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Abstract
Space networks are challenged by long propagation de-

lays and prolonged link disruptions, which require Delay-
Tolerant Networking (DTN) mechanisms. Contact Graph
Routing (CGR) exploits the a priori available topology
knowledge derived from the predictable trajectories to com-
pute optimal end-to-end routes. However, state-of-the-art
CGR is limited in the scalability and stability of the compu-
tation effort, which is critical in resource-constrained space-
craft. To overcome this issue, this paper presents GAUSS:
a graph neural network-based routing for scalable delay-
tolerant space networks. By harvesting recent advances in
Graph Neural Networks (GNNs), we can improve the scal-
ability of CGR by a factor of two while narrowing the vari-
ability down to one-third in realistic cislunar and near-Earth
systems.
1 Introduction

The space sector is thriving. Recent advances in minia-
turization and distributed systems, combined with reduced
costs, allow new actors and missions to be deployed in
space [29]. Networked missions are becoming more popu-
lar in near-Earth and deep-space contexts where prolonged
disruptions and long propagation delays characterize links.

For these kinds of networks, Delay-Tolerant Networking
(DTN) [30] offers appealing store-carry-and-forward mech-
anisms, including routing and forwarding schemes such as
Contact Graph Routing (CGR) [3]. CGR leverages the pre-
dictable nature of space assets, for which expected trajecto-
ries and visibility can be computed in advance. Thus, fu-
ture contacts between participating spacecraft can be provi-
sioned and imprinted in a contact plan comprising informa-

tion on the forthcoming connectivity. Based on the contact
plan, routes with optimal delivery time can be computed on-
demand on each node [15].

However, the state-of-the-art on CGR routing is limited
in compute time scalability and stability. On the one hand,
related research has shown that CGR scales beyond practi-
cal use with the number of nodes and contacts in the con-
tact plan [31]. This forbids the conception of a large-scale
fleet of nodes equipped with constrained onboard computers
(lack of air impedes heat dissipation, which forces running
under-clocked processors). On the other hand, the comput-
ing effort to determine routes toward different destinations
highly depends on the topology and when the route is de-
manded. Therefore, route computation time unpredictably
deviates from the average during the mission, complicating
spacecraft resources’ overall scheduling and operation.

To overcome these CGR issues, the present work inves-
tigates supervised Machine Learning (ML) approaches as
a solution to capture the routing intelligence in a model
trained on the ground. The underlying hypothesis is that
route determination time on board will be shielded from the
contact plan size, thus delivering a close-to-optimal path in
bounded and stable time frames. To achieve this goal, we
leverage Graph Neural Networks (GNNs), which perfectly
fit CGR data models based on graph-structured data with
sparse contact elements and uneven relationships. Our solu-
tion is coined GAUSS: graph neural networks-based routing
for scalable delay-tolerant space networks 1 While previous
works have approached routing in space DTNs with diverse
ML techniques [8–10, 12, 20–23, 27, 32], to the best of our
knowledge, this is the first to focus on the scalability and sta-
bility of the on-board routing computation effort. We eval-
uate GAUSS’ scalability and stability in realistic near-Earth
and cislunar DTN topologies.

The remainder of this paper is organized as follows. Sec-
tion 2 revises related works in the area of DTN, ML, and
GNNs. The GAUSS model is presented in Section 3. Sec-
tion 4 discusses evaluation outcomes from realistic scenar-
ios. Conclusions are summarized in Section 5.

1Code available in https://github.com/matiolmedo/GAUSS-Code



2 Background
2.1 Space DTNs

The DTN term was first introduced in [3] to identify com-
munication networks that cannot provide continuous (e.g.,
persistent) end-to-end communications. In other words,
Internet-like multi-hop paths characterized by low and sta-
ble latency, low error rates, and high/symmetrical bandwidth
cannot be assumed. In addition to satellite communication
networks, DTN has many other applications, such as the In-
ternet of Things, Vehicular Ad-Hoc Networks, Submarine
Networks, and Mobile Social Networks.

