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Abstract
In recent years, the graph signal processing (GSP) field

has brought signal processing techniques to numerous areas.
Among them, graphs have been used for various applications
in sensor networks for air quality monitoring. One of the
main tasks consists of learning the graph that describes the
relationships between sensors in a network. Although many
data-driven graph learning techniques exist, the heteroge-
neous nature of air quality low-cost sensor networks, where
low-cost sensors and high-precision instruments coexist, im-
poses the need to include information about the quality of the
sensors used. Therefore, in this paper, we propose a graph
learning regularization framework that allows for taking into
account the reliability of the different nodes of an IoT net-
work, in what we call quality-aware graph learning regular-
ization (QAGLR). The regularization framework is evaluated
for signal reconstruction and it is also assessed in the case of
the creation of GSP-based virtual sensors, showing the ben-
efits of introducing information about sensors’ reliability.

Categories and Subject Descriptors
H.3.3.3 [Information Systems]: Sensor Networks

General Terms
Sensor networks, graph signal processing, virtual sensors.

Keywords
Air quality, low-cost sensors, graph learning, regulariza-

tion.

1 Introduction
The field of graph signal processing (GSP) has opened up

the possibility of applying classical signal processing tech-
niques, e.g., signal filtering, signal reconstruction, or spec-
tral analysis, to signals defined on an irregular domain such
as graphs [23, 24, 25]. In this way, signal processing tech-
niques on graphs have been developed and many applica-

tions have appeared due to the flexibility of representation
that graphs have in fields like sensor networks, biological
data, image analysis, or machine learning [25]. Moreover,
the use of graphs allows for exploiting the implicit structure
of the data as well as improving the interpretability of the
techniques applied to these data lying on an irregular domain
[9]. Other examples of graph-based techniques are graph
neural networks (GNN), which are a generalization of neural
networks on graphs [26].

A key component for the application of the GSP to a do-
main is the network topology that describes the relationships
between the different graph nodes. In GSP, different matri-
ces have been used to describe the topology of a graph, e.g.,
the adjacency matrix, the weight matrix, the Laplacian ma-
trix, or more generally the graph shift operator (GSO) [20, 8].
Therefore, much research has been focused on learning the
graph that describes a specific data set. There exist different
approaches to finding the graph that best describes a data set,
among them we can find approaches based on statistics (e.g.,
graphical Lasso), approaches based on GSP, where a graph
can be defined from the geodesic distances between nodes or
from the notion of signal smoothness, as well as graph learn-
ing (GL) methods based on diffusion processes [20, 8]. The
notion of signal smoothness has been widely used to develop
data-driven GL methods, where one tries to obtain a topol-
ogy over which the graph signals are smooth [7, 10, 3, 17].
A network signal is considered to be smooth if strongly con-
nected nodes have similar values. For instance, Dong et al.
[7] defined a GL model based on signal smoothness to learn
the Laplacian matrix from the data, resulting in an alternate
convex optimization model that is solved iteratively. Sim-
ilarly, Kalofolias [17] defined a GL model based on signal
smoothness to learn the graph weight matrix.

The network topology can be applied in conjunction with
GSP and machine learning techniques for a large number of
applications in the field of wireless sensor networks (WSN)
[18]. Jablonski et al. [15] applied a graph learned from data
to a Polish tropospheric ozone (O3) sensor network to per-
form clustering tasks. Likewise, Do et al. [6] developed
a matrix completion model based on GNNs to impute sen-
sor values in an air quality sensor network. Moreover, data
reconstruction methods have been applied to air quality sen-
sor networks using GSP [16, 14, 12, 11]. Other applications
of the graph structure and machine learning techniques have
also appeared, such as the detection of malfunctioning low-



cost air quality sensors [13].
In short, we highlight how graph-based applications have

gained interest in recent years in the field of sensor networks
and, in particular, in air quality sensor networks. Never-
theless, these air quality sensor networks have special char-
acteristics, namely, they are heterogeneous, i.e., composed
of high-precision sensors and low-cost sensors (LCSs) [22].
LCSs are known for their long-term accuracy issues and re-
liability issues, so the main focus of study in relation to
LCSs has been the improvement of the quality of LCS data
[5, 21, 19]. It must therefore be taken into account that LCSs
in a heterogeneous air quality monitoring network are prone
to errors and long-term failures. Hence, GL techniques need
to be adapted to this environment of higher and lower re-
liability nodes by encouraging connections between LCSs
and high-precision sensors. This is important because many
GSP techniques rely on the topology of the network, and if
the relationships between sensors change due to the deteri-
oration of some of them, the performance of such applica-
tions may also worsen. Similarly, in the sensor placement
problem, modifications have been made to take into account
nodes of higher or lower cost and reliability [4].

