
Transparent Handover of Automated Drone Missions
between Edge-based Control Stations

Theodoros Aslanidis
School of Computer Science

University College Dublin
theodoros.aslanidis@ucdconnect.ie

Manos Koutsoubelias and Spyros Lalis
Electrical and Computer Engineering Department

University of Thessaly
{emkouts, lalis}@uth.gr

Abstract
Drones are an attractive platform for carrying sen-

sor/actuator payloads for different civilian applications.
Thanks to modern autopilots, it is now possible to run mis-
sions in a fully automated way, using suitable mission con-
trol programs. To minimize latency, such programs can run
at the edge and have direct wireless connectivity with the
drone. However, edge machines can have a limited wire-
less range, which may not suffice to support the mission at
hand. To address this problem, we propose a protocol and
algorithm for the transparent handover of mission execution
between different edge-based mission controller stations that
collectively cover the full mission area. We provide a de-
tailed description of the proposed protocol. We also discuss
a prototype implementation and evaluate its performance us-
ing a realistic testbed, showing that the protocol overhead is
sufficiently small to support a wide range of applications.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems;

I.2.9 [Robotics]: Autonomous vehicles; J.7 [Computers in
Other Systems]: Command and Control

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Drones, Mission control, Automated mission execution,

Ground control stations, Control handover, Edge computing

1 Introduction
Drones are used in an ever-increasing number of applica-

tions, such as smart cities [13], smart agriculture [10], and
surveillance [15]. The cornerstone of this wide usage are
modern autopilots, which handle complex flight control tasks
while offering high-level commands to users. In fact, efforts

are made to fully automate mission execution through suit-
able programming abstractions and middleware [3, 5, 8].

Such software typically relies on some telemetry protocol
in order to receive status information and send commands to
the drone. The general assumption is that the control station
has a stable and fast wireless link to the drone. However,
this may not hold if the drone needs to travel long distances.
While 5G could provide a solution, the deployment of the
required infrastructure is still ongoing, and certain regions
may never have good connectivity. Also, satellite links are
typically too expensive for low-budget systems.

To address the problem, one can exploit edge computing
by deploying the mission controller on several edge nodes
placed at different locations, so that the mission can be exe-
cuted without any periods of disconnection. However, a suit-
able mechanism is required to implement the required han-
dover between the mission controllers.

In this paper, we propose such a solution. The main con-
tributions are as follows: (i) We propose a distributed proto-
col for the transparent handover of mission control between
edge-based controllers. (ii) We provide a detailed, structured
description of the protocol. (iii) We evaluate the performance
of the proposed approach using a prototype implementation
in a realistic testbed. Notably, our mechanism is orthogonal
to the policy used to trigger such handovers. The investiga-
tion of handover policies is beyond the scope of this paper.

The rest of the paper is structured as follows. Section 2
presents the system model and proposed approach. Section 3
describes the handover protocol, while Section 4 provides a
model for estimating the worst-case delay. Section 5 presents
the evaluation. Section 6 discusses related work. Section 7
concludes the paper.

2 System Model & Approach
We assume drones with onboard navigation and obstacle-

avoidance capability, where critical real-time control opera-
tions are executed locally by an autopilot system. The high-
level coordination of the mission is performed by a sepa-
rate entity, the mission controller, which collects information
from the drone, takes decisions, and sends commands.

The actual mission logic is given in the form of a program,
which invokes the services provided by the drone through a
remote API. As illustrated in Figure 1, the mission program
runs in the mission controller on top of middleware, which
performs these invocations under the hood through a request-

Figure 1. Software architecture.

reply protocol. On the drone side, the middleware intercepts
such requests, invokes the local service, and sends the result
back to the controller as a reply. The middleware recognizes
duplicate requests to avoid performing the same invocation
more than once. If a request has already been serviced, the
produced result is sent again to the mission controller.

