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Abstract
One of the major shortcomings in Internet of Things (IoT)

sensor networks is the finite energy supply available for com-
putation and communication. To circumvent this issue, en-
ergy harvesting has been proposed to enable embedded de-
vices to mitigate their dependency on traditional battery-
driven power sources. Nevertheless, energy supply due to
energy harvesting often varies, leading to nodes crashing due
to energy exhaustion, with application(s) losing their state.
Efficient state checkpointing in non-volatile memory (NVM)
has been proposed to enable forward progress, albeit at the
expense of significant overheads (viz., energy and time). In
this paper, we show that, for a certain class of applications,
state checkpointing may adversely affect the performance of
the applications. This is different to checkpointing in tradi-
tional distributed system where network topology is gener-
ally assumed to be stable.

1 Introduction
As the popularity of smart applications such as smart

cities or smart homes increases, so also, the number of In-
ternet of Things (IoT) devices (or nodes) increases. In fact,
it is projected that the number of connected IoT devices
by 2025 will reach 27 billion, up from 12 billion in 2021
[19]. Such IoT devices are typically resource-constrained,
i.e., they have a weak central processing unit (CPU), low
memory and finite energy source. Indeed, the problem of
a finite energy source is proving to be such a limiting fac-
tor in the adoption of large-scale IoT networks, due to the
fact that a node tends to crash and lose its state when it
runs out of energy. To circumvent this problem, new tech-
niques are required to reduce the reliance on finite sources.
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In essence, there is now a drive to develop IoT devices with
energy sources that can provide energy reliably for longer,
possibly indefinitely.

Energy harvesting is now becoming one of the most com-
monly utilised solutions to circumvent the finite energy prob-
lem. The energy sources harvested can be ambient, me-
chanical, human, bioenergy or hybrid [23]. These sources,
in short, provide bursts of energy over a longer duration of
time. Nevertheless, energy harvesting is generally highly
variable across space and time [8], which can often limit the
intended pervasiveness of such IoT networks. Capacitors, as
energy storage devices, can help with smoother energy sup-
ply. However, they often dominate the IoT devices in virtue
of their sizes. As such, a node will eventually crash due to
energy exhaustion, losing all of its state. The node will then
recover when it has harvested enough energy. Thus, periods
of normal computation and periods of energy harvesting be-
come interleaved unpredictably which, in turn, impact com-
putation both in terms of energy and time.

Checkpointing has been proposed as a solution to over-
coming this major problem. In short, checkpointing is the
process of (periodically) capturing a snapshot of the applica-
tion or system state and saving it on stable non-volatile mem-
ory (NVM) [15]. After a crash, when the system has lost
its state, the system reloads the last saved state from NVM.
While checkpointing on NVM allows application state to
persist across failures, they induce a non-negligible overhead
on the system; for example, when flash memory is used as
NVM, the energy cost is, of an order of magnitude, larger
than most system operations[8], meaning that checkpoint-
ing has to be used carefully. While the use of ferroelec-
tric random-access memory (FRAM) improves these figures,
checkpoints often represent the dominating factor in an ap-
plication’s energy and time profile [9].

Checkpointing is a well-known technique in distributed
systems and high performance computing that has been used
to tolerate failures[15, 16, 18] and persist application states
across failures. With advances in IoT device hardware, many
of them are now equipped with NVM such as flash or FRAM,
making checkpointing a viable technique to persist state
when a node crashes due to energy exhaustion. However,
most works on checkpointing in IoT domains have focused
on centralised applications and there is a dearth of work that
focuses on checkpointing IoT networks applications.

Most works, if not all, on message logging and check-
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Figure 1. Checkpointing Issues in IoT Networks

pointing in distributed systems will not work in IoT networks
due to the very different nature of the applications and re-
quirements.
Problem Differently to checkpointing centralised applica-
tion, an additional requirement when checkpointing in a dis-
tributed setting is that of ensuring the consistency of the
(global) checkpoint. Also, given the dynamism of IoT net-
works, the states held at nodes are consistently being up-
dated. As such, when data is retrieved from NVM after a
crash, the possibility of the overall programme state becom-
ing inconsistent is high. We explain this in more detail, based
on Figure 1 that captures a RPL DODAG at a given time
T 1. RPL is a distance-vector routing protocol that is suitable
for IoT networks, that establishes a Destination-Oriented Di-
rected Acyclic Graph (DODAG) upon execution.

