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Abstract
Wearable devices are increasingly prevalent in daily life,

especially for activity recognition, health monitoring, and
fitness management. However, their reliance on batteries
poses inconveniences, expenses, and environmental issues.
To address these concerns, we present a battery-free wear-
able system that utilizes kinetic energy from human activities
as both the energy source and a sensing signal for on-device
activity recognition. With a carefully designed hardware and
software, our system achieves real-time activity recognition
on an ultra-low-power micro-controller, including on-board
classification and wireless transmission. Real-world exper-
iments demonstrate that our system operates the wearable
device up to 95.2 % of the time, inferring and reporting on-
going activities within 8 seconds with up to 87 % accuracy.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-

telligence
General Terms

Machine Learning, Human Activity Recognition
Keywords

Wearable, Battery-free, Low power, Kinetic energy har-
vesting
1 Introduction

With recent technology advancements, smart wearable
devices are becoming increasingly important in various
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fields of the Internet of Things (IoT) including human-
centric applications like health assessment [1] and activity
recognition [2, 3]. A major issue with current wearable de-
vices is their batteries, which cannot provide sustained op-
eration due to finite energy storage capacity. Batteries are
subject to a limited lifetime, a limited number of charging
cycles, and aging effects. In addition, batteries are costly,
bulky, and hazardous for the environment, which impedes
the widespread adoption of wearable devices and increases
their environmental footprint [4].

To overcome these issues, energy harvesting is a promis-
ing solution that converts ambient energy into electrical en-
ergy to power wearable IoT devices. Various sources of am-
bient energy can be exploited depending on the application,
such as solar, kinetic, thermal, and high-frequency electro-
magnetic waves. In addition, energy harvesting can simulta-
neously provide context information, simplifying the sensor
design and improving efficiency [2, 5].

Challenge. Battery-free IoT devices powered by energy har-
vesting face the challenge of scarce, time-varying, and often
unpredictable ambient energy availability. This requires the
devices to operate solely on the energy it extracts from the
environment and cope with intermittency (frequently turning
on and off) caused by the irregular and discontinuous energy
supply [6]. Therefore, advanced signal processing or ma-
chine learning algorithms running on the devices are needed
to achieve energy efficiency by avoiding transmitting large
amounts of raw sensor data using the power-hungry radio.

Contribution. We demonstrate the design and implemen-
tation of a fully battery-free wearable system that performs
real-time on-device human activity recognition, shown in
Fig. 1. Our system uses kinetic energy harvesting in the form
of a piezoelectric transducer to capture energy from the hu-
man heel strike and also to provide the sensing signal for ac-
tivity recognition. To maximize energy input while provid-
ing a high-quality, reliable sensing signal, we optimize key
tuning parameters of the harvester and design a dedicated
energy management architecture. We collect data from five
human subjects performing common human activities (walk-



(a) Hardware prototype

(b) Piezoelectric transducer

(c) Energy harvester and data
transmitter

(d) Inner view of the device

Figure 1: Our system integrates all components required for
battery-free on-device human activity recognition in a small
and lightweight wearable device.

Table 1: Comparison of this paper with prior work.

Work Battery- Sensing On-device
free using EH classification

[2, 5, 7–10] × ✓ ×
[11] × ✓ ✓
[12, 13] ✓ × ×
[14] ✓ ✓ ×
This work ✓ ✓ ✓

ing, running, jumping, going up/down the stairs) and train
four widely-used machine learning algorithms for human ac-
tivity recognition. Using this empirical data, we demonstrate
that our system can execute the end-to-end activity recogni-
tion pipeline, including signal acquisition, feature extraction,
classification, and wireless transmission of the inferred activ-
ity in real time on an ultra low-power microcontroller while
relying only on energy harvested during the activity.

2 Related Work
Prior work considers diverse energy sources for battery-

free wearable devices, such as solar [11], thermal [15], radio
frequency [16], and human motion [17]. The latter is a par-
ticularly promising energy source as users typically wear the
devices for extended periods during daily activities, allow-
ing for self-powering by harvesting energy from body move-
ments. Specialized transducers (i.e., piezoelectric [12], tri-
boelectric [18], or electromagnetic [17]) are needed to con-
vert the kinetic energy into electric energy. Piezoelectric
transducers are a popular choice due to their simplicity and
compatibility with microelectromechanical systems [13].

