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Abstract
Pervasive applications over large-scale, distributed em-

bedded devices and the Internet of Things (IoT) demand
precise coordination with the network; for example, sev-
eral such applications, like collaborative video streaming and
live analysis, augmented reality, etc., need continuous mon-
itoring of network throughput and adapt the application be-
havior accordingly. Although the idea of network through-
put prediction is not new and quite dated, in this paper, we
show that the existing approaches fail to correctly infer the
throughput when the network operator or the device change,
and thus, not generic enough for Internet-scale applications.
We propose FedPut, a novel approach that allows collabo-
rative training across different client hardware by capturing
throughput variations based on devices’ sensitivity towards
the corresponding network configurations. Rigorous evalu-
ations show that FedPut outperforms various standard base-
line algorithms with more than 80% R2-score over different
datasets. We also analyze the performance of FedPut over a
network-aware streaming media application and demonstrate
its efficacy for various application scenarios.
1 Introduction

Rapid deployment of 5G networks has multiplied the de-
mand for various large-scale, multi-connectivity, high band-
width applications, such as live broadcast from thousands of
cameras, collaborative high-definition video streaming, re-
mote and visual inspections, facility management through
augmented reality, connected vehicles, etc. These applica-
tions are required to deliver precise Quality of Experience
(QoE) to the end-users over thousands of interconnected de-
vices, for which the applications tune themselves to the con-
dition of the underlying network. An example use case
is Adaptive Bitrate (ABR) collaborative video processing
and streaming over mobile edges [31, 32, 4], which tunes
the video playback quality over the edge devices according
to the network performance counters in order to meet the
QoE requirements of the end-users. To enable such effec-
tive use of network-related information by different applica-
tions, several recent works have focused on designing APIs
for Network-aware Application (NAA), such as Mobile and
Wireless Information Exposure (MoWIE) [38] and Network
Exposure Functions (NEF) for 5G networks. However, for
NAA(s) to decide the state, a primary requirement is to es-
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timate the perceived network throughput for the correspond-
ing applications accurately. Notably, there is a plethora of
studies conducted on throughput prediction for cellular net-
works [1, 2, 5, 28, 25, 24, 27, 26, 36, 34], albeit most of these
rely on time series models [1], linear regression, trained ran-
dom forests and support vector regression [28, 27, 36], as
well as Deep Neural Networks (DNNs) [33, 19, 24] all of
which are trained in a supervised manner. Subsequently,
to accommodate such a supervised regime, these models are
often trained using datasets acquired in restricted settings
with different network parameters such as the signal quality,
cellular connectivity, signaling parameters, mobility state of
the device, etc. recorded in controlled environments.

Undoubtedly, such an approach becomes unrealistic for
5G as it is supposed to be characterized by wide diversity.
For example, in the initial phase of deployment, 5G net-
works will coexist with the legacy 4G Long Term Evolu-
tion (LTE) networks in the non-standalone mode of 5G. This,
in turn, would result in a scenario where both low-power gN-
odeBs (gNBs) as well as legacy eNodeBs (eNBs) will exist
in congruence. The situation’s complexity will be further
aggravated as the same operators may choose to support dif-
ferent technologies depending on the user’s location, which
will heavily influence the application’s perceived through-
put depending on the underlying technology. In addition,
5G also promises to support a wide range of devices, from
low-power, short-range IoT devices to long-range mobile de-
vices. This heterogeneity in different communication hard-
ware often has a profound impact on the application’s overall
performance as factors like receiver sensitivity directly im-
pacts the throughput, which, together with battery capacity,
influences the final performance. Naturally, a model trained
in restricted settings over a limited set of devices will fail to
generalize, given this wide range of variations across differ-
ent network technologies and devices.

A prudent solution in such a case can be in-situ learning,
which allows the model to continuously capture the network
states and device-specific parameters on the fly and retrain it-
self accordingly. However, for each device to train individual
models, there will be a requirement for an extensive train-
ing dataset which might be difficult to obtain. Also, this
model though more personalized, will not be robust to other
devices or network settings, if used. An idea to mitigate this
problem of dearth of training datasets and still train a ro-
bust model in a heterogeneous environment can be through
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Figure 1. Cross-technology Knowledge Transfer from 4G
to 5G. An effective way of performing throughput predic-
tion over 5G can be done using a pre-trained model with
a 4G dataset. We tested the proposed idea over publicly
available 5G datasets along with an in-house collected 4G
dataset. The results prove that pre-training with a 4G
dataset gives more accurate throughput over 5G.

extracting knowledge collaboratively obtained across dif-
ferent devices without violating their data privacy. Interest-
ingly, we find that Federated Learning (FL) provides us
with an avenue to train a global model across different de-
vices over varying network technologies while maintaining
the data privacy.

However, simply using the vanilla FL settings may fail
to capture different layers of heterogeneity; for example,
with 4G legacy devices still in use, a global model trained
in FL setting over 5G may get colluded with the occasional
data coming over 4G due to mobility. No wonder, when
we perform a similar experiment, as shown in Figure 1, we
observe more accurate predictions of throughput over 5G
if we use a pre-trained model that has been bootstrapped
using datasets recorded over 4G. Understanding these
benefits, in this paper, we propose FedPut, which uses
the cross-technology knowledge extracted from 4G and
applies it over 5G in a collaborative FL-setup for accurate
throughput predictions (Section 6). The key contributions of
this paper are as follows.