At time T 1, assume that part of the DODAG is as shown
in Figure 1. At this point, nodes 3, . . . ,5 have checkpointed
their states, including the i. d. of their respective parents.
We illustrate some issues by focusing on the parent variable.
At a given time T 2 > T 1, node 3 crashes, losing all of its
volatile state, but with its parent set to 1 stored in its NVM.
Before 3 recovers (due to energy harvesting), node 1 (node
3’s parent) crashes. Upon recovery at T 3, node 3 reloads its
state from NVM and establishes node 1 as its parent. Until
node 3 rejoins a new DODAG, its messages (and any mes-
sages sent to it) will be lost. At T 4, node 3 changes its parent
to node 2, thereby correcting the problem. Thus, there is the
fact that node 3 checkpointed a state that, upon reload, was
inconsistent with the network state that was the root cause of
the problem.

As such, one important question arises: Does checkpoint-
ing have a negative impact on the performance of network
applications in IoT networks? We investigate this problem
from two different viewpoints, namely:

• Does network dynamism affect the efficiency of check-
pointing?

• Does the failure pattern affect the efficiency of check-
pointing?

We chose two applications namely (i) RPL, a standard-
ised routing protocol for IoT networks and (ii) LEACH, a
clustering algorithm that allows for hierarchical routing, to
study the above effects.
Contributions

We make the following contributions:

• We study the two applications and observe that such ap-
plications can be split into two components: (i) a dy-
namic phase and (ii) a static phase.

• We run FIT-IoT testbed experiments on both applica-
tions under a range of failure scenarios.

• Our results show that (i) checkpointing during the dy-
namic stage impacts the packet delivery ratio signif-
icantly and (ii) checkpointing during the static stage
boosts the packet delivery ratio significantly.

In effect, we observe that, for RPL, checkpointing does
not appear to be needed, in that checkpointing may even have
a negative impact on the performance of the application. In
our initial work, we observe that checkpointing gains can be
significant (i.e., no checkpointing is required), compared to
previous works: e.g., whereas techniques such as DICE [2]
checkpoints the differentials between states, thereby reduc-
ing the number of checkpoints. Our results show that check-
points may not be needed for some applications, which differ
from previous known results.

The structure of this paper is as follows: we discuss re-
lated work in Section 2. Following that, we introduce the
used case studies in Section 3. We then explained the prob-
lem statement in Section 4. In Section 5, we describe the ex-
perimental setup and methodology used for evaluation. We
then present the results in Section 6. We conclude the paper
in Section 7.
2 Related Work

Checkpointing is used to ensure forward recovery and
needs to ensure state consistency in distributed systems. It is
the process of periodically (or otherwise) storing a state on
non-volatile storage [15]. Literature on distributed systems
differentiate the checkpointing mechanisms into two classes:
local state and global state. Local checkpoints preserve the
state of local processes at such instants. In contrast, global
checkpoints save the entire system state, which includes all
local states and channel states[15, 16] while care should be
taken to maintain certain properties such as causality.

In this section, we survey examples of checkpointing
techniques and their optimisations in current state-of-the-art
research. A fault recovery system to a checkpointed correct
node data (local state) and node trust degree from permanent
storage is proposed for wireless sensor nodes (WSN) [18].
This recovery architecture maintains network connectivity
and improves node link quality during fault recovery. In ad-
dition, local incremental checkpointing is implemented on a
transiently-powered node’s memory protection unit (MPU).
This research shows that utilising MPU hardware handler



for a checkpoint is more efficient and reduces checkpointing
overheads rather than using designed software [7].