Although prior work [2,5, 7–11,14] has greatly advanced
the research towards battery-free wearable devices, many of
these studies still use batteries and do not demonstrate fully
self-sustained operation. For example, the most related study
implements a battery-free wearable system using kinetic en-

Figure 2: Overview of our battery-free wearable system for
on-device human activity recognition.

ergy harvesting for human activity recognition, but does not
demonstrate on-device activity classification [14].

To our knowledge, there is no prior research that achieves
on-device battery-free activity recognition. Table 1 summa-
rizes and compares previous studies by the aforementioned
criteria. It can be seen that this paper is the first to show-
case a complete end-to-end system that is battery-free, relies
entirely on harvested energy from human motion for both
sensing and energy generation, and is capable of executing
the entire activity recognition pipeline on the device, thus
achieving autonomous and real-time operation.

3 System Design
This section describes the design of the first battery-free

system for on-device human activity recognition. Fig. 2 pro-
vides a high-level overview for our system design. The activ-
ity recognition pipeline runs on a battery-free device, which
is powered by the energy harvested from human motion. The
harvested energy is first stored in an energy storage unit. An
energy management unit uses the stored energy to power var-
ious hardware components, including microcontroller, sens-
ing circuit, and radio. Fig. 2 shows that the harvesting sig-
nal is also used for activity recognition using standard tech-
niques for signal processing, feature extraction, and classi-
fication. Finally, the inferred activity is sent to a nearby re-
ceiver using a low-energy wireless protocol.

In the following, we outline the hardware and software
components of our design and their respective roles in ad-
dressing the challenges that arise from battery-free opera-
tion. We investigate tuning methods to optimize the energy
yield from the piezoelectric transducer and compare various
energy-harvesting architectures to maximize the transfer of
power from the transducer to the system. We present an ef-
ficient current sensor design to extract a high-fidelity activ-
ity signal while simultaneously harvesting energy from the
transducer. Finally, we integrate these components into a
compact battery-free device for human activity recognition.

3.1 Transducer tuning
We use a MIDÉ Technology1 S230-J1FR-1808XB piezo-

electric bending transducer (71 mm × 25.4 mm) with a natu-
ral resonant frequency of 130 Hz. To extract the most energy
with this transducer we attach our device to the leg/ankle to

1https://www.mide.com/



Figure 3: Tuning the piezoelectric transducer using clamp-
ing, tip mass, and magnets. The mass is attached to the tip of
the cantilever and two magnets are used for further tuning.

efficiently capture the heel-strike energy. Nevertheless, we
still need to tune the resonance frequency of the transducer
to optimize the energy yield [19].

Most of the energy in the power spectrum of human mo-
tion lies in the spectral range below 10 Hz [19]. thus, to
efficiently capture the heel-strike energy and obtain a high-
quality sensing signal, we must shift the resonant frequency
of our transducer from 130 Hz closer to the 10 Hz range.

Fig. 3 illustrates three key methods to decrease the reso-
nant frequency of a bending piezoelectric transducer: (1) re-
positioning the clamping point to increase the effective
length of the cantilever, (2) attaching a mass to the tip of
the transducer to dampen the oscillation, and (3) mounting
a magnet on the tip of the beam and placing another static
magnet with opposite polarity at a small fixed distance [20].
Clamping point. To achieve the lowest resonant frequency,
we choose the lowest clamping point provided by our can-
tilever, which has the longest effective beam length.
Tip mass tuning. To characterize the influence of tip mass
and magnet tuning, we connect the cantilever to a load
shaker2 and excite it with frequencies from 10 to 60 Hz. The
open-circuit voltage Voc and the short circuit current Isc are
measured with a multi-meter. The left side of Fig. 4 shows
the measured resonant frequency of the transducer for vary-
ing tip masses and the corresponding values obtained using
the transducer’s datasheet. We find that tip mass tuning alone
is insufficient, so magnet tuning should be explored to fur-
ther decrease the resonant frequency without significantly in-
creasing the size and weight of the transducer.
Magnet tuning. We mount one magnet to the tip of the can-
tilever and one magnet of opposite polarity to a screw that
allows altering the distance between the magnets. We use a
3 mm thick neodymium magnet with a 12 mm diameter at-
tached to the transducer, which keeps the moving part of the
harvesting system compact. We use a 5 mm thick ceramic
magnet with a 12 mm diameter as static magnet. The right-
hand side of Fig. 4 shows the transducer’s resonant frequency
for varying distances between the magnets and two different
tip masses. For small distances between the magnets, the
resonant frequency of the transducer decreases significantly.
Implications on system design. Our results show that the