1. Collaborative in-situ learning for network throughput
prediction. We show that a federated approach alleviates
the problem of scarcity of data of 5G-enabled devices while
making the model more robust and generalized across differ-
ent hardware and network technologies.
2. The 4G bootstrapping. We show that the conventional
approach of randomly initializing a model is ineffective. On
the contrary, bootstrapping the initial model with diverse
data obtained over 4G can actually boost the model for more
accurate throughput predictions while making the system ro-
bust to data from legacy devices as well.
3. Performance analysis over diverse setups and a PoC
application. From a thorough performance analysis over
three different datasets collected from both real and simu-
lated environments (Section 3), we show that FedPut can at-
tain > 90% mean R2 score for throughput prediction in a
multi-network multi-device environment, whereas the clos-
est baseline has < 80% mean R2 score (Section 7). The effi-
cacy of the throughput predictor has also been validated with
a proof-of-concept (PoC) ABR streaming application.

2 Related Work
Throughput prediction has been studied extensively for

WiFi Networks [8], Ethernet LAN [7] and for cellular net-
works [12, 36, 39, 28, 28, 24, 24, 19, 20], as summarized
in Table 1. Time series forecasting-based throughput pre-
diction methods have used statistical methods [26, 3, 13,
28] such as Moving Average (MA), Auto-Regressive Mov-
ing Average (ARMA), or Auto-Regressive Integrated Mov-
ing Average (ARIMA), Exponential Smoothing, Exponen-
tially Weighted Moving Average (EWMA), etc. However,
[27, 25, 18] have inferred that the cellular network through-
put data bears a non-trivial relation with the network param-
eters as well as the UE characteristics such as phone model,
UE speed, etc. [18]. Hence, time series models, like ARIMA
and EWMA, have been found to perform not as well as
their ML counterparts, as also shown in various other later
works [27]. LinkForecast [36], one of the earliest learning-
based throughput prediction algorithms, has used the popular
Random Forest (RF) algorithm. The work shows that in ad-
dition to upper layer information, such as historical through-
put, lower layer information like Received Signal Strength
Indicator (RSSI), Reference Signal Received Power (RSRP),
Channel Quality Indicator (CQI), etc., are integral towards
accurate network throughput prediction.

In [28], authors have used historical throughput data
to predict the average throughput over a finite future time
window in a trace-driven controlled lab environment. The
proposed throughput prediction of [28] has been used in
[18] to improve the QoE performance and energy consump-
tion of ABR video streaming algorithms. Various recent
works [29, 23, 3, 27] have explored deep learning models
for cellular throughput prediction. In [27], the authors have
compared the performance of ML algorithms such as RF Re-
gressor and Support Vector Regressor with Long Short Term
Memory (LSTM) for both raw data input and the summa-
rization approach of [28]. An important observation is that
the LSTM model has a shorter initialization and running time
than the RF or SVR. [3] compares the throughput prediction
performance of ARIMA, K-nearest neighbor, Support Vector
Regression, Ridge Factor Regression, RF Regression, and
LSTM. The results show that the RF algorithm outperforms
all the other algorithms. The authors attribute the improved
performance of RF to its generalization capability, which is
made possible by introducing an additional level of random-
ness to the features. A location-independent throughput pre-
diction approach using LSTM is proposed in [29]. It shows
that the selection of the hyperparameters, like the ‘lag’ of
LSTM, significantly affects the algorithm’s performance. A
combination of LSTM and CNN is also used in [37] to pro-
pose an architecture called Spatio Temporal Cross-domain
Neural Network (STCNet), which predicts the city-wide cel-
lular network throughput using cross-domain data, such as
base station information, Point-of-Interest (POI) distribu-
tion, and social activity level. Authors in [22] have also used
transfer learning for predicting CQI of UEs across different
cities. Different cities serve as the source and target domains
in this method. A combination of LSTM and Bayesian Fu-
sion has been used in [15] to predict the bandwidth in dif-
ferent mobility scenarios, although it does not consider the



Table 1. SOTA Approaches for throughput prediction
Ref. Network

(3G/4G/5G
or WiFi)

Method used Geographical Area Covered

[8] WiFi MLP Real home WiFi network
[36] 4G/LTE RF Indoor and Outdoor 4G cellular data
[28] 4G/LTE RF Static, pedestrian, bus, train, car, and

highway
[18] 4G/LTE RF Major metropolitan and sub-urban

cities of India
[29] 4G/LTE RF, LSTM, SVR,

DNN
Collected from two cities Amberg and
Aschaffenburg

[37] GSM,
CDMA,
4G/LTE

Transfer Learning
(TL) based LSTM

Across different regions in the city of
Milan

[15] 4G/LTE
and
HSPA

LSTM RNN Long bandwidth traces on New York
City MTA bus and subway.