On the other hand, the Sytare system is proposed to per-
sist a node’s peripheral state by checkpointing it [5, 6]. The
focus is on checkpointing the node’s peripheral state, which
includes serial interface, ADC, timer or radio transceiver,
rather than checkpointing the node state. Also, a system
called HarvOS uses code instrumentation for checkpoint-
ing [9]. This system is triggered at compilation time while
benefiting from a control flow graph (CFG) to decide when
to checkpoint. A consistency-aware adaptive checkpoint-
ing scheme also solves the problem of inconsistent volatile
and non-volatile memory logs [26]. The inconsistency issue
between volatile RAM and non-volatile RAM occurs when
reloading the RAM state after a fault and collating it with the
checkpointed state.

A recent paper [3] reviewed the current works in
transiently-powered networks (TPN) state retention mecha-
nisms. It breaks down the state retention to peripheral state,
programme state, persistent timer keeping and the exist-
ing checkpointing strategy to copy-if-change and copy-used.
Furthermore, the trigger of the checkpointing mechanism is
to be either proactive or reactive.

Differential checkpointing (DICE) is a compile-time sys-
tem that determines the difference between a checkpointed
state and a volatile memory state and then performs a check-
point if necessary [2]. DICE is evaluated by integrating it
with proactive HarvOS [9] and MementOS [21], as well as
reactive Hibernus [4] and copy-if-change [8]. Results indi-
cate that DICE reduces checkpoint frequency, thereby con-
serving energy and shortening checkpoint duration, thereby
increasing service availability. Our work shows that it is pos-
sible to reduce the number of checkpoints taken for specific
classes of applications.

we observe that the state-of-the-art in checkpointing in
transiently-powered IoT networks is mostly limited to local
node-related state checkpoints rather than network-related
states. We investigate this problem further, by running ex-
periments on a real testbed, to gather initial insights.

3 IoT Protocols
In this section, we briefly present the two protocols which

we will use as case studies in this work.

3.1 RPL Routing Protocol
RPL is a prominent Low-Power and Lossy Networks

(LLNs) routing protocol. LLNs are classified based on
resource constraints, such as limited memory, processing
power, and energy availability, with a lossy communication
link between nodes. RPL is designed on the foundation of
the IPv6 network stack, as delineated by the Internet En-
gineering Task Force (IETF) under the nomenclature RFC
6550 [25].

RPL is a distance vector proactive routing protocol which
establishes links between nodes by calculating the direction
to their next hop and the distance cost based on such metrics
[17]. The construction of network topology serves various
objectives, depending on the intended network functional-
ity. The default objective function employed by RPL is cen-
tred on reducing the Estimated Transmission Count (ETX)

from any given node to a designated RPL root node. The
topology established by RPL takes the form of a Destination-
Oriented Directed Acyclic Graph (DODAG) to the desig-
nated root node. The setup and maintenance of the DODAG
is achieved through three main control messages, namely
DIO (DODAG Information Object), DIS (DODAG Informa-
tion Solicitation) and DAO (Destination Advertisement Ob-
ject). The DODAG structure should persist throughout the
network’s lifespan, and RPL utilises Trickle timers to con-
trol the rate at which these control messages are generated.
Trickle timers rely on the Trickle algorithm, which involves
disseminating new network information to all nodes aperi-
odically and minimising the broadcasting rate when the net-
work is stable [17].

3.2 LEACH
LEACH (Low-Energy Adaptive Clustering Hierarchy) is

a self-organizing and adaptive clustering protocol for IoT
networks. In the network, the nodes organise themselves into
local clusters, which are sets of nodes, with one node tak-
ing on the role of a cluster-head. In hierarchical routing, all
members of a cluster relay their messages to the cluster-head
which, in turn, aggregates the messages before forwarding
the resulting message. As such, cluster-head uses more en-
ergy than cluster members.

To even the energy usage, LEACH uses randomisation to
distribute the energy load evenly among the nodes in the net-
work, thereby extending the lifetime of the network. Thus,
LEACH uses randomised rotation of the expensive cluster-
head role such that it rotates among the various nodes, in
order to extend the lifetime of every network node.