In this paper, we propose the quality-aware graph learn-
ing regularization (QAGLR) framework to learn the topol-
ogy of a heterogeneous air quality sensor network by intro-
ducing prior information about the quality of the sensors. We
present the framework as a generalization of widely known
GL models. In addition, we present a practical example of
the framework applied to the creation of GSP-based virtual
sensors and analyze the robustness provided by QAGLR in
the case where sensors in the network deteriorate.

2 Quality-aware GL regularization
In this section, we introduce the quality-aware graph

learning regularization (QAGLR) framework as well as we
link it to well-known GL techniques.
Definition 1. We define a graph G as the triplet G =
{V ,E ,S}, where V = {1, . . . ,N} is the set of graph nodes,
E = {(i, j) : Si j ̸= 0} is the set of edges, and S∈RN×N is the
graph shift operator (GSO).

The GSO [23], S, can be used to describe the existing
relationships between the graph nodes representing the dif-
ferent sensors in a heterogeneous LCS IoT network. For this
specific case, it makes sense to assume that the graph edges
are undirected given that the similarity between sensors is
reciprocal, meaning that the matrix S is symmetric S = ST.
Definition 2. A graph signal x∈RN can be seen as the map
x:V → R that maps a graph node i to the measurement
recorded by the i-th sensor at a given time, xi∈R.

2.1 General GL framework
Among the existing GL methods, we focus on those that

use sensor network data to learn a data-driven graph. This
approach has already proven to be a good choice for air qual-
ity LCS networks [11]. Accordingly, we can define a general
data-driven GL framework to learn the GSO matrix S using a
set of graph signals, i.e., network measurements, X∈RN×Ns ,
where Ns∈N is the number of measurements and therefore

the number of graph signals, as:

min
S∈RN×N

F(X,S)+λ ·R(S)

s.t. S∈S
(1)

Where the function F(·) takes as input a set of graph sig-
nals X and a GSO matrix S and evaluates the goodness-of-
fit of the GSO with respect to the observed sensor network
measurements X. The second part of the objective function
corresponds to function R(·) which acts as regularizer of the
solution S with controlling hyperparameter λ∈R. This regu-
larization is usually associated with the complexity and con-
nectivity of the resulting graph, e.g., the sparsity of the re-
sulting matrix S. The constraint in eq. (1) forces the shift
matrix to belong to the set of valid GSO matrices S . The
conditions for the matrix S to be valid depend on the choice
of GSO. There are different options for the GSO matrix S,
and among them, we find the adjacency matrix A, the weight
matrix W, or the Laplacian matrix L. All three matrices have
been studied in the GSP field [23, 24]. Henceforth, we focus
on learning the Laplacian matrix L, given its use as GSO in
the GSP field, where its eigendecomposition is used to ob-
tain the graph Fourier bases [24]. Thus, we can reformulate
the framework in eq. (1) as:

min
L∈RN×N

F(X,L)+λ ·R(L)

s.t. Li j = L ji, Li j ≤ 0 ,1 ≤ i ̸= j ≤ N
L1 = 0

(2)

The different constraints force the resulting Laplacian
matrix L to be symmetric and valid. There are different crite-
ria for the function F(·), which evaluates the goodness-of-fit
of the resulting graph G . The graph signal smoothness is a
criterion widely used in GL tasks [7, 17, 3]. Intuitively a sig-
nal is said to be smooth with respect to the graph if sensors
with similar measurements are strongly connected, and con-
versely, sensors that are not similar are weakly connected or
disconnected. Thus, this criterion results in finding a Lapla-
cian matrix L that is coherent with the observed signals X.
Definition 3. The smoothness of a graph signal can be eval-
uated through the total variation (TV), also known as Lapla-
cian quadratic form or Dirichlet energy: TV(x,L) = xTLx

Regarding the regularization term R(L), different met-
rics can be used to enforce a level of connectivity in the
graph. For instance, the Frobenius norm (∥L∥F) or the lp,q-
matrix norm (∥L∥p,q) can be used to force a connectivity
level jointly with the signal smoothness criterion.
2.2 QAGLR framework

