
Empowering IoT Applications with Flexible, Energy-Efficient
Remote Management of Low-Power Edge Devices

Shadi Attarha
Dept. Communication Networks
University of Bremen, Germany

sattarha@fb1.uni-bremen.de

Anna Förster
Dept. Communication Networks
University of Bremen, Germany

anna.foerster@uni-bremen.de

Abstract
In the context of the Internet of Things (IoT), reliable

and energy-efficient provision of IoT applications has be-
come critical. Equipping IoT systems with tools that enable
a flexible, well-performing, and automated way of monitor-
ing and managing IoT edge devices is an essential prereq-
uisite. In current IoT systems, low-power edge appliances
have been utilized in a way that can not be controlled and re-
configured in a timely manner. Hence, conducting a trade-
off solution between manageability, performance and design
requirements are demanded. This paper introduces a novel
approach for fine-grained monitoring and managing individ-
ual micro-services within low-power edge devices, which
improves system reliability and energy efficiency. The pro-
posed method enables operational flexibility for IoT edge de-
vices by leveraging a modularization technique. Following
a review of existing solutions for remote-managed IoT ser-
vices, a detailed description of the suggested approach is pre-
sented. Also, to explore the essential design principles that
must be considered in this approach, the suggested architec-
ture is elaborated in detail. Finally, the advantages of the
proposed solution to deal with disruptions are demonstrated
in the proof of concept-based experiments.

Categories and Subject Descriptors
Computer systems organization [Embedded and cyber-

physical systems]: Embedded systems; [Dependable and
fault-tolerant systems and networks]: Reliability

General Terms
Management, Experimentation, Reliability

Keywords
Service Management, Service Isolation, Operational

Flexibility, Low-power, IoT, Energy Efficiency

1 Introduction
In recent years, Internet-of-Things (IoT) has attained in-

creased interest and has been considered a promising method
in various fields such as industry, agriculture, and healthcare.
The main aim of leveraging IoT is to collect data from dis-
tributed edge devices, process it, and provide timely informa-
tion to end-users for decision-making[3]. This process helps
in system performance enhancement and cost-effectiveness.
In common IoT systems, to decrease the network overhead,
different tasks are performed on the edge devices, all of
which are designed with extremely limited resources [8].
Therefore, ensuring data reliability, resource efficiency, and
system transparency is of utmost importance.

To ensure the reliable and efficient delivery of IoT ser-
vices within low-power edge devices, it is crucial to pri-
oritize operational flexibility and manageability. However,
common IoT software deployments are unstructured and do
not offer fine-grained monitoring and managing support over
individual services remotely. For example, one typical prob-
lem is when one sensor becomes faulty for some reason, and
the node either continues to deliver incorrect data and waste
energy or all other services also crash. Therefore, the pos-
sibility of managing failure or misbehavior to protect IoT
systems against them is very challenging [1]. Additionally,
state-of-the-art solutions for remote monitoring are resource-
demanding and not suitable for edge devices with limited
resources. This attitude creates bottlenecks that impact flex-
ibility and reliability in IoT applications.

In this context, service isolation is a strategy that provides
a level of modularity required for observing and control-
ling individual services. This paradigm improves operational
flexibility and energy utilization by enabling agile and more
straightforward maintenance procedures. In other words, in
the event of malfunctions, the related part (e.g., a faulty sen-
sor) can be reconfigured and managed from a remote location
in a timely manner.

Recent research focuses on using containerization tech-
nology such as LXC and Docker, along with Single Board
Computers as IoT gateways, to achieve on-demand control
of services in IoT systems. However, due to the limited re-
sources of IoT edge devices, these solutions are not feasi-
ble there. In this regard, the lack of a systematic method for
monitoring and controlling IoT services deployed in edge de-
vices equipped with extremely constrained resources leads to
a challenge and a requirement for further investigation in this



area. In particular, it is vital to provide fast and efficient con-
trolling methods that enable monitoring and securely man-
aging micro-services within low-power IoT devices.

This paper presents a novel approach to improve service
maintenance procedures, resource utilization, and system re-
liability for IoT edge devices characterized by extremely lim-
ited resources. The proposed approach empowers IoT edge
devices with the possibility to run multiple isolated services,
where there is an ability to have control over an individual
service. This capability is precious as it allows for indepen-
dently managing a faulty component (e.g., a broken sensor )
within an edge device without compromising the other com-
ponents’ functionality (i.e., remaining sensors can continue
working without disruption). The resulting operational flex-
ibility will be achieved by utilizing a modularization tech-
nique. A literature survey on the manageability of IoT edge
devices is discussed in Section 2. Then, the proposed so-
lution, including its envisioned architecture and operational
states, is described in detail. Finally, an experiment-based
proof of concept is presented to demonstrate the impact of
the proposed approach on an IoT-based system.