LEACH routing protocol consists of a predefined number
of rounds. Each round begins with the advertisement, clus-
ter formation and data scheduling phases. Upon completion
of these setup procedures, data transmission initiates. Dur-
ing the advertisement phase, every node decides whether or
not to act as a cluster-head by selecting a random number
from a uniform distribution between 0 and 1. The decision is
based on whether the selected number is below a threshold
determined by the formula cited in reference [13].

4 Problem Statement
In this section, we explain the problems we tackle in this

paper and enunciate some hypotheses to capture the nature
of the problems.

Closer analysis of the IoT protocols such as RPL and
LEACH suggests that IoT protocols contain a dynamic phase
and a static phase. The static phase occurs when the network
is stable, where the specification for the given problem (e.g.,
clustering or routing) is being satisfied. On the other hand,
the dynamic phase is triggered when the network is changing
such that the specification may be violated (e.g., the current
shortest path is no longer) and the network needs to evolve
to satisfy the specification again (e.g., a new shortest path
needs to be computed).

Global checkpointing in a distributed system involves
capturing a state that is consistent and there are protocols
that exist to achieve this [10]. However, such protocols are
not likely to work well in an IoT network for several reasons,



two of which are: (i) the network is lossy and (ii) the network
is multihop.

When the saved state of a crashed node is reloaded, two
possibilities exist: either (i) that local state is compatible
(i.e., consistent) with the global state of the application or (ii)
that local state is inconsistent with the global state, in which
case the application may perform “sub-optimally“ as the ap-
plication will need to handle the inconsistency. Since, in IoT
networks, several protocols, such as RPL and LEACH, are
based on 1- or 2-hop neighbourhood interactions, we take
the term global to mean the “1- or 2-hop neighbourhoods“.
In general, we are going to say the k-hop neighbourhood of
a node is based on the specification of the problem. For
example, RPL is based on the 1-hop neighbourhood of a
node whereas computing a collision-free TDMA schedule
involves a node knowing information about its 2-hop neigh-
bours.
Hypothesis 1: Checkpointing application state when the ap-
plication is in a dynamic phase can adversely affect the per-
formance of the application.

The intuition behind this hypothesis is that, when a node
runs out of energy (i.e., crashes), the application may need
to reconfigure. Checkpointing a state prior to that reconfig-
uration will mean that, when the node recovers and reloads
its state, that state will no longer be consistent with the new
application configuration.

We now derive an expression that captures the probability
of reconfiguration with the checkpointing period, from the
perspective of a given node n and its k-hop neighborhood,
where k is problem specific.

Let X be the random variable “number of network struc-
ture reconfiguration per unit time” within n’s k-hop neigh-
borhood and let the checkpointing period be P time units.
Assume X follows a Poisson distribution with parameter λ.
The expected number of structure reconfigurations between
two checkpoints C1 and C2 is Pλ. We then denote by R, the
random variable “number of network structure reconfigura-
tion per checkpoint period”.

For the checkpoint C1 of a node n to still be consistent
with its k-hop neighborhood in the period [C1 . . .C2], there
should have been no network reconfiguration in that time
period P. Thus, we wish to calculate the probability that
Pr(R = 0), which is given by:

Pr(R = 0) = exp(−Pλ)(Pλ)0

0!
= exp(−Pλ)

The above suggests that, when λ is high due to several
nodes crashing due to energy exhaustion, the probability of
no reconfiguration is very small, meaning that the checkpoint
C1 is very likely stale, hence this may lead to neighbourhood
inconsistency if reloaded, thereby impacting on the perfor-
mance of the application.
Hypothesis 2: Checkpointing application state when the ap-
plication is in a static phase can improve the performance of
the application.

From the above equation, we observe that, when the net-
work is stable and λ is very small, the probability of no re-
configuration is negligible, meaning that the checkpoint C1
of node n will very likely be consistent with n’s k-hop neigh-

bourhood.
Hypothesis 3: The impact of checkpointing on the efficiency
of an IoT application will vary according to the failure pat-
terns.

From a node n’s perspective, the higher the rate of fail-
ures (i.e., energy exhaustion) in its k-hop neighborhood, the
higher the number of network reconfigurations needed that
will affect the state of n. This means that the likelihood that
a checkpoint of n will be stale is high, thereby impacting the
efficiency of the application.