Right now, we can define the QAGLR1 framework to take
into account the heterogeneous nature of air quality sensor
networks. To this end, quality-aware knowledge about the
different types of sensors that make up the network, e.g.,
LCSs or high-precision nodes, can be introduced to force
low-quality sensors to have higher-quality sensors as neigh-
bors. We can add a new regularization term P(·) to intro-

1A python implementation of the QAGLR using the CVXPY solver is
available at https://bitbucket.org/sans-rg/ewsn-qaglr/.



duce this prior information through a quality-aware matrix
P∈RN×N so that we can define the QAGLR as:

min
S∈RN×N

F(X,S)+λ ·R(S)+ γ ·P(S,P)

s.t. S ∈ S
(3)

Where γ∈R is the hyperparameter that controls the impor-
tance of the quality-aware information introduced by P in the
objective function of the GL problem. Now, a good choice
for the quality-aware regularization is P(S,P) = ∥S⊙P∥1,1,
where ⊙ is the Hadamard product. The connection between
sensors is penalized according to their reliability defined by
the weights Pi j, resulting in a weighted l1,1-norm of matrix S.
There exist different ways to define the quality-aware matrix
P, we can define it as:

Pi j =

{ 1
1−(Pi·Pj)

if i ̸= j
1 otherwise

(4)

Where 0 ≤ Pi < 1 denotes the probability of failure of the
i-th sensor. For instance, in a heterogeneous LCS network
with two types of nodes, high-precision instrumentation V1
and LCSs V2, we can set PV1

= 0 and PV2
= 0.92. We can

assign large Pi to LCSs to penalize more. All in all, applying
the quality-aware regularization to the GL model defined by
Dong et al. [7] results in the following optimization model:

min
L∈RN×N

α · 1
Ns

tr(XTLX)+λ · ∥L∥2
F+ γ · ∥L⊙P∥1,1

s.t. tr(L) = N
Li j = L ji, Li j ≤ 0 ,1 ≤ i ̸= j ≤ N
L1 = 0

(5)

The above optimization problem is convex given that all the
functions of the objective function are convex and the con-
straints are linear. All three terms control the sparsity of the
resulting Laplacian matrix L while the first term promotes a
smooth graph with respect to the training signals X. These
components are controlled by the hyperparameters {α,λ}.
The different constraints force the Laplacian to be valid, for
more details on the constraints refer to [7].

In this particular case, the QAGLR optimization model
shown in eq. (5) reduces to the model defined by Dong
et al. [7] plus the quality-aware regularization. The
Laplacian (S = L) is learned and the signal smoothness is
used as a goodness-of-fit criterion of the graph (F(X,L) =
tr(XT LX)). In addition, the Frobenius norm of the Lapla-
cian is used to control the density of the resulting graph
(R(L) = ∥L∥2

F). Then, the quality-aware regularization is
applied (P(L,P) = ∥L⊙P∥1,1) resulting in the optimization
problem shown in eq. (5).

For illustrative purposes, we show how the QAGLR can
be applied to another well-known GL method, the model
defined by Kalofolias [17]. Here the weight matrix S=W
is learned as GSO, and the author also uses the notion of
smoothness of the signal but using its form by means of the

2Note that this case, where there are two sets of sensors, high-precision
and LCSs, is an example. Different sets of sensors of different quality can
coexist in a network.

matrix W, F(X,W) = ∥W⊙Z∥1,1, where Z ∈ RN×N is the
matrix of pairwise distances. Regarding the GSO regulariza-
tion, the author forces the graph to have at least one neigh-
bor per node and promotes the connectivity of the graph us-
ing the Frobenius norm, R(W) =−α ·1Tlog(W1)+ β

2∥W∥2
F.