The core approach in DTN is to allow data to be tem-
porarily stored in relay nodes and forward it in a store-carry-
and-forward fashion exploiting different degrees of contact
predictability. In the DTN architecture specification [30], a
contact is defined as a period in which two nodes that belong
to the network can exchange data between them. In turn,
contacts are classified as (i) opportunistic: no assumptions
can be made about future contacts, (ii) probabilistic: contact
patterns can be inferred from history (e.g., social media), and
(iii) scheduled: contacts can be accurately predicted and doc-
umented in a contact plan.

Space and satellite network systems are governed by pre-
dictable orbital mechanics, which makes them a perfect fit
for DTNs with scheduled contacts. Space networks are clas-
sified into a) deep space networks and b) near-Earth net-
works. Deep space networks span rovers, orbiters, and
probes in beyond-Lunar space, where the signal propaga-
tion delay is the dominant effect, combined with link outages
provoked by planetary occlusion. Networks in near-Earth
environments comprise satellites in low, medium, and geo-
stationary Earth orbits (LEO, MEO, and GEO satellites, re-
spectively) where link disruptions due to range/line-of-sight
constraints are frequent. However, the propagation delay
is negligible in near-Earth systems, as discussed in [5–7].
Note that this paper focuses on sparse near-Earth networks
(reduced amount of spacecraft with significant connectivity
gaps) and not mega-constellations (hundreds or thousands of
satellites with persistent end-to-end paths). The reader is re-
ferred to [17] for a sharper definition of sparse and dense
near-Earth constellations.

2.2 DTN Protocols and Routing
The DTN architecture can be implemented through the

Bundle Protocol [26]. The Bundle Protocol adds a “Bun-
dle layer” above the transport layer and below the appli-
cation layer. The layer offers persistent storage of bun-
dles (the DTN protocol data unit) to overcome network out-
ages. Devices implementing the Bundle protocol are called
DTN Nodes. Routing in DTN implies the determination of
routes with a specific time dimension, i.e., valid within a spe-
cific time interval. Flooding-based approaches, such as Epi-
demic and Spray-and-wait [28], exploit replication over op-
portunistic contacts. Probabilistic contact approaches, such
as Prophet [24], incorporate abstract topology models to re-
duce replication and improve delivery metrics. However, the
computation of more precise time-dynamic aspects is facil-
itated in scheduled DTNs using the so-called contact plan,
which includes the forthcoming network connectivity [16].

Graph-based algorithms, such as Contact Graph Rout-
ing (CGR), stand out since they have been able to demon-
strate precision (no replication) and efficiency (lowest de-
livery time) in the routing task for space DTNs. CGR was
introduced in [3]. Later work proposed using Dijkstra and
Yen’s algorithm to compute route tables with the K-best
routes [18], the approach currently supported by the Inter-
planetary Overlay Network (ION) DTN stack developed by
NASA [2]. The core challenge of the current CGR is its
scalability. As discussed in [31], CGR computational com-
plexity grows significantly with the number of contacts in
the contact plan, where large-scale networks are practically
unfeasible. On top of this, routes are only valid for a given
period on which the next-hop node is the best neighbor to
forward a bundle to a given destination. Also, route data vol-
ume can be booked by local or remote traffic, which demands
the utilization of alternative paths [15]. This means multiple
routes must be computed frequently on resource-constrained
onboard computers.

2.3 Routing on DTN with ML
Several algorithms for routing in DTNs based on different

ML techniques and learning strategies have been proposed.
Q-Routing [10, 13, 22] and Q-Learning [21, 32] are the

most prominent approaches using reinforcement learning.
In this context, the model interacts with a scenario to dis-
cover how to maximize specific metrics, typically the end-
to-end packet delivery time. Deep Q-Learning [4,9,12], a Q-
Learning extension based on deep neural networks, increase
the generalization capability of this kind of model. Although
not explicit in all cases, Q-routing models assume a learning
phase. Learning can occur on-ground using simulated en-
vironments before deploying the resulting parameters to the
space network.

There exist multiple DTN routing approaches using ML
techniques in the context of supervised learning, as Decision
Trees [8, 11, 25, 27] and Neural Networks [20, 23]. These
works consider routing a classification problem, aiming to
predict the best neighbor node to be used as the next hop
according to specific metrics (e.g., buffer occupation, suc-
cessful deliveries, node speed/power, distances, current hop
count, message lifetime, etc.). Also, supervised ML models
are trained on the ground and then provisioned to the space-
craft. In general, mentioned ML-based routing approaches
did not exploit the graph-based structure of the contact plan
and were not designed to improve the scalability and stability
of the onboard route computation processes.