2 State-of-the-art and Research Challenge
Two vital steps come into play to facilitate the indepen-

dent management of IoT services and minimize the effects of
disruptions: real-time monitoring and remote management
capability. Given the current work focuses on independent
manageability, this section explores state-of-the-art pertain-
ing to this topic.

To achieve the manageability of individual services while
maintaining the functionality of other services, modulariza-
tion is a critical step. Several noteworthy research has been
pursued to enable the isolation of services deployed on low-
power devices. Darjeeling [2] and Velox [7] are compact
Virtual Machines (VM) that isolate services on MCUs. How-
ever, their deployment in IoT edge devices is challenging due
to the significant increase in resource consumption through
implementing their required libraries.

In a recent study [8], authors introduced the Femto con-
tainer, an extremely compact VM integrated with the RIOT
operating system. The primary aim of this approach is to
provide process isolation and enable remote updating. The
authors have presented that multiple services can be effec-
tively deployed as containers. Additionally, they have high-
lighted the availability of remote device updates, although it
is important to note that managing services foresees updat-
ing the underlying software. This might cause a disruption in
other services’ functionalities by recompiling the underlying
software and other services. Toit 1 is a platform and language
designed to simplify IoT application development and man-
agement. It includes a cloud-based platform for managing
services individually. Using Toit enables securing the code
on MCU with lightweight containers where each container
can be managed independently. In this work, we will use
Toit as a tool for implementing our proposal.

Investigating the previous research in low-power IoT edge
devices indicates that the current literature mainly focuses on
isolating services (i.e., assuring each service can not access

1https://toit.io/

System 
Operator

IIS2-V2

IIS1 IIS2 IIS2 IIS3 IIS4

Figure 1: Proposed solution applied in a smart warehouse

memory regions outside what is allowed). However, the pos-
sibility of managing IoT services individually without com-
promising other services’ functionality, essential for system
reliability and cost-effectiveness, still needs to be studied. In
this paper, we explore the approach for fine-grained moni-
toring and managing individual IoT services, which provides
the ability to decide and react to disruptions adaptively.

3 Proposed Solution
We assume an IoT system consisting of many edge de-

vices, where each device hosts several micro-services, such
as sensor readings, sensor data analysis, etc. Our goal is to
enable real-time monitoring of each micro-services and a re-
mote management function to enable/disable them as well as
repair/update faulty services, where there is no requirement
for recompiling the underlying software and other services.
To ensure a reliable and energy-conserving IoT system that
utilizes low-power edge devices, it is necessary to focus on
the following two considerations:

• Observability: Ensuring that the edge device can be
monitored and its performance can be evaluated is es-
sential for maintaining IoT systems’ reliability and en-
ergy efficiency. This includes the monitoring of an edge
device and detecting issues that indicate that either a
sensor, an MCU, or software is not working correctly.

• Manageability: Efficient management of edge devices
is essential to ensure optimal IoT system performance.
This includes remotely configuring and updating in re-
sponse to real-time concerns.

This work focuses on the manageability issue and aims to
develop a flexible and modular framework for IoT applica-
tions, allowing independent management of micro-services.

Figure 1 illustrates the application of our approach in an
IoT system, considering a smart warehouse scenario. In this
approach, IoT services are deployed on isolated entities such
as containers, micro-services, or virtual machines, collec-
tively called Isolated IoT Services (IIS). For instance, IIS3
gathers temperature sensor data and is manageable indepen-
dently. The subsequent sections will explain the proposed
architecture, highlighting its structural aspects and defining
the operational states of the IIS to assess its performance.



3.1 Proposed Architecture
To promote essential design components for deploying

and managing IISs over the available low-power edge de-
vices, Figure 2 presents the proposed architecture. It consists
of three abstract layers: Infrastructure, Service, and Control.
The Infrastructure layer hosts the software (i.e., firmware)
and hardware (i.e., Processor, memory, I/O) resources that
enable the operational environment for running IoT services.
The Service layer hosts the IIS, which is a software entity
that represents the implementation of a current isolated IoT
service. IISs can be deployed inside lightweight virtual ma-
chines or containers designed for low-power edge devices
(e.g., Toit). The Control layer is the key part of the archi-
tecture and has the responsibility for observing and man-
aging IISs and edge devices to fulfill system requirements
and performance goals. Three different modules, namely:
Data monitoring, Anomaly detection, and Service orchestra-
tion, collaborate to collect the measurements, detect abnor-
mal behaviors and provide reasonable reactions for maintain-
ing IoT system performance. Continuously gathering sensor
measurements and preparing them (e.g., formatting, clean-
ing, and sampling) for the Anomaly detection module are
covered by the Data monitoring module. The Anomaly de-
tection module detects anomalies in the gathered data, such
as an outlier or drift, and makes notifications to Service or-
chestration. Statistical methods and machine learning-based
anomaly detection models can be utilized to recognize ab-
normal behaviors [5]. Here, once could consider either a
fully edge-based solution or an edge/fog/cloud distributed
one to optimize resources. Service management provides ac-
tions related to individual IoT services’ life-cycle, such as
starting, stopping, and reprogramming.
3.2 Operational State of Isolated IoT Service