[17] 4G/LTE,
5G

RF with XG-
Boost, SVR

Driving in urban, suburban, and rural
areas, as well as tests in large crowded
areas

[19] 5G DL based Gradi-
ent Boosting and
Sequence to Se-
quence algorithms

Urban areas covering roads, railroad
crossings, restaurants, coffee shops,
and outdoor recreational parks in Min-
neapolis

impact of network parameters on throughput.
A recent work [17] on 5G throughput prediction has com-

pared the performance of RF, Extreme Gradient Boosting
Decision Trees (XGBoost), Multilayer Perceptrons (MLP),
and Support Vector Regression (SVR). Due to the limited
availability of 5G commercial networks, the authors have
first tested these algorithms on different 4G LTE network
scenarios for validation. Subsequently, they have extended
it to a 5G non-standalone network and then a 5G standalone
network. [19] treats the throughput prediction problem in
5G as both a classification and a regression problem using
Gradient Boosting and Sequence to Sequence algorithms.
The authors have also developed a 5G testbed for through-
put measurement. Their analysis reflects that various factors
govern the 5G throughput performance and differs signifi-
cantly from its 3G or 4G counterparts. In [20], the authors
have collected real-world 5G datasets based on two major
5G network service providers. Here authors have also stud-
ied the impact of throughput prediction in 5G video stream-
ing applications. Authors in [21] have developed an adaptive
bitrate (ABR) video streaming application that improves the
video playback quality and energy consumption by tuning
the playback buffer to the state of the underlying 5G net-
work, which is predicted using an LSTM based model. In
[6], authors show how frequent handovers cause wild fluc-
tuations in 5G throughput, which further degrades the appli-
cation performance. They designed a handover prediction
system to infer the correct network throughput needed for
improving QoE for 5G video streaming applications.

Takeaways: As mentioned above and summarized in Ta-
ble 1, all existing throughput prediction algorithms operate
on centralized datasets, wherein they are trained in a central
server using data from all connected User Equipments (UEs).
However, reluctance to share proprietary network informa-
tion by users and operators, as well as data privacy concerns,
can make such centralized training non-lucrative. Further-
more, the diversification of 5G devices and user behavior re-
stricts the applicability of a centralized throughput prediction

algorithm. Therefore, these algorithms can perform well for
the same trained datasets, but it is not fit for prediction in a
multi-network, multi-device dataset. In the next section, we
discuss data collection and a series of pilot experiments to
highlight the limitations of these existing works.

3 Data Acquisition
The primary objective of this paper is to develop a robust

in-situ model that can seamlessly predict the 5G cellular net-
work throughput at any time instance from a set of network
characteristics sensed by the end-device. Additionally, in
this context, the term robustness means that the framework
should be resilient to the fluctuations caused by the hard-
ware components, the area-specific characteristics like popu-
lation density, and variances in network characteristics intro-
duced by different demographics and service providers’ net-
work architectures. However, a learning model for through-
put prediction needs a vast amount of data to cover the di-
versity and scale of parameters inherent in cellular network
modeling. To understand the heterogeneity across multi-
network technologies, operators, device hardware, etc., we
utilize three different datasets – (a) in-house datasets col-
lected over legacy 4G networks, (b) simulated 5G dataset
using ns3−mmwave [16] (5G-Simu), and (c) three publicly
available 5G datasets (5G-Pub). The detail follows.
3.1 In-house Real 4G Dataset

The 4G network data used in this work has been col-
lected considering the following primary factors: different
user locations, mobility, Network Service Providers (NSP),
and phone models. We have used two different smartphones
for the setup – a Micromax Canvas Infinity (M1) and a
Moto G5 (M2). The throughput of these mobile phones
has been recorded in buses, cars, and while walking in five
different geographical locations in India (summarized in Ta-
ble 2). Cities 1 and 2 are large metropolitan areas, whereas
City3, City4, and City5 are suburban areas. All these cities
have a high population density (a minimum of 2290 per-
sons/sq.km.). We have used the mobile Internet connections
of three leading service providers in the country – Airtel, Re-
liance JIO, and Vodafone Idea (Vi). The entire corpus of data
traces has been collected over eleven months and amounts to
more than 50 GB. Due to the difference in setup and session
length, the size of individual datasets is different, as indi-
cated in Table 2. Furthermore, as observed from the table,
the throughput also shows variations in mean (Y) and stan-
dard deviation (δY) based on the location, phone model, the
service provider, and session length.

The throughput profiling primarily focuses on file down-
load applications with workloads of 6 MB, 100 MB, and
1 GB. An HTTP client-server program has been designed
wherein the client runs on a rooted Android phone, and the
server runs on an Amazon Web Server (AWS). Radio-related
information has been collected using NetMonitorLite App1,
and location and speed information have been captured us-
ing GPS Logger App2. The throughput traces have been col-

1https://network-monitor-lite.soft112.com/ (Accessed: June
22, 2023)

2http://www.basicairdata.eu/projects/android/
android-gps-logger/ (Accessed: June 22, 2023)

https://network-monitor-lite.soft112.com/
http://www.basicairdata.eu/projects/android/android-gps-logger/
http://www.basicairdata.eu/projects/android/android-gps-logger/


Table 2. Noise variance in throughput data for various
input-related factors and the size of the datasets

Cities Phone
Model NSP Avg. Speed

(m/sec) Y(Kbps) δY(Kbps) No. of
entries

City1 M1 Airtel 4.23 0.77 1.09 1376
City1 M1 JIO 4.03 0.52 0.85 2273
City1 M2 JIO 8.21 0.43 0.56 1518
City1 M1 Vi 5.97 0.17 0.67 6201
City2 M2 Airtel 12.94 0.21 0.31 7932
City2 M2 Airtel 5.07 0.31 0.81 7496
City3 M1 Airtel 14.16 0.6 0.92 7354
City4 M2 JIO 2.05 0.29 0.36 11008
City5 M2 JIO 0.06 0.69 0.024 965