2.4 Graph Neural Networks
Graph Neural Networks (GNN) are powerful machine

learning models with a strong inductive bias [1] that allow
the processing of graph-structured data. GNNs are best suit-
able when the problem domain includes sparse elements and
uneven relationships between them. In contrast to other
models devoted to linear or homogeneous structured data,
like Multi-Layer Perceptrons (MLP), Recurrent Neural Net-
works (RNN), or Convolutional Neural Networks (CNN),
GNNs explicitly use the heterogeneous structure of data dur-
ing learning. Over the years, different approaches have been
presented, such as Graph Convolutional Networks (GCN),



Graph Attention Networks (GAT), and Graph Recurrent Net-
works (GRN), among others. They have proven to solve
tasks effectively, including rich relational structure in vari-
ous domains, and to use different learning strategies. We
refer to [1] for a comprehensive review of models and appli-
cations.

In 2017, Gilmer et al. introduced a general framework
called Message-Passing Neural Network (MPNN) [19],
which unifies most of the previous approaches into a stan-
dard setting. In the most basic operation of a GNN, an ini-
tial state is associated with every graph element (nodes and
edges) using input information. Then, each element state
is iteratively updated, combining the previous state and the
previous state of related elements according to the graph
structure. In the end, the final states of graph elements
are used by a domain-specific function to produce the out-
put for the given task. MPNNs use an iterative message-
passing algorithm to propagate information between nodes.
In each message-passing step t, a node v receives mes-
sages from every node w in its neighborhood (N(v)). Mes-
sages are constructed using the paired nodes states ht

v and
ht

w, the state of the edge between them et
vw, and a shared

function Mt . These parameters are thus combined by us-
ing an invariant to permutations aggregation function

⊙
:

mt+1
v =

⊙
w∈N(v) Mt(ht

v,h
t
w,e

t
vw). The state of v is updated by

using the previous state ht
v, aggregated messages mt+1

v and
a shared update function U t : ht+1

v = U t(ht
v,m

t+1
v ) where Mt

and U t , which are specific for each iteration t, are learned
differentiable functions, typically MLPs. The fact that all
the nodes in a graph share these functions is the key factor
that enables us to keep the model size tractable. It also al-
lows using the same model to process graphs with different
structures and numbers of nodes. After a certain number of
iterations, the output (ranging from a single value to a graph
with node and edge attributes) is computed using a so-called
readout function, usually an MLP, predicting the given task.

Later, in the aforementioned work [1], Battaglia et al.
presents a comprehensive study about inductive biases on
deep learning and introduces a broader framework called
Graph Networks (GN) “for relational reasoning over graph-
structured representations”. In this setting, the primary
component is the Graph Network block, which takes a graph
as input and returns an updated version. Typically, GN
blocks are stacked sequentially, resembling the iterative pro-
cessing of MPNNs. However, the GN framework is more
general than the MPNN since it provides mechanisms for
updating nodes, edge states, and a global state. In its more
general form, a GN block comprises three update functions
φe, φv, φu for edges, nodes, and global state, respectively,
given by the following equations:

e′k = φ
e(ek,vrk ,vsk ,u)

v′i = φ
v(ē′i,vi,u)

u′ = φ
u(ē′, v̄′,u)

where

ē′i = ρ
e→v(E ′i )

ē′ = ρ
e→u(E ′)

v̄′ = ρ
v→u(V ′)

(1)

Block processing starts updating edge attributes. For a
given edge k from source node sk to receiving node rk, its
updated attributes e′k are computed using update function φe

taking as inputs its previous attributes ek, receiving node at-

Figure 1: GAUSS graph

tributes vrk , source node attributes vsk and global state at-
tributes u.

Node updating depends on aggregating edges attributes
updated in the previous step. For a given node i, ē′i is com-
puted by an aggregation function ρe→v applied to the set of
attributes of incident edges having i as receiving node, de-
noted by E ′i . The updated attributes for i, namely v′i, are
computed using the update function φv taking as inputs ē′i,
its previous attributes vi and the global state attributes u.