To cover larger geographical areas, one may run the mis-
sion controller logic on multiple edge nodes, picked so as to
have uninterrupted connectivity with the drone during the en-
tire mission, in the spirit of Figure 2. The requirement is for
at least one node to be able to communicate with the drone
at any point in time, but in the general case, several nodes
may be able to communicate with the drone at the same time.
The drone picks the controller deemed most suitable for the
smooth execution of the mission, e.g., the one that is closer
to its current position. We refer to the selected mission con-
troller as the “master”. When the drone decides to switch
controllers, it informs the current master to perform a han-
dover and accepts requests only from the new master.

In order to support such a handover of mission execution,
we propose a protocol between the mission controllers (Sec-
tion 3). The approach is transparent for the mission program,
which has the illusion of running on top of a single mission
controller with stable connectivity to the drone during the
entire mission. The approach is also (largely) transparent for
the drone-side middleware. The only change is to reject re-
quests from a mission controller if this is not the selected
master. Notably, the proposed approach is designed for de-
terministic mission programs, which take decisions based on
information that is received via service invocations through
the mission controller environment.
3 Handover Protocol

We assume that N edge nodes are selected to host the in-
stances of the mission controller ni, 0 ≤ i ≤ N− 1, so as to
cover the entire path of the drone for the mission at hand. We
arrange the controllers in a directed ring overlay, illustrated
in Figure 2. Initially, the role of the master is assigned to
the controller on the node closest to the point from where the
drone takes off to start its mission, let this be n0. The drone
knows the location of the edge nodes, their communication
range, and the initial assignment of the master role.

During execution, the master controller logs the invoca-
tions that have been performed between the mission program
and the drone. The log is periodically flushed and circulated

Figure 2. Multiple controllers for increased coverage.

along a ring, allowing all other controllers to fast-forward
their execution concurrently to the actual execution. The ring
topology is chosen so that the master controller only needs
to perform 1 instead of N−1 log transmissions.

An algorithmic description of the handover protocol be-
tween the controllers, in conjunction with the handling of
the drone invocations that are performed by the mission pro-
gram, is given in Algorithm 1. For a more structured illus-
tration, the logic is presented in an event-oriented manner.

Initially, each controller receives as parameters its own
identifier, the number of controllers, and the log flush limit.
Based on its identifier, the controller decides if it is the cur-
rent master, setting its state to ACTIVE or PASSIVE accord-
ingly. If ACTIVE, the controller establishes a wireless trans-
port connection to the drone, used to invoke its services1.

When the mission program invokes a service and the con-
troller is in the ACTIVE state, the controller performs the
request-reply interaction with the drone, writes the request
sequence number (variable reqnr in Algorithm 1) and the
received reply in the log, and increases the sequence num-
ber. Before returning the reply to the mission program, it is
checked whether the log has reached the flush limit, in which
case the log is sent to the next controller in the ring with the
handover flag set to false (blue arrow in Figure 2). Note that
the transmission of the log message can be performed con-
currently with the execution of the mission program.

If the drone triggers a handover2, the mission controller
sets its state to PASSIVE and its master flag to false. Then,
the log is sent directly to the new master with the handover
flag set to true (orange arrow in Figure 2). When a controller
receives a log message that does not concern a handover, it
forwards it to the next controller in the ring (unless it has
completed the circle). If the message arrives in proper order

1Depending on the implementation, the mission controller may be able
to perform invocations without the prior establishment of a connection. Still,
for reasons of generality, here we assume that a connection is needed before
invoking the services of the drone.

2The mission controller may receive a handover message while waiting
for a reply to a previously sent request. In this case, too, the handover
message is handled as usual. To focus on the essence, this exception is not
shown in Algorithm 1.