Table 3. Noise variance in 5G throughput data for 10 UEs
in the simulation

User Avg. Speed (m/sec) Y(Mbps) δY(Mbps)
1 12.8 8.53 7.48
2 16.9 3.15 3.97
3 12.5 8.36 8.39
4 18.2 3.31 3.87
5 13.1 4.13 5.93
6 13.7 9.14 13.47
10 21.5 3.42 5.43

lected using tcpdump and analyzed using Wireshark.
The NetMonitorLite App records the Mobile Country

Code (MCC), Mobile Network Code (MNC), Location Area
Code (LAC), and, Cell ID (CID) of the associated base sta-
tion. We have used these metrics to find the geographical co-
ordinates of the Base Station (BS) from OpenCellId3. The
distance of UE from the BS was calculated from the UE and
BS location coordinates. Finally, the following parameters
have been captured in this dataset – (a) Radio Channel met-
rics: RSSI, data state, number of handover events, (b) Loca-
tion metrics: UE geographical coordinates, UE speed, dis-
tance of UE from BS, and (c) Downlink throughput.
3.2 Synthetic 5G Dataset (5G-Simu)

The simulated data traces have been collected from a
5G mmWave network setup in ns3 network simulator4 with
video streaming as the primary workload. The simulation
scenario for simulating the behavior of a 5G UE has been
set up using the ns3−mmwave module [16]. Some essential
functions associated with the video download at the UE, such
as ABR streaming algorithms, have been done in a Python
setup. An HTTP-based DASH video streaming server that
hosts the video segments has also been implemented. The
details of the simulation setup are as follows.

The simulation scenario, shown in Figure 2(a), is a 1×1
square kilometer area, inside which 10 low-power 5G gen-
eral NodeBs (gNBs) operating at the 28 GHz frequency
range are distributed uniformly. These gNBs govern the data
communication between the UEs. A LTE evolved NodeB
(eNB) is located centrally in the simulation area. It oper-
ates in the sub-7GHz range and oversees the control chan-
nel communication between 5G gNBs. We have considered
two different network loads corresponding to which 2 and
10 mobile UEs are distributed uniformly inside the simula-
tion area. The mobility of this UEs has been modeled us-
ing the Random Walk mobility model. The average veloc-

3OpenCellId: https://opencellid.org/ (Accessed: June 22, 2023)
4https://www.nsnam.org/ (Accessed: June 22, 2023)
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Figure 2. ns3-mmwave simulation setup – (a) deploy-
ment map, (b) simulation framework

ity of the UEs varies between 5m/s to 21m/s (Details in Ta-
ble 4 and Table 3). We have deployed 10 buildings inside
the said simulation area to capture the effects of multipath
fading and shadowing. Other simulation parameters are the
same as in [16, Table I].

Each UE has an ongoing video streaming application
running on its device, for which the throughput data has
been collected. The Dynamic Adaptive Streaming over
HTTP (DASH) video streaming has been implemented us-
ing a server-client system operating in the downlink. The
DASH client application installed over the ns3−mmwave
UE fetches the video data rates from the video server in-
stalled over an ns3−mmwave remotehost. A Python DASH
ABR proxy server connected to the video client applica-
tion hosts the Pensieve ABR streaming algorithm [14]. The
role of this Python server is to decide the next video chunk
quality based on the video information received from the
UE. In Figure 2(b), we have shown our simulation frame-
work. Each simulation scenario has been executed 10 times
with a random initial seed. From the simulation, the data
recorded at each UE includes - (a) network-related param-
eters, such as the network throughput, RSSI, SINR, Modu-
lation and Coding Scheme (MCS), data state and the num-
ber of handovers, and (b) UE parameters, such as dis-
tance from the gNBs, device speed and energy consump-
tion per bit. After the data collection phase, we further
processed these data for playing the role of throughput pre-
diction. We have made both the 4G and 5G datasets pub-
licly available at https://anonymous.4open.science/r/
fedput-implement-0E71/README.md.

https://opencellid.org/
https://www.nsnam.org/
https://anonymous.4open.science/r/fedput-implement-0E71/README.md 
https://anonymous.4open.science/r/fedput-implement-0E71/README.md 


Why simulated 5G? 5G technology remains within the de-
velopment phase, and we may have to wait for a short while
before having an operational 5G network, as outlined by
3GPP standards, primarily in the middle and low-economy
countries because of which it is still not accessible to many
users across the globe. To understand the throughput be-
havior of next-generation cellular networks, many publicly
available 5G datasets [24, 19, 20] can help. Another alterna-
tive can be the simulated 5G dataset. The advantage of a sim-
ulated dataset is that it can be executed multiple times under
the same network configuration seed and help regenerate the
traces. One can tune the network configuration, and change
the deployment scenario and topology for the data collection
phase. Moreover, 1s run with a sampling frequency of 100
(or 10 ms time interval for generating logs) can provide 100
entries of throughput, thus producing adequate data for an
accurate throughput prediction.

3.3 Publicly Available 5G Datasets (5G-Pub)
We have utilized three publicly available 5G datasets – (1)

Lumos-5G [19], (2) Irish [24] and MN-Wild [20].