2https://controlledvibration.com/product-item/
1lb-load-shaker/

Figure 4: Left: The resonant frequency exhibits an inverse
linear relationship with the tip mass and matches the calcu-
lated values well. Right: For the magnet tuning, a steep de-
crease in resonant frequency is observed for both tip masses
when reducing the distance between the two magnets.

largest possible tip mass and the lowest possible magnet dis-
tance would be best to achieve a low resonant frequency.
However, to maintain a compact size and a stable operation
without damaging the device, we need to strike a balance
between weight/size of the tip mass and the inter-magnet
distance. We therefore select a tip mass of 12.5 g and an
inter-magnet distance of 5 mm. This choice significantly re-
duces the resonant frequency of the transducer from 130 Hz
to 22 Hz, while providing a stable and compact packaging.

3.2 Energy management and storage
To harvest energy from the transducer, its output signal

has to be rectified and then used to accumulate energy in
a storage capacitor. Since ambient energy varies over time
and is often insufficient to enable continuous operation of
the device, an energy management unit (EMU) is necessary.

The EMU controls the operation of its output voltage reg-
ulators, which provide the supply voltage for the other sys-
tem components depending on the voltage on the mstorage
capacitor. A key design decision here is whether to use an
EMU with a boost converter [21] at its input.

Using a boost converter allows to regulate the input volt-
age of the EMU to a specified value. This enables Maximum
Power Point Tracking (MPPT), where the voltage is regu-
lated to the Maximum Power Point (MPP) of the source to
most efficiently extract energy from the transducer. This,
however, only works if the input excitation changes only
slowly over time and and if the boost converter can regu-
late the input to the MPP voltage level. In our case, the har-
vesting signal comes in strong, isolated bursts caused by the
human heel strike and open-circuit voltages of up to 6.6 V.
Therefore, it is challenging for a boost converter to regulate
to a MPP. Thus, for our application, we find a buck-only ar-
chitecture is up to 30 % more efficient than a buck-boost ar-
chitecture.

We choose a Linear Technology LTC3588 EMU, which
turns its output regulators on at a voltage of about 4 V on
the storage capacitor and shuts them down when the voltage
drops below 2 V. Using a 220 µF capacitor, the energy stored
in this voltage range is sufficient to guarantee a minimum
uninterrupted execution of 2 s per charging cycle.



Figure 5: The sensing mechanism using energy harvesting
current. The low-side energy harvesting current sensor is
comprised of a shunt resistor in the return path of the rectifier
and an inverting amplifier.

3.3 Harvesting-based activity sensor
A central component of our proposed system is the mo-

tion sensor that detects the wearer’s movements. While ac-
celerometers are commonly used for this purpose, recent
studies demonstrate that piezoelectric transducers can be
used to classify human activities more energy efficiently
[5, 7, 22]. In particular, the harvester current signal has been
found to be suitable for activity classification. Therefore, we
opted to incorporate a current sensor into our system, which
converts the harvesting current to a voltage signal that can be
sampled using an analog-to-digital converter (ADC).

We propose a shunt-meter circuit based on an inverting
operational amplifier, illustrated in the “Current sensor” box
in Fig. 5. By placing the current sensor in the return path of
the rectifier (low-side sensor), it is not directly exposed to the
harvesting voltage. As a result, the amplifier can be powered
with a supply voltage lower than the harvesting voltage and
high common-mode voltages can be eliminated.

Using a Renesas ISL28194 operational amplifier3 with
resistor values of R1 = 10Ω, R2 = 330kΩ, and R3 = 20MΩ,
the transimpedance is r = 606.06V/A at a bandwidth of
58 Hz and a quiescent current of only 330 nA. This enables
sampling of current signals with amplitudes of up to 2 mA,
which is the maximum amplitude occurring during our ex-
periments, and frequencies of up to 29 Hz, which is well
above the 22 Hz resonant frequency of our tuned transducer.
3.4 Processing and runtime operation

We use a Nordic Semiconductor nRF52840 wireless
microcontroller4 to sample and process the sensor data and
control the radio interface because of its low power con-
sumption and various sleep modes. In addition, the in-
tegrated low-power radio interface eliminates the need for
inter-chip communication between the microcontroller and
the radio, further reducing overall power consumption.