The updating of the global state depends on the aggregat-
ing edge and node attributes, both updated in the previous
steps. The update function φu computes the updated global
state attributes u′ by using, as input, the aggregated attributes
of every edge ē′, the aggregated attributes of every node v̄′
and the previous global state attributes u.

A general GN block is depicted in Figure 2 (a), where
V denotes the set of nodes (attributes), E the set of edges
(attributes), u the global state (attributes) and V ′, E ′, u′ the
updated versions of them. A GN block can be configured
to achieve different goals. Excluding one or more updat-
ing functions or even discarding some function inputs allow
the block to focus on specific elements of the graph, as de-
picted in Figure 2 (b) and (c). Combining differently con-
figured blocks gives rise to diverse architectures to process
graphs and predict local properties of edges and nodes or
even global properties of the complete graph. This flexibil-
ity makes GN the most general framework for constructing
neural network models over graph-structured data.

In the following section, we propose a GN-based model
to improve the computational tractability of CGR.
3 GAUSS
3.1 GAUSS Graph Model

In GAUSS, a graph represents a transmission demand
from a given source node to a certain destination node in
a delay-tolerant network composed of satellites and ground
stations, with intermittent directed communication links be-
tween each other during a certain period. More precisely,
a directed multigraph G = ⟨V,E⟩ with V ∈ N→ Rk2 an in-
dexed set of attributed vertices representing DTN nodes (ver-
tices and nodes are henceforth used interchangeably) and
E ∈N→Rl×dom(V )×dom(V ) an indexed set of attributed
edges representing time-bounded contacts between the DTN
nodes (edges and contacts are henceforth used interchange-
ably). Multiple edges between a pair of vertices could ex-

2N denotes the set of natural numbers, Rn the n dimensional Cartesian
product of real numbers,→ the set of partial functions and dom( f ) the do-
main of function f .



(a) (b) (c)

Figure 2: (a) Full block, (b) Encoder/decoder block, (c) Core block.

Figure 3: GAUSS Processing Pipeline

ist since two DTN nodes can experience several contacts
throughout the considered period of time. Edges are directed
since space communications are often limited and not neces-
sarily bidirectional or symmetric.

Figure 1 illustrates a GAUSS graph. vi denotes the at-
tributes of the node with index i (i.e., V (i) = vi) and ek the at-
tributes of the edge with index k, whose sending and receiv-
ing node indexes are denoted by sk and rk, respectively (i.e.,
E(k) = (ek,rk,sk)). In the case of input graphs, attributes of
vertices are 2-dimensional vectors containing a one-hot cod-
ification that indicates which node is the sender ([0,1]) and
which is the receiver ([1,0]). Every other node is initialized
with [0,0]. Edge attributes are also 2-dimensional vectors
containing the start and end times of the contact ([tstart , tend ])
codified as time units since the beginning of the considered
period, which is assumed to initiate with the start of the de-
mand. Output graphs represent the path through contacts and
nodes which route the demand. Vertex and edge attributes
are 2-dimensional vectors containing a score of the chance
the element is member of the solution path (first component)
or not (second component). Thus, ground truth graphs an-
notate nodes and edges using one-hot encoding, where [1,0]
codifies that the element is part of the solution and [0,1] oth-
erwise.

As usual, inner graphs occurring in intermediate com-
putation steps use higher dimensional vectors as attributes,
providing the model with enough features to allow effective
training. In the experiments, 16-dimensional vectors were
sufficient for both edges and nodes.

3.2 GAUSS Architecture
GAUSS uses an encode-process-decode pipeline architec-

ture, as illustrated in Figure 3. Recalling equations 1, GN
block configuration is described below. It is worth noting
that the global state is not used in this version of GAUSS.

Encoder block transforms edge and node attributes of the
input graph into a higher dimensional latent representation
without taking into account any relationship between ele-
ments, as illustrated in Figure 2 (b). This is accomplished
by both 2-layer MLP according to the following equations:
e′k = MLPe(ek), v′i = MLPv(vi).