Algorithm 1 Mission execution and handover algorithm.
1: upon initialization for id,N, f lush do
2: reqnr, lognr← 0,0
3: log, logQ← /0, /0

4: prvid,nxtid← (id−1) mod N,(id +1) mod N
5: if id = 0 then
6: state,master← ACT IV E, true
7: connectToDrone()
8: else
9: state,master← PASSIV E, f alse

10: end if
11: end

12: upon invocation req when state = ACT IV E do
13: sendDrone(⟨REQUEST, id,reqnr+1,req⟩)
14: recvDrone(⟨REPLY,rpl⟩)
15: append(log,reqnr+1,rpl)
16: reqnr← reqnr+1
17: if size(log)≥ f lush then
18: lognr← lognr+1
19: send(nxtid,⟨LOG, lognr, id, log, f alse⟩)
20: log← /0

21: end if
22: return rpl to mission program
23: end

24: upon recvDrone(⟨HANDOV ER,mid⟩) do
25: state,master← PASSIV E, f alse
26: lognr← lognr+1
27: sendLog(mid,⟨LOG, lognr,mid, log, true⟩)
28: log← /0

29: end

30: upon recvLog(⟨LOG,mlognr,mid,mlog,handover⟩) do
31: if handover∨mid ̸= nxtid then
32: sendLog(nxtid,⟨LOG,mlognr,mid,mlog, f alse⟩)
33: end if
34: if mlognr = lognr+1 ∧ state = PASSIV E then
35: lognr← mlognr
36: log← mlog
37: master← handover
38: if master∧ log = /0 then
39: state = ACT IV E
40: connectToDrone()
41: else if log ̸= /0

42: state← REPLAY
43: end if
44: else if mlognr > lognr+1
45: insert(logQ,⟨mlognr,mid,mlog,handover⟩)
46: end if
47: end

48: upon invocation req when state = REPLAY do
49: rpl← getReplyFromLog(log,reqnr+1)
50: reqnr← reqnr+1
51: if reqnr = getLastReqNr(log) then
52: log← /0

53: state← PASSIV E
54: if logQ = /0∧master then
55: state← ACT IV E
56: connectToDrone()
57: else if logQ ̸= /0∧head(logQ).mlognr = lognr+1
58: logmsg← rmvHead(logQ)
59: recvLog(logmsg) without forwarding
60: end if
61: end if
62: return rpl to mission program
63: end

Figure 3. State diagram of the mission controller.

and the state is PASSIVE, the controller copies the log lo-
cally and sets its state to REPLAY to adopt a special mode
of mission program execution (see below). If the log mes-
sage concerns a handover, the controller sets an internal flag
to become the new master. Then, a transition is made to the
ACTIVE or REPLAY state, depending on whether the log
is empty or not. The controller also forwards the log mes-
sage (with the handover flag set to false) along the ring, so
that all other controllers receive it and perform the replay as
needed3. If the log message is out of order or the controller
is not PASSIVE, it is placed in a queue to be handled later.

When the mission program invokes the drone and the con-
troller is in the REPLAY state, the corresponding reply is
fetched from the log (based on the request sequence num-
ber), without any interaction with the drone. If the end of the
log is reached, the log is cleared and the controller makes a
transition to the ACTIVE or PASSIVE state, depending on
the setting of its master flag. If PASSIVE, the next log mes-
sage in the queue (if any) is handled (without forwarding
since this has already been done when it was first received).
If the queue is empty, the controller remains in the PASSIVE
state, and program execution is suspended.

Figure 3 shows the state diagram of the mission controller.
Note that, depending on the flush limit and log transmission
delay, there can be several log messages circulating along
the ring one after the other, leading to several transitions be-
tween the PASSIVE and the REPLAY state. While a han-
dover message (sent directly to the new master) can over-
take normal flush messages (circulated along the ring), the
orderly handling of log messages is ensured based on their
sequence numbers (variable lognr in Algorithm 1).
4 Performance Model

We use a simple analytical model to estimate the delay
of the proposed handover protocol, based on the following

3This log message will also be received by the old master, which will
forward it along the ring but will ignore it based on its sequence number.
This extra transmission can be eliminated by circumventing the old master
in this particular circulation of the log message along the ring. To keep our
description and implementation simple, we do not include this optimization
in Algorithm 1.

assumptions: (i) mission execution in the REPLAY state has
negligible delay; (ii) the transmission of log messages occurs
concurrently with local processing and mission execution.
Since these assumptions are idealistic, the formula provides
a rough estimate for the handover delay.

