that
this paper aims to present a work in progress and is unable to
comprehensively address all aspects of the research papers
under consideration.
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