Table 1: Near-Earth Scenario Parameters

Type of Orbits Circular
Inclination 53°
Propagator TwoBody
Maximum range constraint 2500 Km
Ground Station (CETT, Argentina) Lat: -31.525, Lon: -64.462
Constrain of minimum elevation in GS 5°
Number of messages (Train, Test, Eval) 10240, 5120, 5000
Period for Train, Test, Eval [hrs] 0 - 96, 96 - 192, 96 - 192

Scenario LEO A LEO B LEO C LEO D
Orbital planes 2 2 4 3
Sats. per plane 12 16 16 24

Orbital height 400, 400, 400, 400, 450
500 Km 500 Km 500 Km 500 Km

∆ True anomaly 60 20 90 20
Constellation Ring Train Ring Train

Core block performs the main processing over a loop of
N iterations (we consider N = 5), receiving as input a graph
with element attributes resulting from concatenating the En-
coder output and previous iteration output of the block it-
self. This reinforces the original input information in each
processing step, improving the network’s training. Update
functions are implemented as both 2-layers MLP and edge
aggregation function as a point-wise summation, accord-
ing to the following equations: e′k = MLPe([ek,vrk ,vsk ]) and
v′i = MLPv([r̄′i, s̄′i,vi]). where R′i = {(e,r,s) ∈ E ′ s.t. r = i}
is the set of edges to node i, S′i = {(e,r,s) ∈ E ′ s.t. s = i} is
the set of edges from node i, E ′ is the updated set of edges,
and [ ] denotes vector concatenation. MLPs are shared across
iterations.

Decoder block is configured analogously to Encoder
block but using both MLP with an extra final layer to de-
crease the attributes dimensionality to produce the expected
output.
3.3 GAUSS Dataset Synthesis

We synthesize datasets from four near-Earth scenarios
and four realistic topologies of Lunar networks.

Near-Earth Scenarios Specifications for the Near-Earth
case are summarized in Table 1. Each scenario consists of up
to 40 satellites and 1 ground station and lasts for 192 hours.
The orbital dynamic on the sparse constellation forces spo-
radic inter-satellite link (ISL) opportunities. As a result, data
must flow in a store-carry-and-forward fashion from satellite
to satellite and finally to the ground station. We derive con-



tact plans leveraging the Two Body orbital propagator to de-
termine the time-evolving position of spacecraft, taking into
account the initial orbital parameters, gravitational forces, at-
mospheric drag, and solar pressure (obtained from publicly
available Two-Line Elements (TLE) files), and a 2,500 km
slant range constraint for visibility condition.

For each near-Earth scenario, during the first 96 hours of
its contact plan, we simulate 10,240 transmission demands
which compose its training dataset. Each demand is gener-
ated considering a satellite as the source node and a start time
that is randomly chosen from a uniform distribution. Without
loss of generality, we assume downlink traffic. Therefore,
the destination node is always the ground station. The de-
mand is instantiated as an input graph considering the slice
of the contact plan beginning at its start time and having a
duration limited by a parameter twin. This parameter limits
and homogenizes the time window in which the model looks
for a routing solution. The ground truth is generated by com-
puting the best route obtained using the CGR algorithm. The
demand is discarded if it is impossible to get a solution due
to the time constraint. Using the same procedure described
above, we consider the last 96 hours of the contact plan to
simulate 5,000 demands which compose the testing dataset
for the scenario. In this case, we limit the start time up to the
contact plan end time minus twin to give time to the demands
to reach the destination.