Let l and b denote the communication latency and band-
width between two mission controllers. Then, the time that
is needed to send a log message of size s from one mission
controller to another is Tlog(s) = l + s

b , taking into account
the time needed for the first bit of information to cross the
network and the time that is needed to transfer the amount
of information in the message. Also, let Tconn be the time it
takes for the master controller to connect to the drone before
resuming the proper execution of the mission program.

Then, the worst-case handover delay can be approximated
as T max

handover = Tlog(0)+h×Tlog(f +e)+Tconn, where f is the
log flush limit, e is the size of the largest possible log entry,
and h is the number of hops along the ring between the old
and the new master. This captures the scenario where the
handover is triggered right after the master flushes the log
with the largest possible size4. Even though the log in the
handover message is empty (as it was flushed right before)
the new master has to wait until it receives/handles the pre-
vious log flush message being circulated around the ring.

5 Evaluation
5.1 Implementation

We have implemented the proposed handover protocol in
a Python-based middleware prototype. The drone environ-
ment supports two services: the mobility service with meth-
ods for sending navigation commands to the drone and get-
ting state information, and the camera service with methods
for controlling the resolution of the onboard camera and tak-
ing pictures. Furthermore, the drone environment contains
the logic for the selection of the master mission controller
and the notification of the old master about the handover.
The controller environment maintains a proxy object for the
drone with API bindings that can be used by the mission
program to remotely invoke the available services. It also
implements the handover protocol that was discussed in the
previous section. The log is implemented as a list object and
is serialized over the network using Python’s pickle module.

The communication between the controller and the drone
environments occurs over WiFi and TCP/IP. The connection
is set up each time the controller becomes ACTIVE (the con-
nection is closed when the controller becomes PASSIVE).
The communication among the controllers is over Ethernet
and TCP/IP. The corresponding connections are set up once,
as part of the initialization. The endpoint information for all
connections is included in a configuration file, which is read
by these environments upon initialization.
5.2 Testbed Setup

We perform our measurements in a lab-based testbed,
shown in Figure 4, with a system configuration that is prac-
tically identical to that of a real deployment in the field. A

4The log may grow (substantially) beyond the flush limit, as follows.
Assume that the log has nearly reached the flush limit f . Then, as a side
effect of the next invocation, the controller writes in the log a large entry of
size e, which then causes the log to be flushed with total size f + e.

Figure 4. Testbed used for measurements.

Raspberry Pi (RPi) running the drone environment is used as
a typical embedded companion computer for small drones.
The instances of the mission controller run on two laptops,
which communicate with the RPi over WiFi in ad-hoc mode.
The laptops communicate over Ethernet-LAN. To reproduce
typical Internet connectivity at the edge, we artificially slow
down the communication between the mission controllers at
a latency of 20 ms and a bandwidth of 25 Mbps. To focus on
the core aspects of the handover process, we do not simulate
physical link behavior as a function of mobility.

The mobility service of the drone environment on the
RPi communicates with the drone’s autopilot with MAVLink
messages [11] via MAVProxy [12]. For the autopilot, we use
the official Ardupilot software-in-the-loop (SITL) configura-
tion [1] running on a PC. This is connected to the RPi over
Ethernet and the MAVLink messages are exchanged over
TCP/IP. Notably, the only difference from a real drone is
that the autopilot runs on a separate onboard platform that is
connected to the RPi over serial. We stress that the physics
model in the SITL simulator reproduces real flight behav-
ior with high accuracy. For convenience, the drone’s camera
service is configured to read and return a static 1 MB image.