The microcontroller samples the harvesting signal using
the on-board 12-bit ADC at a rate of 124 Hz. After the com-
pletion of a pre-defined sampling window, the system com-
putes features and runs the classification algorithm. Finally,
the classification result is encoded as a 4 byte payload in a

3https://www.renesas.com/
4https://www.nordicsemi.com/Products/nRF52840

16 byte packet, which is transmitted using a proprietary pro-
tocol by Nordic Semiconductor in a connection-less (broad-
cast) mode at a data rate of 2 Mbit/s.
3.5 Prototype

Fig. 1 shows the current prototype of our system. The
device uses a piezoelectric transducer for energy harvesting
(Fig. 1b). To ensure a compact and lightweight design, the
device is divided into two Printed Circuit Boards (PCBs)
that are mounted on both sides of the piezoelectric trans-
ducer (Fig. 1c). The first printed circuit board (PCB) con-
tains the EMU, rectifier diodes, energy storage capacitor,
and current sensing circuit. The second PCB hosts the wire-
less microcontroller and the antenna for data transmission.
The neodymium magnet is attached to the front tip of the
piezoelectric cantilever. To attach the device to the user’s
leg, we design and manufacture a custom 3D-printed casing
(Fig. 1d). The casing includes a frame for securely placing
the static magnet and slots for velcro strips to ensure com-
fortable strapping of the device to the user’s leg (Fig. 1a).

4 Evaluation
This section describes the evaluation of our system cov-

ering the data collection campaign and the on-device human
activity recognition performance as well as the energy con-
sumption, energy harvesting, and intermittency analysis.
4.1 Data collection

We use our system to collect KEH data5 from five adult
and healthy participants during four common human activ-
ities: walking, running, jumping, and going up/downstairs.
The participants are 20–60 years of age and their weight
ranges from 50 to 100 kg. Each participant performs all four
activities six times with a duration of 62 s per activity.

We conduct two separate sets of experiments. In the first
set, the wearable device transmits only raw KEH data in 2 s
windows. Later, this data is used to train machine learn-
ing algorithms offline as described in 4.2. In the second
set of experiments, the developed decision tree classifier is
implemented on the sensor node which runs solely using
the harvested energy from human movements and transmits
the inferred activity after every 8 s. The hardware proto-
type for collecting and transmitting the data is attached to
the lower part of the user’s leg using velcro straps as de-
picted in Fig. 1a. The receiver is placed in close proximity
to the transmitter for collecting real-time KEH data during
the experiments. The human activities are labeled manually,
which serves as ground truth during the training of the ma-
chine learning classification algorithms.
4.2 Human activity recognition

We use the collected data to assess the performance of
human activity recognition with our battery-free prototype
using standard mechanism of signal processing, feature ex-
traction, and machine learning classification.
Methods. First, we partition the data into different window
sizes ranging from 1 to 10 s, and extract 21 time-domain
features from these windows. We split the data into 80–
20 % ratio for training and testing the model respectively.

5Ethical approval has been granted from CSIRO for carrying out this
experiment (approval number: 106/19)



Figure 6: The average accuracy of the four considered clas-
sification algorithms for varying window sizes It can be ob-
served that the accuracy increases with increasing window
sizes up to 8 s, beyond which there is no significant improve-
ment in accuracy.

We train four commonly used machine learning classifica-
tion models using ten-fold cross-validation: Decision Tree
(DT), Random Forest (RF), Support Vector Machine (SVM),
and Multi-Layer Perceptron (MLP). For each type of classi-
fier, we explore the performance with different model hyper-
parameters. We repeat the training process for various win-
dow sizes and different subsets of features, chosen based on
the feature importance metric.

We further evaluate the average time needed to classify a
sample for each type of classifier as the energy cost of the
machine learning algorithm is proportional to the number of
system operations and the classification execution time. This
is done by measuring the time it takes to classify all available
samples, divided by the total number of samples.
Results. We evaluate the trained classifiers based on their av-
erage accuracy on the test sets. We select the best performing
classifier and window size from the scanned parameters and
present the results in Fig. 6. As shown in Fig. 6, the activ-
ity recognition accuracy increases with the window sizes for
all classifiers. However, the improvement becomes less sig-
nificant for larger windows (>8 s). This is because smaller
window sizes provide little information about the activity be-
ing performed since only a few, if any, steps are captured in
the window. As the window size increases, the information
content per sample increases, but since most activity patterns
in the considered activities last only up to a few seconds, the
information gain saturates after 8 s windows.