Cislunar Scenarios
To study the application of GAUSS on deep space DTNs,

we also consider the Lunar network topology presented
in [14]. The goal of this scenario is for satellites in Lunar
orbit to collect data from sensors deployed on the opposite
side of the Moon. Since no direct-to-Earth communication is
possible, data is stored temporarily in orbiting satellites until
a link becomes available. However, since satellites are con-
sidered resource-constrained, dedicated Moon stations (on
the visible side of the Moon’s surface and equipped with
solar panels) act as relay nodes. We define two scenarios
(Moon A and Moon B, corresponding to scenarios S1 and
S2 from [14]), each enabling a subset of 4 out of the 6 Moon
ground stations. Furthermore, for four scenarios, we con-
sider Moon A and B with and without ISLs between the Lu-
nar orbiters. Please refer to [14] for the full scenario param-
eters. We obtain the contact plans from this scenario using
a Lunar Two-Body propagator (Lunar orbits are deployed in
stable inclinations [14]). The slant range for communica-
tions between Lunar orbiters and surface nodes is assumed
2000 km. Links from the Lunar station to Earth are consid-
ered persistent thanks to using NASA’s Deep Space Network
(DSN) antennas. For each of the four scenarios, we simu-
late 14 days of connectivity. The first 7 days are used as the
training dataset, while the second 7 days are for the testing
dataset. Traffic demands are generated from the Moon sen-
sors towards the ground (any of the three DSN nodes), lever-
aging a uniform distribution for the generation time. The twin
parameter limiting traffic generation is 4.5 days.

3.4 GAUSS Training
We train a different GAUSS model for each scenario us-

ing its training dataset. The training dataset is labeled with

the optimal CGR routing outcome, computed on the ground
in advance. Thus, the GNN model shall capture CGR deci-
sions, including its most advanced features, such as conges-
tion mitigation and optimal route selection. The parameters
of the trained model are then provisioned to the space nodes.

We are only interested in evaluating how a particular
trained model generalizes with respect to routing demands
along the predicted evolution of the scenario contact plan,
in which only minor changes in the underlying topology are
expected. Recall that input graphs contain only a slice of
the contact plan; therefore, they typically differ in the occur-
rence of edges. But a model could even deal satisfactorily
with changes in the occurrence of nodes. This flexibility is
an intrinsic property of GNN models.

However, we do not consider it necessary to have a sin-
gle trained model to account for scenarios with substantially
different topologies. In the scenarios we are interested in,
it is reasonable to train a model fitting a particular topol-
ogy and traffic demand, providing better input performance
according to the given topology context. In space networks,
significant changes in an application scenario topology occur
in specific situations and with relative foresight (e.g., space-
craft maneuver, satellite de-orbit, etc.). They could be dealt
with by re-training the model and re-provisioning it in the
routing components. From a concept of operations perspec-
tive, a GAUSS model can be updated periodically, just like a
contact plan for a CGR-based system.

We train GAUSS under a supervised learning paradigm,
aiming to learn the optimal weights of the block update func-
tions that minimize the loss function defined as: L = ξ(∀v ∈
V ) +ξ(∀e ∈ E) where ξ is the Softmax Cross Entropy func-
tion. The training process uses the Adam stochastic gradi-
ent descent and back-propagation and is terminated after 62
epochs. The batch size is set to 32 and the learning rate to
0.001. Non-linearity is introduced in every MLP by using
Rectified Linear Unit as the activation function.

The training processes of the different GAUSS models
took different computational efforts depending on the sce-
nario used. The hardware used to obtain these values was an
Intel i7 processor with 32 GB of RAM running an Ubuntu
20.04.2 LTS OS. For scenarios in Low Earth Orbit (LEO),
the training times range from 8 hours for LEO A to 25 hours
for LEO D. Moving on to scenarios involving the Moon, the
training times increase significantly. For example, Moon A
requires 18 hours of training, while Moon A ISL (Integrated
Surface and Lunar) takes 24 hours. The training time further
escalates for Moon B, with a duration of 49 hours, and Moon
B ISL demanding the longest training time of 72 hours.
3.5 GAUSS Post-Processing

For a transmission demand at a source node, we use the
output graph obtained from GAUSS to obtain the route to
the destination node by using the following approach with
almost constant computing cost. This is relevant as GAUSS
route determination occurs onboard the satellites. Start-
ing from the source node, the route is computed iteratively,
choosing the contact with the higher membership score un-
til reaching the destination. Algorithm 1 is applied to the
output graph to obtain the best route [R] for a given source-
destination (vsrc,vdst ) pair. The algorithm explores the graph



starting from vsrc where the highest probability outgoing
edge ep is chosen. The next hop at the other end of ep is
now the current vertex vcurr, and the edge is added to [R].
The algorithm finishes with the complete end-to-end route
encoded in [R].