5.3 Mission Program
To evaluate our handover mechanism, we use a simple

mission program running in the above testbed setup, which
directs the drone to visit specific waypoints. The program
continuously polls the drone to retrieve its current position
and when the next waypoint is reached it instructs the drone
to take a picture. We run experiments for 25 waypoints ar-
ranged in a 5×5 grid, spaced every 50 meters. The mission
altitude is 10 meters and the flying speed is set to 5 m/s.

To generate a large number of invocations, we let the mis-
sion program poll the drone every 1 second. This results in
roughly 360 invocations during the core part of the mission
(excluding the initial take-off and final landing phase). No-
tably, the mission program should not wait between invoca-
tions when executed in the REPLAY state. To this end, the
mission program uses a sleep() method of the controller envi-
ronment, which implements the proper behavior depending
on the internal state of the mission controller.

To run tests in a controlled way, the handover points are
specified in a configuration file of the drone environment.
Each line has the form ⟨reqnr,mid⟩, where reqnr is the se-

Figure 5. Request inter-arrival time and log growth for
execution with flush limit 2 MB and three handovers.

quence number of the invocation request after which the
drone should trigger a handover, and mid is the identifier of
the new master controller.
5.4 Experimental Results

Figure 5 shows the inter-arrival time (red line, first y-axis)
for the invocation requests that reach the drone (RPi), for
an indicative mission execution scenario where the log flush
limit is set to 2 MB and three handovers are performed be-
tween two controllers during the core part of the mission
(dashed vertical lines). The figure also shows the growth
of the log at the master controller (blue line, second y-axis).
The observed pattern is similar for multiple executions.

It can be seen that the request inter-arrival time is close to
the invocation/polling period (1 second), as most invocations
to the drone’s services are fast. Larger delays occur periodi-
cally, when the mission program invokes the drone’s camera
service at each waypoint, due to the time needed to transfer
the image (about 1 MB) from the RPi to the mission con-
troller over WiFi. The extra delay due to the handovers can
be seen indirectly via the peaks in the request inter-arrival
time at the respective points of the execution. Note that this
can vary significantly, depending on the size of the log at the
handover point, from being practically negligible (first han-
dover where the log is practically empty) to being compara-
ble or even higher than the invocation of the drone’s camera
service (in the second and third handover where the log is
1 MB and 2 MB, respectively). Still, even in the last case,
the handover cost of about 0.9 sec is perfectly acceptable
for most applications. Further, periodic log flushing does
not increase the inter-arrival time beyond its expected value.
Therefore, one may adopt a more aggressive flushing policy
to ensure that the size of the log remains relatively small at
all times, in anticipation of possible handovers. This is even
more important since the log may grow significantly beyond
its flush limit (in our case, +1 MB) as explained in Section 4.

To study the worst-case handover delay for a wide range
of scenarios, we use a configuration with six controllers and
vary the number of hops between the old and the new master
in the ring. To ensure that log message transmissions occur
over the network, we place all even controllers on one host
and all odd ones on the other (we only have two laptops), and
run handover scenarios for 1, 3, and 5 hops, always between

Figure 6. Worst-case handover delay with six mission
controllers as a function of the log flush limit, for differ-
ent hop distances between the old and the new master.

an even and an odd controller. To reproduce the worst case
as discussed in Section 4, each handover is introduced right
after the old master has flushed the log along the ring with
the largest possible size. We also test different flush limits
0, 1, 2, 3 and 4 MB (at 0 MB, the log is flushed after each
invocation). Figure 6 shows the average handover delay over
multiple experiments versus the estimation of the model.

We observe that the delay grows as the flush limit in-
creases, as expected, due to the longer transmission time of
the log messages between the controllers. The delay also
increases for a larger number of hops between the old and
the new master, because the new master waits for a longer
amount of time for the flushed log to arrive before it can re-
sume the normal execution of the mission program. Note
that the estimations of the analytical model are close to the
measured handover delay. The reason the measured values
are higher is that our testbed introduces artificial overhead
due to the contention between several instances of the mis-
sion controller running on the same physical host.