In the remainder of the paper, we conduct a number of
experiments using RPL and LEACH to evaluate the truthful-
ness of the three hypotheses.

5 Methodology
In this section, we explain the experimental and network

setup in terms of network topology, network size, network
protocol, hardware specification, testbed specification and
operating system (OS) used.

In the remainder of the paper, we consider RPL as the
application with a dynamic phase due to the fact that the
DODAG will keep being updated due to node crashes. On
the other hand, we observe that LEACH is relatively stable,
even in the presence of node crashes. A period of instabil-
ity will only happen when either the clusterhead crashes or
when the clusterhead is rotated. Given a network of size N
and the number of clusters as C, with C <<N, then the prob-
ability of a clusterhead crashing is C/N, when a node fails,
giving rise to a low probability of clusterhead failure.
5.1 Experimental Setup

The Contiki-NG was used as the booting operating system
in the experiments. It is an open-source, secure, and reliable
operating system for IoT devices [20]. This operating system
is suitable for IoT networks, which are typically low-power
and lossy networks (LLN). The experiments were conducted
on the FIT-IoT Lab testbed. It is a large testbed with more
than 1500 IoT sensor nodes scattered around France [1]. The
nodes are deployed over a 1.20 m x 1.20 m grid topology. We
used the Lille site for the deployment as it supports extensive
multi-hop experiments.

Furthermore, we used the IoT-LAB M3 board on this
testbed. This board comprises an STM32 (ARM Cortex M3)
microcontroller, an ATMEL radio interface operating at 2.4
GHz, and four sensors. It also includes a 128-Mbits exter-
nal NOR flash memory and a three-LED lighting system
[1, 14]. The number of nodes used throughout the experi-
ments was 100-200, subject to testbed resource controls, and
each experiment lasted two hours. The experimental details
are summarised in Table 1. The metrics that were extracted
are (i) message delivery ratio, and (ii) energy consumption.
As stated in Table 1, the failure percentage is 10%, 20% and
30%. So, this paper does not consider a higher failure per-
centage for network connectivity reasons, as a higher failure
percentage will very likely cause a network partition. How-
ever, looking for a higher failure percentage and maintaining
network connectivity will be considered in future work.

We simulate a transiently-powered network by crashing a
node, then making the node recover and then, subsequently,
joining the network again [22]. The maximum number of



Table 1. Experiments Setup
Experiment Setup Description
Operating system Contiki-NG
Routing protocol RPL Classic and LEACH

Network size 100-200 nodes
Experiment duration 2 hours

Testbed Fit IoT Lab
Node type IoT-LAB M3

Failure percentage 10%,20%,30%
Trickle [min,doubling] [8,12] defaults [25]

crashed nodes at one point was 30% of the network size,
with the lowest being 10%.

One of the checkpointing techniques proposed is accom-
plished by writing only changed variables onto non-volatile
memory and subsequently reading from non-volatile mem-
ory (NVM) when needed [8]. There are different types of
non-volatile memory with different capabilities in terms of
access speed, data retention, writing energy consumption
and wear out. For instance, flash, MRAM, FRAM and oth-
ers were used [11, 24]. IoT checkpointing state-of-the-art
uses flash, and the current IoT testbed uses nodes that sup-
port flash as a non-volatile memory chip. As a result, we
used flash as NVM, and we took advantage of the IoT-LAB
M3 board’s 128-Mbit external NOR flash to store the check-
points. The Contiki-NG file system (CFS) API handles writ-
ing and reading from the external flash. It makes use of the
coffee system functionality, which converts an expensive and
complicated bit toggling to micro logging on flash memories
and non-volatile ROM (EEPROM).

The accepted benchmark is two widely used routing pro-
tocols for the lossy and low-power networks, RPL and
LEACH. In the following two sections, we present the in-
strumentation of the chosen two application protocols to un-
derstand the impact of checkpointing on their performance.

5.2 RPL: Application with Dynamic Phase
The dynamic application we consider is RPL, a routing

protocol for low-power and lossy networks, as stated previ-
ously. RPL uses several metrics, such as link quality, to de-
termine the parent of a node in the DODAG. Please observe
that in RPL, a node n is only directly affected by its 1-hop
neighborhood.