Now, the quality-aware regularization defined in eq. (5) can
be given in this case using the definition of the Laplacian
matrix, P(W,P) = γ ·

(
∥W⊙P∥1,1 +(W1)Tdiag(P)

)
, where

diag(·) extracts the diagonal elements of a matrix. As it
may be noticed, the new regularization term modifies the
goodness-of-fit term F(·) by introducing weights based on
the quality-aware information. The resulting optimization
model is:

min
W∈RN×N

∥W⊙Z∥1,1︸ ︷︷ ︸
F(X,W)

−α ·1Tlog(W1)+
β

2
∥W∥2

F︸ ︷︷ ︸
R(W)

+

γ ·
(
∥W⊙P∥1,1 +(W1)Tdiag(P)

)︸ ︷︷ ︸
P(W,P)

s.t. W ∈ W

(6)

3 Experimental evaluation
In this section, we experimentally evaluate the proposed

framework using real data from a heterogeneous network
of air quality sensors. First, we describe the data set used
to carry out the different experiments. Secondly, we show
how QAGLR works depending on the different hyperparam-
eters. Then, we evaluate the performance of the quality-
aware graph in the scenario where the network sensors may
present different noise levels. And finally, we evaluate the
use of a QAGLR in the case of creating virtual sensors using
a nonlinear graph filter. We set the model defined by Dong et
al. [7] as the baseline (which we will call ”GL-Dong” from
now on) and we compare the results with the QAGLR ap-
plied to Dong’s model. We divide the data set into 50% for
training and cross-validation (CV) and 50% for testing.

3.1 Heterogeneous low-cost air quality sensor
network

In order to experiment with the QAGLR on a heteroge-
neous network of air quality sensors, we use the data set ob-
tained by the sensor network deployed by the H2020 Cap-
tor project. This sensor network has been previously used
for research purposes and the data is openly available [1].
More precisely, it was deployed during the summer of 2017
in the Vic area (Spain) and it was composed of twenty-five
IoT LCS nodes and three reference stations3. The nodes
contained an Arduino Yun as processing unit, a modem 3G
to provide connectivity to a central database, four metal-
oxide ozone (O3) SGX Sensortech MICS 2614 sensors, and
a Grove temperature and relative humidity sensor per node.

Table 1. Data set metrics
Nodes # Network Measurements Resolution Avg. O3

6 LCSs + 2 Ref. 2612 30 min 66.68 µg/m3

3Reference stations provide ground-truth measurements for different
pollutants and their reliability is optimal and they act as high-cost sensors.



(a) Heterogeneous LCS
network location and
disposition.
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(b) CV average R2 and average number of edges for the
GL-Dong model and different values for {α,β}.
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Figure 1. On the left the heterogeneous LCS network and on the right the CV results for the GL models.

To perform the different experiments we focus on a set
of eight nodes, six LCSs, which have been previously cali-
brated in-situ in nearby reference stations, and two reference
stations (Table 1). Figure 1.a) depicts the locations of the
different nodes forming the sensor network. This network al-
lows for evaluating the QAGLR since it contains both LCSs
and reference stations.

3.2 QAGLR: learning the graph
In this experiment, we evaluate how the QAGLR frame-

work (applied to the model defined by Dong et al. [7]) be-
haves in comparison with the GL-Dong model. Then, by
performing CV over the training, we perform a grid search
over the hyperparameters {α,β} and {α,λ,γ} to assess the
evolution of the resulting graphs in terms of the number of
edges. To approximate the goodness-of-fit of the resulting
Laplacian L, we reconstruct the signals of each of the sen-
sors through their neighboring sensors, N (i) = { j: Li j ̸= 0},
using the Laplacian interpolated regularization, which recon-
structs the signal by minimizing the TV [2]:

x̂i =−L−1
ii LiN (i)xN (i), ∀i ∈ V (7)

Where xi∈R and xN (i)∈R|N (i)|. Figures 1.b) and c) show the
CV performance of GL-Dong and GL-QAGLR in terms of
the average CV R2 and the average number of edges. As seen
in Figure 1.b), the GL-Dong model is completely defined by
the ratio α/β of its hyperparameters, as the ratio increases,
sparser graphs are obtained. Moreover, in the central part
log(α/β)∈[−6,−2] we see how as α (which promotes the
smoothness of the graph) gains importance, the average re-
construction improves, being able to obtain an average CV
reconstruction R2 of 0.88 with graphs with a wide variety
of sparsity. Figure 2.c) shows the same results for the GL-
QAGLR, as it can be seen, for γ=0 the behavior is exactly
the same as GL-Dong since the GL model coincides with
the one defined by Dong et al. [7]. Nevertheless, as γ in-
creases, we observe how the results, both in terms of graph
edges and reconstruction performance present a lot of vari-
ability. This is because now the ratio α/λ is not governing
the GL behavior but the γ also influences the results. In-