3.3.1 Lumos-5G dataset
In [19], authors have conducted a measurement study of

commercial 5G mmWave services in Minneapolis, MN, a
major U.S. city, focusing on the downlink throughput as
perceived by applications running on UE. They have de-
veloped their Android application to log information such
as UE’s geographical coordinates, moving speed, compass
directions, downlink throughput (reported using iperf 3.7),
radio type (4G/5G), signal strength (LTE – RSRP, RSRQ,
RSSI & 5G – SSRSRP, SSRSRQ, SSRSSI), handover events,
etc. For data collection, they have selected three urban areas
with mmWave 5G coverage – (1) an outdoor four-way traf-
fic intersection, (2) An indoor mall area inside Minneapolis-
St. Paul (MSP) International Airport, (3) a 1300-meter loop
near U.S. Bank Stadium covering roads, railroad crossings,
restaurants, coffee shops, and outdoor recreational parks.
With Verizon’s 5G UW network, the measurement study is
being conducted for 6 months, using four Samsung Galaxy
S10 5G smartphones.

3.3.2 Irish dataset
In [24], the authors have generated 5G trace datasets

collected from a major Irish mobile operator. They have
considered two mobility patterns (static and car) and two
user application patterns (video streaming and file down-
load). The dataset consists of (1) channel-related metrics
such as signal strength (RSRP, RSRQ, SNR, CQI), neigh-
boring cell RSRP, RSRQ, (2) context-related metrics (e.g.,
GPS of the device, device velocity), (3) cell-related metrics
such as eNBs ID, and (4) throughput information for both
uplink and downlink. For obtaining the dataset, they have
used G-NetTrack Pro, an Android network monitoring appli-
cation. The dataset contains 83 traces, with a total duration
of 3142 minutes, using a Samsung S10 5G Android device.

3.3.3 MN-Wild
In [20], authors have carried out an in-depth measurement

study of the performance, power consumption, and applica-
tion QoE of commercial 5G networks in the wild. They have

Table 4. Noise variance in 5G throughput data for two
UEs in the simulation

User Avg. Speed (m/sec) Y(Mbps) δY(Mbps)
1 5.86 18.53 17.48
2 14.1 14.114 12.57

Table 5. Raw features available across different datasets
Feature
Name 4G Lumos-5G Irish MN-Wild Synthetic

5G
Timestamp

Lat, Long X

Radio type (4G/5G)

Speed

Operator Name X X X

Horizontal Handover

Vertical Handover X X X
Signal Strength

(RSRP/RSRQ/RSSI)

SNR X

CQI X X X

Throughput

Data State X X

Distance from cell X X X

examined different 5G carriers (Verizon and T-Mobile), de-
ployment schemes (Non-Standalone, NSA vs. Standalone,
SA), radio bands (mmWave and sub-6-GHz), Radio Re-
source Control state transitions for power modeling, mobility
patterns (stationary, walking, driving), client devices such as
Samsung Galaxy S20 Ultra 5G (S20U) and Samsung Galaxy
S10 5G (S10), and upper-layer applications (file download,
video streaming, and web browsing). The entire measure-
ment studies were conducted in two US cities (Minneapolis,
MN and Ann Arbor, MI), where both carriers have deployed
5G services. The dataset is publicly available in GitHub5.
However, T-Mobile works under low-band 5G, deployed in
both SA and NSA modes. Since our focus is more on the
mmWave characteristics, we have selected only the dataset
corresponding to the default mode of Verizon carrier. Among
the two cities’ data, we find that the dataset corresponding to
Minneapolis city (MN) contains throughput and other im-
portant UE information, such as the speed of the UE, which
is not available for the Ann Arbor (MI) dataset. Therefore
here, we have selected the MN dataset. We name it as MN-
Wild. The feature space for all these datasets is summarized
in Table 5.

4 Pilot Study
Before diving into the design of FedPut pipeline, we first

perform an in-depth analysis of some of the existing state-
of-the-art algorithms for multi-network (across 4G and 5G
systems) and multi-device throughput prediction. The detail
follows.
4.1 Issues with SOTA Throughput Predictors

As we discussed earlier, recent approaches for 5G
throughput prediction have primarily used two different
state-of-the-art models – LSTM [27] and RF [17]. To ana-
lyze their performance over multi-network and multi-device

5https://github.com/SIGCOMM21-5G/artifact (Accessed: June
22, 2023)

https://github.com/SIGCOMM21-5G/artifact


predictions, we perform three separate experiments – (a)
train the model using one dataset from 5G-Pub (see Sec-
tion 3.3), and then test with the held-out data from the same
or a different dataset from 5G-Pub, (b) train the model using
a centrally mixed 4G & 5G-Pub dataset, and then train using
the held-out data from 5G-Pub, and (c) train the models us-
ing the 4G dataset and then test using 5G-Pub or the held out
4G data.

Table 6. Percentage R2 score for throughput prediction
over 5G public datasets for training using SOTA ap-
proaches

Train set Lumos-5G (L) Irish (I) MN-Wild (M)
Test set L I M L I M L I M
LSTM [27] 95.1 58.2 57.7 46.5 94.9 77.5 68.2 21.5 96.8
RF [17] 81.4 < 0 < 0 < 0 18.7 < 0 < 0 < 0 90.6

For the first experiment, we consider the three datasets
from 5G-Pub – Lumos-5G (L), Iris (I), and MM-Wild (M).
We train the two models (RF and LSTM) using 70% data
from one of these three datasets and then test using either
the remaining 30% held-out data from the same dataset or
one of the two other datasets. We use the features which
are common to all three datasets (Table 5). To evaluate
the performance of the models, we use the percentage R2
score. The results are summarized in Table 6. The table
indicates that for both models, the maximum performance
is achieved when the models are trained and tested over the
same dataset, emphasizing performance benefits for training
and testing over the same data collection environment. How-
ever, for cross-environment testing, we observe a significant
drop in the R2 score. This clearly indicates that the state-
of-the-art throughput predictors are biased towards the
environment from where the data is collected.