Contiki-ng provides two RPL protocol implementations:
RPL-Classic and RPL-Lite. RPL-Lite, as the name im-
plies, simplifies routing implementation by supporting a non-
storing mode, increasing ROM availability and allowing only
one DAG and one RPL instance to run at a time [25]. Subse-
quently, we chose RPL-Classic as the tested protocol because
we wanted to capture and checkpoint data that RPL-Lite does
not provide.

This paper employs the default RPL Trickle timer param-
eters to regulate the transmission of DODAG Information
Object (DIO) control messages. Accordingly, the minimum
interval between two consecutive DIOs is set at 4 seconds,
while the maximum time interval is 17 minutes, per these
default values [25].

Our transiently-powered checkpointed RPL1 (denoted by
CP-RPL) implementation is evaluated by comparing it to a
transiently-powered RPL that does not use checkpointing. In
this paper, unlike most current state-of-the-art approaches,
the checkpointed data are related to the application state
rather the state of the CPU of a node.

The checkpointing is executed by programming two C
functions, one for writing data to the NOR external flash
upon any changes and the other for reading data from the
NOR external flash when an invariant check is required. The
checkpointed data are (i) RPL dag information, (ii) node par-
ent information and (iii) other. This data is checkpointed by
any network node whenever such data changes. Node fail-
ures, node join and rejoin, inconsistent trickle timers, or a
node’s parent change could all cause these changes.

Our results show that RPL (with network variables) does
not need checkpointing even when nodes fail due to energy
exhaustion, thereby corroborating our hypothesis 1.

5.3 LEACH: Application with Static Phase
The application with a static phase we consider is LEACH

and we consider three variants: (i) implementing a ver-
sion of the LEACH routing protocol for low-power and
lossy networks, specifically the transiently-powered check-
pointed LEACH, which we denote as CP-LEACH. To eval-
uate the effectiveness of checkpointing, we compare CP-
LEACH with (ii) a transiently-powered version of LEACH
without checkpointing and (iii) with LEACH without any
transient network characteristics, i.e., LEACH in a perfect
network.

We have developed two C functions for checkpointing
data: one to write changes to the NOR external flash and the
other to read data from the NOR external flash for invariant
checks. As before, unlike most current state-of-the-art ap-
proaches, our checkpointed data is related to the application
state rather than the CPU state of the node.

We checkpoint the data whenever a cluster-head is se-
lected, and the data includes the selected cluster-head for
each round. We assume nodes will crash and recover within
the same round, making the checkpointed data valid and
functional, as explained in Section 4. Please observe that
in LEACH, a node n is only directly affected by its 1-hop
neighborhood. Thus, a cluster-head information is local if a
node recovers in the same crashed round.

Our findings, which we detail in the next section, demon-
strate that checkpointing is necessary for LEACH (i.e., im-
proves the performance of LEACH), due to the fact that it is
a static application.

6 Experimental Results
The findings obtained from the experiments are detailed

in this section.

6.1 RPL: Dynamic Application
In this section, we present the results of our study on the

impact of checkpointing dynamic applications, specifically
the checkpointed version of Routing Protocol for Low-power

1We say transiently-powered RPL to mean RPL in a transiently-powered
network.



and Lossy Networks (CP-RPL). We evaluate the packet de-
livery ratio (PDR) of RPL, both with and without check-
pointing, to understand the impact of checkpointing on net-
work performance.
Random Failures: We conduct a 120-minute experiment,
during which sender nodes send messages to the sink with
various sending periodicities of 60 seconds, 90 seconds, and
120 seconds. During each experiment, we randomly crash a
given proportion of nodes, to mimic energy exhaustion. The
PDR is calculated as the ratio of the total received packets
at the destination node to the packets sent from the source
nodes. In this paper, all nodes are source nodes. Our results
show (see Figure 2) that the highest PDR is obtained for RPL
(i.e, RPL without checkpointing), which approaches 94%.