deed, the α and γ present a joint behavior since the introduc-
tion of quality-aware information penalizes the smoothness
term. Figure 1.c) shows how introducing γ ̸=0 tends to re-
duce the reconstruction performance as well as the number
of edges. In fact, larger γ values are associated with smaller
reconstruction capabilities and sparser graphs given that a
low number of high-precision instrumentation is available in
this data set. This is because we give less importance to the
smoothness term, which evaluates the goodness-of-fit, and
we give importance to the quality-aware information, which
means, as we will see in the following sections 3.3 and 3.4,
that we sacrifice some performance in exchange for a more
robust graph. For a small penalization, γ=0.10, the recon-
struction performance is only worsened a little, but in some
hyperparameters ratio range, e.g., [-1, 1], we observe how the
penalization gains importance in the optimization and the re-
sult is a sparse graph with little reconstruction capabilities.
It is worth noting that this particular behavior is linked to the
sensor network and the design of the quality-aware matrix
P but other values would produce coherent results with the
penalizations given.
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Figure 2. Behavior of the QAGLR for a pair of α/λ ratios
and different γ values.

Figures 2.a) and b) show a particular example of two fixed
ratios α/λ and increasing γ values. As it can be seen, as γ in-
creases, the reconstruction performance decreases given that
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Figure 3. Average LCS reconstruction test R2 for different number of perturbed sensors (Nper), different levels of noise
(σ), different γ values, and ten repetitions for each level of noise.

the optimization model prioritizes the quality-aware infor-
mation over the smoothness of the graph with respect to the
data. Besides, the number of edges increases and then de-
creases given that new connections between LCSs and high-
precision nodes may be added and some other connections
between LCSs may be removed. Moreover, we observe how
the impact of the γ value depends on the ratio α/λ as de-
picted by the slope of the decrease of reconstruction perfor-
mance and the number of edges. Finally, in order to show the
effect of the regularization, we have plotted what we call the
ratio ω = ∑i∈V2

L−1
ii ∑ j∈V2, j ̸=i |Li j| which represents the ratio

between the Laplacian weights assigned to LCS-to-LCS con-
nections and all weights assigned to all LCSs. As it is seen,
as the γ value increases, less importance is given to LCS-to-
LCS connections until ω=0 which represents that there are
no connections between LCSs.
3.3 QAGLR: data reconstruction with noisy

sensors
Now, once we have obtained the graphs that minimize

the CV reconstruction R2 (without regularization, γ=0), we
evaluate how the regularization affects the case in which the
LCSs may present noise. For this purpose, we test different
γ = {0, . . . ,0.50} values and introduce additive independent
white Gaussian noise of increasing variance ε ∼ N(0,σ2) in
a variable percentage of the LCSs during the testing. There-
fore, we reconstruct each one of the network nodes when a
variable percentage of sensors present errors. Due to the ran-
dom nature of the perturbation we perform ten repetitions.

Figure 3 shows the average reconstruction R2 when one,
three, and five sensors have been perturbed with noise. When
only one sensor is perturbed (Nper=1) it can be seen how
there is little impact on the average reconstruction accuracy
since one out of eight sensors may not influence the average
reconstruction performance. Nevertheless, we can observe
that for σ=2 there is a decrease in the R2 and the larger the
γ the less affected is the reconstruction, for γ=0.25 the av-
erage R2 is 0.77 while GL-Dong obtains an average R2 of
0.73. For the case Nper=3, the same pattern is observed but
now the reconstruction performance is more affected by the
noise. Again, the GL-QAGLR with γ=0.50 obtains a slightly
worse performance than GL-Dong for σ ≤1.5 but in return,
when the error increases, i.e., for σ >1.5, the reconstruction
is not as bad as with the other GL method, R2 of 0.67. For
the extreme case, Nper=5, the same patterns can be observed
although in this case the average reconstruction R2 is much

more affected by the introduced noise.
3.4 QAGLR: virtual sensing

In this last experiment, we present a scenario where the
graph is learned so that it can be fed to a graph filter to re-
construct the signal of a subset of sensors, thus creating a set
of virtual sensors. We use a graph filter based on the Volterra
series of third order [27]. Consequently, we select two sen-
sors of the network (sensors 5 and 8 in Figure 1.a)) and we
perform CV over the training and graph hyperparameters to
find the best graph that coupled with the graph filter obtains
the lowest CV reconstruction R2 for the virtual sensors. Af-
terwards, during the testing, we add additive white Gaussian
noise of increasing variance ε ∼ N(0,σ2) to all the LCSs and
perform ten repetitions. We can define the graph filter virtual
sensing model as:

x̂S = Cx = C f(L, x̃) (8)