Algorithm 1: Best Route Determination
input: vsrc, vdst , Output graph
begin

[R]← []
vcurr ← vsrc
while CurrentNode ̸= vdst do

ep ← outgoing vcurr edge with highest prob.
vcurr ← ep.dst
[R].append(ep)

end
return: [R]

end

4 Evaluation
To evaluate the resulting algorithm performance, we study

its Efficiency: the resources consumed to execute the rout-
ing routine (metric is the onboard computation time) and its
Efficacy: the network performance metrics achieved by the
routing scheme (metrics are packet arrival time and delivery
ratio). In terms of these metrics, we compare the following
routing approaches: (i) GAUSS: the proposed GNN-based
routing scheme; (ii) CGR: the network performance base-
line providing optimum delivery times, and (iii) Direct: the
resource utilization baseline that forwards the demand from
source to destination nodes by using the first direct contact
between them (demands nearly zero computing effort). Note
that we do not measure direct forwarding metrics in the Cis-
lunar case since Moon nodes are on the opposite side of the
Moon. In this case, no direct link is feasible. Thus, deliv-
ery time is infinite, and the delivery ratio is zero. It is worth
mentioning that both GAUSS and Direct can fail to find a
path to the destination, even when one is available. This will
become evident in the delivery ratio metric. However, we de-
sign the LEO scenario contact plans to ensure direct contact
between any pair of nodes, minimizing the possibility that

Table 2: Efficacy results. Arrival times for near-Earth and
cislunar scenarios

LEO Scenario A B C D

CGR Max [min] 709.9 718.9 527.9 484.2
Mean [min] 200.2 136.0 121.0 82.5

GAUSS Max [min] 719.9 719.9 718.8 719.8
Mean [min] 278.6 248.8 232.8 265.3

Direct Max [min] 905.3 889.8 890.4 897.4
Mean [min] 291.3 289.3 298.3 294.0

Moon Scenario A A ISL B B ISL

CGR Max [min] 1.8 1.8 1.8 1.8
Mean [min] 0.3 0.3 0.3 0.3

GAUSS Max [min] 1.9 1.9 1.9 1.9
Mean [min] 0.8 0.3 0.4 1.4

Direct fails. As mentioned, this is not possible in the Cislu-
nar scenario. This feature and the cyclical nature of scenarios
lead to no significant difference in the number of unsatisfied
demands using each method.

4.1 Analysis
We evaluate the three approaches mentioned over each

near-Earth and Cislunar scenario’s testing dataset. For the
efficiency results, we summarize the processing effort in
Fig. 4, presenting histograms of the distribution of transmis-
sion demands concerning the time required to compute their
routes onboard. Regarding efficacy results, the maximum
and average packet arrival times for the Near-Earth and Cis-
lunar scenarios are provided in Table 2. Fig. 5 blends the
two former analyses by presenting the overall arrival time
and delivery ratio. The average onboard processing time is
also plotted to visualize the resulting efficiency and efficacy
trade-off. We analyze each of these results in the following
subsections.

4.1.1 Efficiency
Processing times listed in Fig. 4 were computed using an

Intel i7 processor with 32 GB of RAM running an Ubuntu
20.04.2 LTS OS. Measurements clearly show that as the sce-
nario complexity, i.e., the amount of nodes and contacts, in-
creases, so does the time required to compute valid routes.
However, the growth rate is much higher for CGR than for
GAUSS. For instance, CGR takes 1.9 ms on average to de-
liver a route in scenario LEO A, while GAUSS is slower, tak-
ing 6 ms. However, as the topology becomes more extensive,
as in scenario LEO D, CGR demands up to 1.2 s of comput-
ing time, while GAUSS delivers in half the time in the worst
case. The trend is replicated and exacerbated in the cislunar
scenarios, where GAUSS consistently delivers a route much
faster than the CGR counterpart. Indeed, in Moon A and B
with ISL (most extensive contact plans), we observed CGR
calls requiring up to 2.5 and 2.7 seconds to complete, while
GAUSS worst-case was 1.2 and 1.3 seconds. We also regis-
ter that the Direct approach delivers the single-hop route im-
mediately (1 ms). This is only valid for the Near-Earth sce-
narios. Of course, Direct is the best performing in terms of
processing time. Still, it fails to find suitable paths in larger
topologies where multi-hop is the only alternative to succeed
in reaching a destination.