We also find that all classifiers offer similar performance,
with peak accuracies around 87 % for an 8 s window, which
is significantly higher than the most closely related KEH-
based off-device activity recognition system, that achieves an
accuracy of less than 60 % for the same 8 s window size [14].

Due to its simple architecture, the DT shows 5–15× faster
computation times compared to the other classifiers, which
corresponds to the lowest power consumption on the device.
Thus, we find this classifier to be the best for our scenario.

Fig. 7 shows the confusion matrix of the DT classifier on
the previously unseen test dataset. We observe that there is
higher confusion between the activities of walking and going
up/downstairs. This is an intuitive finding since both activi-
ties are very similar and are mainly distinguished by the spa-

Figure 7: The confusion matrix of the Decision Tree (DT)
classifier for a window size of 8 s.

cial direction, which is difficult to determine from the har-
vested signal of a single-axis piezoelectric cantilever. This
appears to be a general limitation of human activity recogni-
tion based on kinetic energy harvesting signals [5].

4.3 Energy consumption
The total power consumption of our system is the sum of

the contributions of the energy management unit PEMU , the
current sensor PSens, and the microcontroller and radio PMCU .
Methods. We measure PMCU using an Otii Ace6 . The de-
vice is set up to supply a voltage of 1.8 V and measures the
current drawn by the sensor node as well as the voltage at
its clamps. From the recorded traces, we can calculate the
energy required for the execution of each task of the micro-
controller. The power consumption of the EMU and the sen-
sor, however, can only be estimated as both the voltage and
current drawn by the EMU and the sensor depend on the cur-
rent state of the storage capacitor and the vibration intensity
applied to the transducer. Therefore, we use the average har-
vested current during our experiments together with circuit
analysis and the quiescent currents of the EMU and sensor
listed in their datasheets to analytically estimate the energy
consumption of these components.
Results. From the measurements with the Otii Ace, we find
the energy costs to turn the microcontroller on, collect a sin-
gle sample, and transmit the inferred activity are 72.84 µJ,
1.07 µJ, and 39.71 µJ. The respective power consumption
then depends on the sampling frequency and window size.
Using the quiescent current of the EMU provided in its
datasheet7 and assuming the main storage capacitors volt-
age to be always between the turn-off threshold (2.9 V) and
the maximum rated voltage of the capacitor (6.3 V), we esti-
mate the EMU’s average power consumption to be between
PEMU,min = 2.79µW and PEMU,max = 5.99µW. The power
consumption of the sensor also depends on the transducer
current. Therefore we calculate the average current from the
traces recorded during the experiments described in Sec. 4.1.
We find the average current to be Itd,av = 60.43µA, which re-
sults in an average power dissipation of PSens = 633.82nW.

6https://www.qoitech.com/otii-ace/
7https://www.analog.com/media/en/

technical-documentation/data-sheets/35881fc.pdf



Figure 8: The average power consumed (solid line) and har-
vested energy (dashed lines) by our device to perform one
execution cycle. For window sizes greater than 1.2 s, the av-
erage harvested power exceeds the consumed power.

Fig. 8 shows the total average power consumption of the
system after start-up, which is dependent on the window size,
as well as the energy required to execute a full cycle, in-
cluding start-up. As the window size increases, the average
power consumption approaches that of the sampling task,
while the cycle energy increases linearly. Therefore, if there
is consistent but low energy harvesting input that exceeds the
system’s average consumption, using a longer window size
can maximize the system’s on-time. On the other hand, if
the harvested power level is below the average system power
consumption or the harvesting patterns are highly irregular,
using a short window size can ensure that the system exe-
cutes at least one full cycle every time it is turned on.
4.4 Energy harvesting

This section describes the average power harvested by our
proposed system during various human activities.
Methods. We compute the harvested power PIn as the prod-
uct of harvested transducer current Itd and the storage capaci-
tor voltage UCap. From the experiments described in Sec. 4.1,
we collected traces of the current flowing into the device.
For the capacitor voltage, we again use the lower bound-
ary estimation of UCap,min = 2.9V. Thus, a lower boundary
of the average harvested power PIn,min can be calculated as
PIn = Itd ·UCap.
Results. Fig. 8 shows the estimated values of the harvested
(horizontal lines) and consumed power of the system during
the four activities. From this figure, we find that the aver-
age harvested power lies above the consumed power of the
system for all activities for window sizes greater than about
1.2 s. Thus, our proposed system can run battery-free activ-
ity classification after accumulating energy for at least 1.2 s.
4.5 Intermittency

In practice, the harvested power is not constant over time
but rather comes in short bursts caused by the heel strike.
Consequently, the system may still run out of energy if the
break between two such strikes is too long, even if the aver-
age harvested power is greater than the system’s power con-
sumption. Therefore, the consecutive on-time of the system
is another important measure to evaluate the performance of
a battery-free sensor node, which also offers insights into
suitable window sizes for the application at hand.