However, when we checkpoint the state of RPL, i.e. when
CP-RPL is considered, the Packet Delivery Ratio decreases
significantly from 81% at the highest with a 10% crashing
rate to 15% at the lowest, when the crashed proportion is
30%. These findings suggest that checkpointing an applica-
tion in its dynamic state has a negative impact on its PDR,
in that it reduces the PDR for CP-RPL due to a node (re)use
of network information that is no longer consistent with its
1-hop neighbourhood, leading to the loss of messages.

Furthermore, we observe that the negative impact of in-
creasing crash percentages on the network PDR is more se-
vere on CP-RPL than RPL. This is because the recovered
node in RPL benefits from requesting new network infor-
mation from the node neighbours rather than retrieving stale
information from checkpointed RPL state.

In addition to PDR, we also measure the network energy
consumption of RPL and CP-RPL. We have captured the en-
ergy monitoring profile provided by the FIT IoT-LAB and
their energy calculation formula [12]. Consequently, a con-
trol node dedicated hardware installed on the FIT IoT-LAB
node is used to measure the node energy consumption. The
average energy consumption of all nodes over the course
of the experiment is compared, and it is shown that check-
pointing consumes more energy, as expected. Our findings
demonstrate (see Figure 3) that CP-RPL consumes more en-
ergy than RPL. The reason why energy consumption for RPL
decreases with time is due to the number of active nodes left
in the network over time. Overall, the impact of checkpoint-
ing on RPL is two-fold: (i) reduced PDR and (ii) increased
energy. This is in contradiction to previous works, such
as [8], which showed the benefits of checkpointing. These
observations support our first hypothesis enunciated in Sec-
tion 4, that checkpointing an IoT application when it is in its
dynamic phase can adversely affect its performance.
Impact of Application Message Periodicity: We now study
the effect of application message periodicity on the network
PDR in the presence of transient power failure for CP-RPL.
The results, depicted in Figure 4, suggest that, at a 30% crash
rate, the PDR is not impacted by the transmission periodicity
due to the high level of dynamism in the DODAG, which can
be due to several reasons, e.g., high churn, DODAG poison-
ing among others due to non-viable parents. We also con-
jecture that the high number of control messages generated
can lead to nodes not updating their state as needed, resulting
in stale (inconsistent) states, thereby causing a substantially
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lower PDR. Thus, we observe that checkpointing adversely
affects the performance of CP-RPL.

However, there are relatively fewer re-configurations at
10% and 20% crashed rates than at 30%, meaning that, for
applications with high periodicity, fewer numbers of mes-
sages will get lost. However, if the message frequency is
high, a higher number of messages will be lost, as shown in
Figure 4, resulting in lower PDR.

Figure 5 shows the energy consumption under different
application message periodicities. It can be observed that,
for a given failure rate and at high periodicity, the energy
consumed is less, due to less state changes, thereby requiring
less checkpoints.
Predefined Failure Patterns: Additionally, we examine the
impact of spatial and temporal properties of crashes on the
network PDR for RPL and CP-RPL. We look at two di-
mensions for each of spatial and temporal distribution, viz.
clustered (C) and far (F). We utilise CS-CT failure to de-
note that the crashes are clustered spatially (i.e., all crashed
nodes are close to each other) and clustered temporally (i.e.,
the crashes occur very close to each other in time). On the
other hand, FS-FT denotes crashed nodes that are spatially
far from each other, i.e., the crashes are independent as well
as being far temporally.

Figure 6 shows that, when node failures occur in close
proximity, both spatially and temporally (CS-CT), the PDR
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69000 70000 71000 72000 73000 74000
Time (sec) +1.6802e9

0.10504

0.10506

0.10508

0.10510

0.10512

0.10514

0.10516

0.10518

0.10520

En
er

gy
 (W

)

120s

90s
10s

Figure 5. Random Failures: The Effect of Transmission
Frequency on Energy Usage for CP-RPL

for RPL is reduced to 79%, while CP-RPL experiences an
extremely low PDR of 13%. This is due to the high dy-
namism occurring in the 1-hop neighborhood of a given node
n affected by the failures. At the other end of the spectrum
(FS-FT), the level of dynamism in RPL is less due to the
fact that crashes are both spatially and temporally indepen-
dent, meaning that not too many nodes are “simultaneously”
crashing in a given neighbourhood. From Figure 6, we can
observe that the spatial dimension holds a greater impact as it
induces a higher dynamism in a given neighborhood. On the
other hand, when crashed nodes are “far apart”, the decrease
in PDR is less.