From the above results, it is clear that the best strategy
is to use a small flush limit. While frequent log flushing
leads to a larger number of log messages (e.g., about 360 log
messages are generated with a flush limit of 0 MB since the
log is flushed after each invocation), this has no noticeable
impact on the actual mission execution time. The reason is
that the circulation of log messages along the ring and the
replay of the mission program on the controllers is done in
parallel to the execution of the mission program on the mas-
ter controller. Also, frequent flushing reduces the size (and
transmission time) of the individual log messages.
6 Related Work

The programming of robotic/drone applications has been
extensively researched. As a result, different programming
models, libraries, and middleware environments have been
proposed. The Proto language [3] provides multi-robot pro-
gramming support using parallel computing logic. Each
robot acts as a computing device and all of them form a
so-called amorphous medium used to perform the opera-
tions of the mission. Also, a function-oriented configura-
tion method is used to map spatial operations into commands
for each device and finally into instructions for each mobile

robot. Karma [5] is a system for programming and managing
micro-aerial vehicle swarms that do not have any long-range
communication capability. A central entity is responsible for
coordinating the mission by receiving data from the drones
and giving orders to them according to the mission objec-
tives. However, this interaction occurs when the drones re-
turn to their so-called hive. TeCoLa [8] uses a high-level
coordinated approach where a distinguished entity, the mis-
sion controller, runs a program that controls the mission by
monitoring the state of the nodes, taking decisions, and send-
ing commands to the vehicles. Each vehicle provides several
services depending on its resources, while the mission pro-
gram can invoke these services in a transparent way through
RPCs targeting a single vehicle or a team/group of vehicles.

The objective of the above works is to offer conve-
nient and powerful abstractions to the mission developer
in order to simplify the implementation of mission pro-
grams. Our work is complementary to such efforts, as it
addresses the handover between different mission execution
controllers/managers covering different geographical areas.

There is a large body of work exploring handover heuris-
tics and strategies at the level of the wireless network infras-
tructure. The authors of [7] introduce a deep reinforcement
learning framework for the handover decision, considering
multiple parameters such as speed, direction, and position of
the drone, to prevent unnecessary handovers while maximiz-
ing the base station RSSI. Similar work is presented in [9],
using a fuzzy inference system to decide the handover. [4]
proposes a route-aware handover mechanism for drones op-
erating in cellular networks, using the drone’s location and
velocity information to predict its future path and select the
best base station. In [2], the authors use reinforcement learn-
ing to manage handover and resource allocation in cellular
networks that serve both drones and terrestrial users, focus-
ing on the challenges due to the interference of drones on
user uplinks and the frequent handovers required for drones.

An approach utilizing UAVs as on-demand forwarding
switches in SDN-based networks is studied in [16], leading
to more efficient management and faster handovers, with re-
duced signaling overheads, end-to-end delay, and handover
latency. The work in [14] presents an approach for man-
aging handovers in UAV-based wireless networks in three-
dimensional space, where drones act as base stations for
other (terrestrial) users. The proposed mechanism adjusts
the height and distance between drones and evaluates the op-
timal coverage decision algorithm using seamless handover
success probability and false handover initiation probability.
An intelligent handover control method for UAV-based cel-
lular networks is also studied in [6]. It utilizes a deep learn-
ing model to predict trajectories and analyze positional re-
lations, aiming at improving communication quality and re-
ducing communication interruptions for the end-users.