Figure 9: The percentage of received 2 s packets over the
length of the operating period they were part of. The major-
ity of packets arrive as part of 62 s operating periods, which
corresponds to continuous operation throughout the activity
duration.

Methods. By analyzing the timestamps of received packets
from Sec. 4.1 experiments, it’s possible to determine when
the sensor node was operating and charging up. The device
transmits a radio packet every two seconds during data col-
lection, which means that each received packet represents
two seconds of operation. If two consecutive packets have
timestamps that are exactly two seconds apart, it indicates
continuous operation over that time period. Although pack-
ets may be lost due to radio link issues, this method can pro-
vide a lower boundary of the on-time of the sensor, quantized
to two-second periods.

Another metric that can be derived from this evaluation is
the coverage, which is the ratio of on-time to total activity
time for different window sizes. Only on-time periods that
fit a full window are considered, and a four-second period
of operation would be considered as four seconds of on-time
for window sizes of two and four seconds, and three sec-
onds for a three-second window size. Larger window sizes
aren’t considered as the sensor would have turned off before
acquiring a full window.
Results. After analyzing the timestamps of received pack-
ets as described above, we plot the distribution of operating
periods in Fig. 9 for all four activities. The figure shows the
percentage of packets received over the sensor’s operating
period during which the packets were received. The analysis
of the harvested energy in Sec. 4.4 suggests that the sensor
should be able to operate continuously when transmitting re-
sults every 2 s, as is the case in this experiment.

Looking at the histograms, we see that for each activity,
the sensor operates continuously for a significant amount of
time over the full course of the activity, indicated by an on-
time of 62 s. This is especially pronounced for high-intensity
activities like running and jumping. However, as suspected
earlier, there are also packets received for shorter on-times
due to insufficient energy. This is particularly visible for the
lower-paced activities of going up/down stairs and walking,
but also for jumping when heel strikes are weak or have long
gaps between them.

Fig. 10 shows the coverage obtained during the experi-
ments over window sizes between 2 and 10 s. As expected
from the previous results, the coverage is lower for the low-



Figure 10: The average coverage of the sensor over various
window sizes. It is observed that with a larger window size,
the time required for recharging the capacitor after a shut-
down also increases, resulting in a decrease in coverage.

intensity activities walking and going up/downstairs. When
there is insufficient harvested energy, at least one packet is
lost, even if the sensor is operating continuously most of the
time. Therefore, small energy shortages have a greater im-
pact on larger window sizes, as shown by the coverage values
decreasing for every activity as the window size increases.
5 Conclusions

This paper showcases the first battery-free wearable sys-
tem for on-device human activity recognition using kinetic
energy harvesting. The system harvests energy from various
human activities using a piezoelectric transducer and uses the
same energy harvesting signal for activity recognition. To
maximize the harvested energy, we tune the resonance fre-
quency of the transducer using an experimentally explored
combination of a magnet and a tip mass. We implement the
entire activity recognition pipeline in real-time on an ultra
low-power microcontroller while relying only on energy har-
vested during the activity. After rigorous experiments with
different sampling rates and window sizes, we find that a de-
cision tree classifier is best suited for our application with an
accuracy of 87 % at a window size of 8 s, offering real-time
activity recognition for up to 95.2 % of the time.

The design process highlights the importance of tailor-
ing each component of the system to the specific applica-
tion, which may also require rethinking commonly accepted
methods. For example, although the use of buck-boost sys-
tems and MPPT is generally assumed to be the most efficient
way to harvest energy, for our application with its specific
constraints a buck-only architecture has shown superior per-
formance. In the future, multi-source energy harvesters (e.g.,
solar, kinetic, thermal, RF) can be explored as simultaneous
sources of energy and context information for ensuring per-
petual and autonomous operation of the wearable device.
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