IoT services can be prone to a number of faults that can
result in either complete or partial failures. In order to ana-
lyze the performance of the IIS, two main metrics are con-
sidered – Availability and Correctness [6]. These metrics
assess disruptions’ impact on IIS and evaluate system per-
formance. Availability evaluates the presence of sensor mea-
surements at a given time, which is the input for the anomaly
detection module. Correctness, assessed by the Anomaly de-
tection module through its data analysis tasks, evaluates the
state of collected measurements as either faulty or correct.
It reflects the trustworthiness of the data, which directly af-
fects the accuracy of the results produced by the IoT system.
Based on the aforementioned criteria, the operational state of
IIS can be determined as follows:

Normal state: For an IoT service, IISx, when all above
metrics are met for its collected measurements, the IISx is
considered fully functional, and the measurements are accu-
rate. Hence, available measurements are analyzed to gain
awareness about its state.

Suspicious state: Disruptions in the IoT system may cause
the IoT service (i.e., IIS) to be no longer practical, i.e., Avail-
ability and/or Correctness are not satisfied. This means an
IIS either collects inaccurate measurements or is unavail-
able, which would be determined by Data monitoring and
Anomaly detection modules. As a consequence, it might lead
to wrong decisions. This way, the system operator can get a

Figure 2: Proposed architecture

real-time understanding of the performance of the system.
Regarding the state of IIS, the performance of the corre-

sponding sensor/task can be observed, and thus disruptions
can be handled timely by taking appropriate control actions
over a faulty component. For example, when the Availability
metric is not satisfied and causes the Suspicious state for an
IISx, the system administrator can first stop it without modi-
fying other IISs or recompiling underlying software, causing
reduced energy consumption and resource usage. Then, by
finding the root cause, the proper control action to tun the IoT
system can be taken. Meanwhile, it’s important to note that
all other IISs continue to function flawlessly and experience
no interruptions during this period.

4 Proof of concept
This section contains an experiment-based proof of con-

cept to explore the advantages of the proposed solution in
case of an anomaly in an exemplary IoT system. In this
study, energy consumption is considered as a performance
metric that is vital for resource-constraint (i.e., battery-
based) devices.

In these experiments, we try to emulate an IoT-based
system, where the IoT edge device is composed of one
temperature-humidity sensor, DHT11, and a carbon dioxide
sensor, SCD30, all connected to ESP-based WROOM-32’s
I/O pins. To isolate IoT services in our system, we utilized
the Toit platform as discussed in Section 2. By isolating IoT
services, we separated each service from one another and the
system firmware, which is critical for ensuring the security
and dependability of the services. In this scenario, two differ-
ent services collect data from specific sensors. One service
is dedicated to gathering data from the DHT11 sensor, while
the other is focused on collecting data from the SCD30 sen-
sor. In the proposed approach, upon detecting a deviation,
we have the ability to stop the corresponding service while
keeping the system working without any disruption to avoid
wasting resources and producing inaccurate values, resulting
in system unreliability. We emulate problems with one of the
sensors to demo the proposal.

4.1 Energy consumption evaluation
Evaluating energy consumption in the IoT domain is

challenging due to hardware dependencies and various
parameters[4]. For our experiments, we measure the energy
consumption of IoT edge devices using a USB multi-meter



tester. To validate measurement accuracy, the obtained val-
ues were cross-checked with the hardware’s datasheet for
plausibility, detecting any errors or discrepancies.

To demonstrate the impact of the proposed approach on
energy consumption, we conducted two tests where the de-
vice wakes up every 10 minutes to measure and transmit
data using the WiFi interface to an internet service using the
MQTT protocol. The experiment was carried out over six
hours. In the scenario for both tests, during the first three
hours, there is an assumption that sensors and the MCU (i.e.,
ESP32) were functioning correctly and accurate data values
were obtained. Then, it was assumed to have a disruptive
event (e.g., covering by external objects or a broken sensor)
for the CO2 sensor caused the values to be inaccurate for the
following hours. In the first test, upon happening the devi-
ation, the Suspicious state for a service related to SCD30
arises. Hence, it promotes mitigation actions to be taken
to prevent system unreliability and resource wastage, given
the energy-intensive nature of the corresponding sensor (i.e.,
SCD30). Therefore, the service related to the CO2 sensor
has been stopped by the Service Orchestrator entity of our
architecture in the first test and is uninstalled from ESP32.
This procedure is executed seamlessly, ensuring the uninter-
rupted operation of another service without any disturbances.
Accordingly, just a service related to DHT11 was operating
in MCU for the next hours. In the second test, the system’s
energy usage was evaluated in a situation where fine-grained
control over individual services could not be possible. In
this case, the code was executed natively on the ESP32, rep-
resenting the traditional IoT system development approach.
Since there is no possibility of managing the services, al-
though the carbon dioxide sensor has a problem, the device
continues sending the (faulty) data. This results in wasting
energy and inaccurate measurements.