Table 7. Percentage R2 score for throughput prediction
for 4G and the merged datasets for training using SOTA
approaches

Train Dataset 4G Merged
Test Dataset L I M 4G L I M
LSTM [27] 83.5 87.03 77.1 98.18 57.81 60.39 51.77

RF [17] 12 18.2 8.96 64.3 < 0 < 0 < 0

Next, we train the two models over a merged dataset
where we mix the data (70% train data) from all four
datasets, i.e., in house 4G dataset and the three publicly avail-
able 5G datasets, and then test the model’s performance over
the remaining 30% held-out data from the three 5G datasets.
We observe that prediction models perform miserably poor
over the test data (see Table 7). We notice that the diver-
sity in the mixed data confuses the model when trained with
the merged dataset. The reason is the differences in respon-
siveness for different UE hardware models and the variety
in network configurations across operators and technologies.
Thus, the prediction model cannot capture such diversity,
particularly the device and technology diversities over a lim-
ited dataset. The RF model results in a negative R2 score,
indicating that the model learns an opposite behavior.

Finally, we perform cross-technology throughput predic-
tion. For this purpose, we train the model with the 4G dataset
and test it over the different 5G-Pub datasets. This time also

we observe a fall in the prediction accuracy compared to
the experiment when the prediction was made for the same
dataset (see Table 7). It is also evident that these state-of-
the-art throughput prediction approaches are not suitable for
multi-network scenarios. However, one interesting obser-
vation from this analysis is that the models perform a little
better when trained on the 4G dataset and tested over a 5G
dataset in comparison to multi-network 5G datasets. The 4G
dataset, being more robust and stable than the 5G ones, can
demonstrate specific patterns in the throughput, which the
5G models can use for bootstrapping. In the next set of ex-
periments, we explore this further.
4.2 Bootstrapping with 4G Data
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Figure 3. Analysis of features across 4G and 5G (a)
Spearman correlation of the input features with through-
put for 4G dataset and different 5G datasets like Irish,
Lumos-5G, and MN-Wild datasets (* - indicates p-
value< 0.05) and (b) variation in the RSRP distribution

To answer the above question, we start with pilot exper-
iments considering the analysis of 3 primary features used
in the existing throughput predictors. These features are –
Speed of the UE, RSRP, and the number of handovers ex-
perienced by the UEs, as recorded in the publicly available
datasets like Irish, Lumos-5G & MN-Wild, and the collected
4G dataset. To begin with, we first observe the Spearman
correlation of each of these features with the target variable,
which is the downlink throughput. As shown in Figure 3(a),
we observe strong consistency between the primary features
regarding their impact on the overall throughput. Interest-
ingly, this consistency is also present across the technologies,
allowing us to monitor, exploit, and analyze the existing data
available from legacy 4G devices to develop a more general-
ized model for throughput prediction in 5G. However, amidst
all these opportunities, there are specific challenges.

The first challenge we observe is the usual shift of data
distribution across technologies like 4G to 5G. For example,
the typical median RSRP values for 5G are slightly higher
than that of the RSRP values observed in the 4G dataset.
RSRP value primarily depends on the deployment scenar-
ios; for example, if the transmission power of the co-channel
neighbor base stations is high, then the RSRP value may de-
grade due to high interference. It also depends on the re-
ceived signal strength of the UE, which is not similar for 4G
and 5G. Thus, we have a significant variation in the distribu-
tion of RSRP values for the 4G and 5G datasets, as shown in
Figure 3(b). Such domain shifts and differences in the range
of values can impact the generalization of any model. Thus,
a straightforward global model trained on 4G data might



−100 −50 0 50 100
tsne-2d-one

−100

−50

0

50

100

ts
ne

-2
d-
tw

o

Micromax Moto_G5

(a)

−100 −50 0 50 100
tsne-2d-one

−100

−50

0

50

100

ts
ne

-2
d-
tw

o

Airtel Jio Voda

(b)

−100 −50 0 50 100
tsne-2d-one

−100

−50

0

50

100

ts
ne

-2
d-
tw

o

Irish Lumos-5G MN-Wild

(c)

Figure 4. Analysis of heterogeneity in the features across 4G and 5G technologies using t-SNE (a) device heterogeneity
in 4G, (b) operator heterogeneity in 4G, (c) heterogeneity in publicly available 5G datasets
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Figure 5. System framework of FedPut

not identify the variations correctly, leading to erroneous
throughput predictions, similar to the case with the central-
ized dataset. Secondly, a deeper analysis of the collected 4G
dataset reveals that the feature space varies significantly with
the underlying hardware and the service provider (see Fig-
ure 4). Considering the consistency of feature relations with
throughput across 4G and 5G, we anticipate a similar pres-
ence of heterogeneity in 5G data. Such heterogeneities indi-
cate local device and operator-specific patterns, which might
reduce the performance of any standalone global model ini-
tialized and trained at some fixed instance in time.
5 Brief Overview of the Proposed Solution

Say a mobile device M from a geographical area G is
connected to an available operator X running an application
A . The primary objective of this paper is to develop a robust
in-situ model that can seamlessly predict the 5G cellular net-
work throughput Yt = f (St) at any time instance t from a
set of network characteristics St sensed by the end-device.
Additionally, in this context, the term robustness means that
the framework should be resilient to the fluctuations caused
by the hardware components of M , the area-specific char-
acteristics like population density, and variances in network
characteristics introduced by different operators.