Where S ⊆ V is the set of nodes that corresponds to the vir-
tual sensors, f :RN×N ×RN →RN is the graph filter that takes
as input the Laplacian matrix L and x̃ which is a perturbed
version of the input graph signal such that x̃S=0. Finally,
C∈B|S |×N is the sampling matrix, such that CS=1. Then,
the filter coefficients are learned by minimizing the residual
sum of squares over the training samples. For simplicity, we
use a third order Volterra-like graph filter (D=3) and filter
depth K=2 to limit the error propagation.
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Figure 4. Average test R2 for the virtual sensors for dif-
ferent levels of noise (σ) and ten repetitions.

Figure 4 shows the average R2 obtained for the two virtual
sensors (and ten repetitions) for different noise levels and dif-
ferent GL models. As it can be seen, the GL-Dong and the
GL-QAGLR with γ=0 obtain the same performance since for
γ=0 the QAGLR reduces to the GL-Dong method. Moreover,



it is seen how introducing little quality-aware regularization
(γ=0.25) mitigates the error in the reconstruction by promot-
ing connections of the virtual sensors with the high-precision
nodes. For instance, for σ2={1.5,2.0} the GL-QAGLR with
γ=0.25 is able to obtain an average test R2 of 0.78 and 0.71
respectively, improving the performance of the GL-Dong by
0.11 and 0.20. In the extreme case, where the regularization
is large (γ=0.50), the reconstruction performance is invariant
regardless of the noise introduced since the resulting graph
connects the virtual sensors only with high precision nodes,
resulting in an average test R2 of 0.76. Therefore, we can
conclude that there exists a trade-off between the goodness-
of-fit of the learned graph and the robustness it provides.
However, we highlight that introducing a low level of reg-
ularization may result in a good graph and a graph that is
more robust against possible LCS failures.
4 Conclusions

In this paper, we have proposed the quality-aware graph
learning regularization (QAGLR) framework for GL mod-
els that allows the introduction of sensor quality-aware in-
formation from a heterogeneous sensor network into a GL
model. This solution arises from the need to force connec-
tions between high-precision sensors and LCSs to perform
signal reconstruction tasks more reliably since in the air qual-
ity monitoring paradigm sensors of different quality coexist
in a network. The results have shown how in cases where
LCSs can become noisy, forcing connections with reliable
sensors can mitigate the error in the case the graph is fed
to a graph signal reconstruction model. More precisely, we
have shown the case of two virtual sensors implemented us-
ing a graph filter. The regularization framework has allowed
mitigating the impact of the noise introduced in the LCSs
given the robustness provided to the learned graph by en-
couraging connections of LCSs with more reliable sensors,
therefore, taking into account the quality of the sensors. As
a future work, sensor placement in heterogeneous networks
is crucial, i.e., the study of high-precision nodes placement
to provide the network with robustness in the long term.
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dergheynst. Graph signal processing: Overview, challenges, and ap-
plications. Proceedings of the IEEE, 106(5):808–828, 2018.

[24] A. Sandryhaila and J. M. Moura. Big data analysis with signal pro-
cessing on graphs: Representation and processing of massive data sets
with irregular structure. IEEE Signal Process. Mag., 31(5), 2014.

[25] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains. IEEE Signal Process. Mag., 30(3):83–98, 2013.

[26] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A
comprehensive survey on graph neural networks. IEEE transactions
on neural networks and learning systems, 32(1):4–24, 2020.

[27] Z. Xiao, H. Fang, and X. Wang. Distributed nonlinear polynomial
graph filter and its output graph spectrum: Filter analysis and design.
IEEE Transactions on Signal Processing, 69:1725–1739, 2021.


	Introduction
	Quality-aware GL regularization
	General GL framework
	QAGLR framework

	Experimental evaluation
	Heterogeneous low-cost air quality sensor network
	QAGLR: learning the graph
	QAGLR: data reconstruction with noisy sensors
	QAGLR: virtual sensing

	Conclusions
	References