The experiment’s results are displayed in Figure 3, show-
casing the impact of manageability on energy consumption
within low-power IoT devices. By comparing the average
current between the two tests, valuable insights are gained
regarding the effectiveness of managing individual services
and optimizing energy usage. Furthermore, it enables the
system to continue operating even if it is not fully functional
while still maintaining a level of reliability. The experiment
outcomes reveal that Toit’s overhead in this scenario is negli-
gible, positioning it as a viable solution for service isolation.
This finding is particularly significant for IoT devices char-
acterized by limited resources and reliance on battery power.
4.2 Discussion

The results of our study highlight the significance of man-
ageability for low-power edge devices within an efficient IoT
system. Our proposed approach offers the advantage of in-
dependent service control without necessitating changes to
the underlying device software, such as firmware. This elim-
inates the need for substantial data transfer to update a new
firmware and mitigates the adverse impact on energy con-
sumption caused by the size of updates. Consequently, our
method presents a viable alternative to the firmware-over-
the-air update technique, making it a preferable choice in this
context. However, it is important to carefully manage the
overhead associated with modularization techniques (e.g.,

0

1

2

3

4

0,00 1,00 2,00 3,00 4,00 5,00 6,00Av
er

ag
e 

C
ur

re
nt

 C
on

su
m

pt
io

n
(m

A)
 

Time (hour)

Service manageability with Toit
Traditional approach

When the faulty sensor (i.e. Co2) 
has been stopped

Sense(DHT11+SCD30)+Send (Wi-Fi)

Sense(DHT11)+Send (Wi-Fi)

Figure 3: Comparison of the average current consumption of an IoT device
considering service manageability and traditional method. Applying the
proposed approach by leveraging Toit, the power consumption is reduced
by, on average, 1 mA leading to a longer lifetime while keeping the system
functional and reliable.

Toit) to prevent excessive energy consumption. Finding the
right balance between specific performance targets and ser-
vice manageability is crucial to optimize the advantages of
the proposed approach while minimizing.
5 Conclusion

This paper has introduced a novel approach that empow-
ers low-power IoT devices with increased operational flex-
ibility and observability. This results in independent ser-
vice management at run-time without affecting the overall
operation of other services. The effectiveness of this ap-
proach in mitigating disruptions has been evaluated through
a real-life experiment. As the future research direction, the
proposed architecture and its building blocks will be inves-
tigated regarding potential deployment approaches and in-
terfaces. Furthermore, potential countermeasures to address
faults through remote management will be analyzed. Study-
ing optimizing modularization techniques in low-power IoT
devices should also be essential.
6 References
[1] S. Attarha, S. Band, and A. Förster. Automated fault detection frame-

work for reliable provision of iot applications in agriculture. In 2023
19th International Conference on the Design of Reliable Communica-
tion Networks (DRCN), pages 1–8. IEEE, 2023.

[2] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, a feature-rich
vm for the resource poor. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, pages 169–182, 2009.

[3] R. Minerva, A. Biru, and D. Rotondi. Towards a definition of the inter-
net of things (iot). IEEE Internet Initiative, 1(1):1–86, 2015.

[4] P. Ruckebusch, S. Giannoulis, I. Moerman, J. Hoebeke, and
E. De Poorter. Modelling the energy consumption for over-the-air soft-
ware updates in lpwan networks: Sigfox, lora and ieee 802.15. 4g. In-
ternet of Things, 3:104–119, 2018.

[5] A. Sgueglia, A. Di Sorbo, C. A. Visaggio, and G. Canfora. A systematic
literature review of iot time series anomaly detection solutions. Future
Generation Computer Systems, 2022.

[6] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith. Resilience and survivability in communica-
tion networks: Strategies, principles, and survey of disciplines. Com-
puter networks, 54(8):1245–1265, 2010.

[7] N. Tsiftes and T. Voigt. Velox vm: A safe execution environment for
resource-constrained iot applications. Journal of Network and Com-
puter Applications, 118:61–73, 2018.

[8] K. Zandberg, E. Baccelli, S. Yuan, F. Besson, and J.-P. Talpin. Femto-
containers: Lightweight virtualization and fault isolation for small soft-
ware functions on low-power iot microcontrollers. In Proceedings of
the 23rd conference on 23rd ACM/IFIP International Middleware Con-
ference, pages 161–173, 2022.