Given the heterogeneity of 5G deployments in terms of
the service providers or underlying communication hardware
of the UEs, a central learning model for throughput predic-
tion cannot capture device-specific and network-specific pa-

rameters. A possible solution can be personalized in-situ
learning, which demands an extensive training dataset that
is difficult to obtain due to the nascent deployment of 5G
primarily in the middle and low-economy countries. We find
Federated Learning (FL) based approach can mitigate this
problem of a dearth of the training datasets and still train a
robust model in a heterogeneous setup via extracting knowl-
edge collaboratively across different devices [10, 9, 11]. Un-
derstanding the challenges and opportunities from the pilot
experiments, we develop FedPut as shown in Figure 5. It
consists of two main components, (i) A central server, and
(ii) various 5G end-devices working in a federated setup.
The central server hosts a recurrent neural network-based
global model. The model consists of two layers of LSTM
cells (128 units each) followed by a fully connected layer.
After every LSTM layer, a dropout of 0.2 is added as a form
of regularization. The global model is summarized in Ta-
ble 8. The two layers correspond to the two parts of the
model - the first LSTM layer is the global part MG, whose
weights can be updated globally for all users, and the sec-
ond LSTM layer ML is specific to individual users. The cen-
tral server trains this global model with the preprocessed 4G
dataset, due to its superior performance in predicting net-
work throughput with 5G test datasets (summarized in Ta-
ble 7). It then shares this global model, initialized with the
4G data, with all the 5G end-devices. Each end-device then
fine-tunes the local model with its locally collected prepro-
cessed dataset.

6 Designing FedPut
The next set of tasks that we carry out through a series of

preprocessing steps includes – (a) noise removal and (b) data
formatting.

Table 8. Model architecture details
Layer LSTM1 Dropout1 LSTM2 Dropout2 Desnse

Output (5, 128) (5, 128) (128) (128) (1)
Param 69120 0 131584 0 129

6.1 Preprocessing
In typical 5G networks, there are several hidden parame-

ters that have a direct impact on the throughput. However, all
these hidden latent factors cannot be measured straight away.
For example, the load condition of the base stations cannot
be measured at the user end. Similarly, the users cannot



quantify the effect of resource scheduling algorithms with-
out input from the service providers. In this work, we treat
the effect of these latent parameters as noise. So in the pre-
processing step, the dataset is first passed through a Gaussian
filter to remove the effect of noise.

Once the preprocessing steps are performed on the
dataset, in the next step, we format the data into timesteps
so that it can be used to exploit the time-series nature of the
dataset for prediction using the designed model discussed in
the following subsection. We format the data as follows.
At every time step i, we create (ψ⃗i

X , ψ⃗
i
Y ) - two data ma-

trices from the filtered dataset for the domain 4G or 5G.
Here, X = {X1,X2, ...,Xn} corresponds to the set of input fea-
tures in the filtered dataset, and Y corresponds to the target
throughput. ψ⃗i

X represents the matrix of network parameters
and location-related input features from timestep i−H to i
for a historical time window H, i.e.,

ψ⃗i
X =


X (i−H)

1 X (i−H)
2 ... X (i−H)

n

X (i−H−1)
1 X (i−H−1)

2 ... X (i−H−1)
n

...
...

...
...

X (i−1)
1 X (i−1)

2 ... X (i−1)
n

 . (1)

ψ⃗i
Y is the vector of downlink throughput from i−H seconds

to i−1 seconds, represented as.,

ψ⃗i
Y = [Y (i−H) Y (i−H−1) · · ·Y (i−1)], (2)

6.2 The Global Model
Traditionally in a federated setup, the model deployment

starts with an initialization step that includes setting up the
global model. In this paper, we exploit the existing legacy
4G technology to obtain a bootstrapping dataset during the
global model’s initialization. The first step in such cross-
technology setups is defining a judicious set of features that
can then be used to initialize and train the global model.
6.2.1 Defining the Feature Space

Notably, the user throughput in cellular networks de-
pends on the user location, distance from the connected base
stations, user speed, and network-related parameters, such
as RSSI, RSRP, MCS, data state, number of handovers,
the technology of associated and neighboring base stations,
among others. In this paper, we first select a standard set of
available features both in the bootstrapping 4G dataset and
the local 5G datasets. This set of features chosen from these
two datasets includes the distance from the connected base
stations, user speed, RSRP, and the number of handovers.

Once these features are defined, we next start developing
and bootstrapping the global model as follows.
6.2.2 Initialization and Training of Global Model

The throughput prediction algorithm aims to predict the
cellular network throughput over a window of W seconds
into the future based on network-related and location param-
eters, and the downlink throughput of the previous ‘H’ sec-
onds. To train the global-LSTM network in this phase, we
have used the in-house 4G dataset. The details of the dataset
are provided in Section 3.1. Here the objective is to learn the
weights θ4G for both the LSTM layers.