Regarding compute effort stability, CGR becomes more
unpredictable and unstable in the expanded scenario LEO
D, indicated by a flatter histogram with up to 1.1 seconds
spread. On the contrary, GAUSS offers a more stable com-
puting time (0.7 seconds spread), a fundamental feature for
most space missions with tight operational constraints. This
effect is also present in the cislunar cases, where the min/max
spread of onboard routing effort is at the most 1.2 sec-
onds for GAUSS but up to 2.7 seconds for CGR. Besides
the min/max, the histograms in Fig. 4 clearly indicate that
GAUSS compute time variability is significantly lower than
CGR. This is confirmed by the standard variation metric in-
dicated in the plots, which evidences that GAUSS onboard
processing time is consistently closer to the mean than CGR.
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Figure 4: Efficiency results. Onboard routing processing times for Near-Earth (top) and Cislunar (bottom) scenarios.

4.1.2 Efficacy
It is fair to note that GAUSS’s better computational ef-

fort profile comes at the expense of decreased efficacy. As
listed in Table 2, and plotted in Fig. 5, the average deliv-
ery time of CGR is better, but the improvement increases
as the contact plan grows. While in LEO A, the difference
is minimal (3.3 seconds vs. 4.6 seconds), the trend deep-
ens noticeably in scenario LEO D, where CGR is three times
more efficient in promptly delivering data (4.9 seconds vs.
15.9 seconds). However, GAUSS still performs better than
the Direct baseline, especially in scenario LEO C, where
GAUSS is one-third times faster. The trend is less evident
in the cislunar scenarios. Fig. 5 shows that GAUSS can
keep up with CGR delivery time metrics for Moon A ISL
and Moon B (approx. 20 seconds delivery time). However,
GAUSS struggles to sustain metrics similar to CGR in sce-
narios Moon A and Moon B ISL (twice and four times worse
than CGR). Nevertheless, note that it is in these cislunar sce-
narios where GAUSS processing gain was the highest, ev-
idencing the efficiency-efficacy trade-off. Fig. 5 provides
further insights into the analysis regarding the delivery ra-
tio. This metric indicates the proportion of packets that were
delivered to the destination. By observing this plot, the draw-
back of the Direct approach becomes evident in the cislunar
scenarios, where topology partition forbids the existence of
direct single-hop paths. Furthermore, the delivery ratio mea-
sures the end-to-end routes that GAUSS could not discover
during training and inference.
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Figure 5: Efficacy results. Arrival time (top), delivery ratio
(middle), and Processing time (bottom) for all scenarios.



As a wrap-up of the analysis, we have confirmed that
GAUSS offers a new routing alternative for space DTNs with
an appealing trade-off between resource efficiency and net-
work performance. Specifically, GAUSS offers a scalable
and stable routing solution from the processing perspective.
Larger topologies can be accommodated while keeping the
onboard variability for the routing compute routing. Because
of these substantial advantages, GAUSS can become an at-
tractive alternative to state-of-the-art CGR for space mis-
sions where processing effort must be reduced and stable.
Of course, the approach is penalized with sub-optimal data
delivery metrics. In any case, and supported by the evidence
of scenarios Moon A ISL and Moon B, we believe there is
room for fine-tuning the GAUSS model to fit specific space
networks so that the delivery time can compete with CGR.
This is left as an attractive future research direction.
5 Conclusions

In a context where space missions are growing in number
and size, designing scalable and stable routing mechanisms
with practical considerations is of primary importance. Sup-
ported by the latest advances in GNNs, we have developed
GAUSS, a novel approach to route data flows in spaceborne
DTNs. Evaluation results over realistic near-Earth space
topologies and Lunar networks showed that onboard com-
pute time can be reduced by half while reducing the effort
variability spread to one-third. Because of this, we claim
GAUSS will become an attractive candidate for resource-
constrained space missions requiring consistent computing
times to facilitate operations. In these cases, GAUSS out-
weighs the arrival time penalty when compared to the op-
timal routing alternative offered by CGR. Future work in-
cludes refining and improving the GAUSS model to bring
network metrics closer to CGR. We also plan to imple-
ment prototypes in open-source DTN stacks like ION and
µD3TN.
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