Furthermore, Figure 7 illustrates that energy consumption
is almost comparable for spatial and temporal crashes as the
crash rate is constant at 20% for all experiments. The slightly
higher energy consumption for nodes crashes that are tempo-
rally far apart can be attributed to the fact that, when the state
changes, every such change is checkpointed, i.e, CS-FT has
highest energy due to many checkpoints being recorded due
to the dynamism in a neighbourhood. On the other hand, it
seems to be the case that, when crashes occur close to each
other temporally, some changes may not be checkpointed
due to the speed at which state changes are happening.

Overall, our results for a network-based application such
as RPL showed that the energy spent to perform state check-
pointing to enable states to persist over node crashes is not
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Figure 6. Failure Patterns: Impact of Spatial and Tem-
poral Distribtution of Failures on PDR for RPL and CP-
RPL
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Figure 7. Failure Patterns: Impact of Spatial and Tem-
poral Distribution of Node Failures on Energy Usage on
CP-RPL

only being wasted, but is also leading to poorer performance.
Overall, the impact of spatial and temporal distribution of

crashes and the proportion of crashes have varying impacts
on CP-RPL, thereby corroborating our hypothesis 3.
6.2 LEACH: Static Application

In this section, we present the results of our study into
the impact of checkpointing on an application that is mostly
static, specifically LEACH. We have implemented LEACH
for Contiki-ng and we execute it in a network with no fail-
ures to obtain a baseline for PDR. We subsequently run
LEACH in a transiently-powered network (LEACH-TPN)
and a checkpointed version of LEACH in a transiently-
powered network (CP-LEACH-TPN).

Figure 8 shows the PDR of LEACH under baseline con-
ditions, where no node crashes occur, with a PDR of 95%.
Additionally, Figure 8 illustrates the PDR of CP-LEACH-
TPN and LEACH-TPN in the presence of a transiently pow-
ered network (TPN). The results indicate that CP-LEACH-
TPN exhibits better PDR than LEACH-TPN, with an aver-
age value of approximately 65%, whereas LEACH without
checkpointing has a considerably lower PDR with an average
value of around 33%, across various crash rates.

The information that nodes recorded was the information
about their respective cluster heads. During stable phases,
the probability of the head crashing is very low (as we ar-



gued before), meaning that this information is unlikely to be
stale. Thus, upon recovery, a node can readily be linked to
its clusterhead.

These observations corroborate the second hypothesis
enunciated in Section 4, which stated that checkpointing a
stable application will likely result in a higher PDR.
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Figure 8. The Impact of of a Transiently Powered Net-
work (TPN) on PDR of the LEACH Algorithm and CP-
LEACH

7 Conclusion and Future Work
In this paper, the objective was to investigate the efficacy

of checkpointing in transiently-powered IoT networks. We
observed that IoT applications have a dynamic and stable
phase. We ran a number of experiments and proposed three
hypotheses, namely that (i) checkpointing an application in
its dynamic phase is likely to negatively impact its perfor-
mance, (ii) checkpointing an application in its static phase is
likely to boost its performance and (iii) failure patterns im-
pact the efficacy of checkpointing.

As such, our first hypothesis goes counter to works such
as [8] as our results suggest that checkpointing is less effec-
tive for dynamic applications. On the other hand, the results
that support our second hypothesis also explain the reason
for the correctness of the works in [8]: The applications the
authors use are static (in the sense we previously defined).

As future work, we are currently investigating necessary
and sufficient conditions for when checkpointing is needed.
We are also looking at the notion of adaptive checkpoint-
ing so that an application can predict whether the network
will be stable so it can start checkpointing or, if the network
is unstable, when checkpointing will not be required, i.e.,
checkpoint only when needed.
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