All these works focus on the low-level handover manage-
ment of wireless communication. In contrast, our system
model does not rely on a cellular wireless network, but em-
ploys an edge computing approach for the mission execution
itself, transferring control between different controllers with
local wireless capability. To the best of our knowledge, our
work is the first to address this problem. To this end, our han-

dover protocol primarily addresses the continuity and consis-
tency of mission execution, ensuring the necessary synchro-
nization between the controllers. Notably, our mechanism
is orthogonal to the heuristic for taking handover decisions,
and it can be used in a straightforward way to support dif-
ferent strategies, e.g., based on the quality of connectivity,
anticipated interference, or path planning information.
7 Conclusion

We have developed and evaluated a protocol for the trans-
parent handover of mission execution between multiple mis-
sion controllers at the edge. Our evaluation shows that, when
using a small log flush limit, the proposed approach can scale
to a large number of mission controllers at a small overhead
that is perfectly acceptable for applications that do not have
tight coordination requirements.
Acknowledgments

This work has received funding from the Horizon Europe
research and innovation program of the European Union, un-
der grant agreement no 101092912, project MLSysOps.
8 References
[1] ArduPilot SITL Simulator. https://ardupilot.org/dev/docs/

sitl-simulator-software-in-the-loop.html.
[2] A. Azari, F. Ghavimi, M. Ozger, R. Jantti, and C. Cavdar. Machine

learning assisted handover and resource management for cellular con-
nected drones. In IEEE Vehicular Technology Conference, pages 1–7,
2020.

[3] J. Bachrach, J. Beal, and J. McLurkin. Composable continuous-space
programs for robotic swarms. Neural Computing and Applications,
19(6):825–847, 2010.

[4] J. Bai, S.-p. Yeh, F. Xue, and S. Talwar. Route-aware handover en-
hancement for drones in cellular networks. In IEEE Global Commu-
nications Conference, pages 1–6, 2019.

[5] K. Dantu, B. Kate, J. Waterman, P. Bailis, and M. Welsh. Program-
ming micro-aerial vehicle swarms with karma. In Proc. ACM Confer-
ence on Embedded Networked Sensor Systems, pages 121–134, 2011.

[6] B. Hu, H. Yang, L. Wang, and S. Chen. A trajectory prediction based
intelligent handover control method in uav cellular networks. China
Communications, 16(1):1–14, 2019.

[7] Y. Jang, S. M. Raza, M. Kim, and H. Choo. Proactive handover deci-
sion for uavs with deep reinforcement learning. Sensors, 22(3), 2022.

[8] M. Koutsoubelias and S. Lalis. Tecola: A programming framework
for dynamic and heterogeneous robotic teams. In Proc. Intl Confer-
ence on Mobile and Ubiquitous Systems: Computing, Networking and
Services, pages 115–124, 2016.

[9] E. Lee, C. Choi, and P. Kim. Intelligent handover scheme for drone
using fuzzy inference systems. IEEE Access, 5:13712–13719, 2017.

[10] P. K. R. Maddikunta, S. Hakak, M. Alazab, S. Bhattacharya, T. R.
Gadekallu, W. Z. Khan, and Q.-V. Pham. Unmanned aerial vehicles in
smart agriculture: Applications, requirements, and challenges. IEEE
Sensors Journal, 21(16):17608–17619, 2021.

[11] MAVLink. https://mavlink.io/en/.
[12] MAVProxy. https://ardupilot.org/mavproxy/.
[13] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar.

Uavs for smart cities: Opportunities and challenges. In Proc. Intl
Conference on Unmanned Aircraft Systems, pages 267–273, 2014.

[14] K.-N. Park, J.-H. Kang, B.-M. Cho, K.-J. Park, and H. Kim. Handover
management of net-drones for future internet platforms. International
Journal of Distributed Sensor Networks, 12(3):5760245, 2016.

[15] E. Semsch, M. Jakob, D. Pavlicek, and M. Pechoucek. Au-
tonomous uav surveillance in complex urban environments. In Proc.
IEEE/WIC/ACM Intl Joint Conference on Web Intelligence and Intel-
ligent Agent Technology, pages 82–85, 2009.

[16] V. Sharma, F. Song, I. You, and H.-C. Chao. Efficient management
and fast handovers in software defined wireless networks using uavs.
IEEE Network, 31(6):78–85, 2017.