The LSTM network in the global domain is trained using
the 4G dataset, D4G , specifically on ψ⃗i

X ,4G, ψ⃗
i
Y,4G (see equa-

tion 1, 2) to learn the weights θ4G by minimizing the loss
between the predicted average throughput Ŷ (i+W )

4G and the ac-

tual average throughput Y (i+W )
4G (also known as mean average

error). The predicted throughput Ŷ (i+W )
4G is obtained as,

Ŷ (i+W )
4G = F ((ψi

X ,4G,ψ
i
Y,4G),Y

(i+W )
4G ,θ4G), (3)

and the actual average throughput Y (i+W )
4G is given by:

Y (i+W )
4G =

1
W

i+W

∑
j=i

Y j
4G. (4)

Here F is the predictive function to be learned. Learning F
is equivalent to learning the weights θ4G.
6.3 Local Training

Once the entire global model is trained and initialized
on the 4G bootstrapping dataset, our prediction algorithm
moves to the next phase, retraining the LSTM for the ac-
tual 5G mmWave connecting the end-devices. In this phase,
the training takes place as shown in Figure 5. The cen-
tral aggregator, which hosts the LSTM with two layers MG
and ML, is connected to all the users. There are U datasets
{D1,D2, ...,DU} belonging to ‘U’ different users6 connected
using the 5G mmWave network.

Before the first iteration, the end-device downloads the
current LSTM model available at the central server with
the weights θ4G = {θG,θu} corresponding to the layers MG
and ML. The local model training then starts and takes
place in epochs. It takes as input - a) the users’ datasets
Du, b) the global and user-specific model weights θG and
θu, c) the number of users U , and d) a set of parameters
{P} = {H,W,σ}, where H is history window length, W is
the prediction window length, and σ is the standard deviation
of Gaussian filter.

Once the iteration begins, the end-device assigns the
global (MG) and local layer (ML) weights as θG,θu, respec-
tively. At this point at each user, the weight of the local layer
(θu) is the same. The local dataset is first preprocessed. The
filtered dataset, which is suitably formatted using (Eq. 1-2),
is used for retraining the model locally. Mathematically, the
local samples {⃗ψi

X ,5G, ψ⃗
i
Y,5G} are created. The LSTM model

is subsequently trained to learn the new weights θnew
G and

θnew
u corresponding to user u, such that

θ
new
G ,θnew

u = arg min
θG,θu

loss(Ŷ (i+W )
5G ,Y (i+W )

5G ). (5)

At any time step ‘i’ the average throughput of user u over
a future time window of W seconds is predicted as:

Ŷ (i+W )
5G = F ((⃗ψi

X ,5G, ψ⃗
i
Y,5G,θG,θu), (6)

As before, here, ψ⃗i
X ,5G are the network or location-related

features, and ψ⃗i
Y,5G the corresponding throughput data for

the user. These represent the values from the filtered dataset.
6In this paper, we use the words user and end-device interchangeably.



Here Y (i+W )
u gives the actual average throughput over the fu-

ture W seconds is given by

Y (i+W )
5G =

1
W

i+W

∑
j=i

Y j
5G (7)

6.4 Aggregation and Local Prediction
After the local retraining using the 5G mmWave dataset,

the retrained local weights {θu,∀u} are saved locally. The
new global weights generated by each user are sent to the
server, where they are averaged using federated averaging
[30] to get the current global weight θnew

G . In the next fed-
erated iteration, the global layer MG for each local model
at each user u is initiated with the new global weight, the
aggregate of all the weights for the layer MG across all the
end-devices u obtained in the previous iteration.

During inferencing, each user instantiates its LSTM
model with the current global θG and the current local weight
θu. The test dataset Dtest containing the historical network
parameters and throughput information is filtered using pre-
processing steps and then fed to the inferencing engine for
the throughput prediction.

7 Evaluation
We evaluate the performance of FedPut with respect to

baseline throughput prediction algorithms widely used in the
literature. Then we analyze the effect of FedPut on the pop-
ular ABR video streaming applications. The details follow.
7.1 Implementation Details of FedPut

FedPut consists of two major parts – the central aggrega-
tor and the 5G mobile phone user or end-device; while the
former has been implemented as a Python socket server, the
latter has been implemented as a socket client. We have used
the 5G datasets explained in Section 3.1 to represent ten end-
users, of which two users use 50% of the Lumos-5G dataset
each, two users use 50% of the Irish dataset each, two users
use 50% of the MN-Wild dataset each, and four users corre-
spond to the Simulated-5G dataset. The prediction model has
been implemented with the Keras module for importing the
three model layers - LSTM, Dropout, and Dense, as shown in
Table 8. The initial training of the global model using the in-
house 4G dataset and the subsequent local training, as well
as retraining at the individual users using the aforementioned
5G datasets, are executed with a train-test split of 70%-30%.
While training the end-device’s respective dataset, we have
fixed the number of epochs as 25. As Keras supports, the
trained model is saved in a single HDF5 file containing the
model’s architecture, weight values, and compiled informa-
tion. The size of this file for the central aggregator is 3.6MB,
while that at the end-devices is around 800-1300KB.
7.2 Baselines

We used the following baselines.
Raca2020 [27]: This work used an LSTM model to predict
the 5G network throughput from various physical layer met-
rics, such as CQI, MCS, SINR, RSRP, etc., and user mobil-
ity info. As a baseline, keeping the common features intact,
we implemented this model with two LSTM layers and each
with a dropout of 0.2, and a final Dense Layer.
Minovski-RF [17]: This work uses different regression

models, such as RF, Support Vector Regression, XGBoost,
etc., to predict the 5G network throughput from network-
level features. As a baseline, we have implemented an RF
regression model with features, such as RSRP, SINR, CQI,
etc., that the authors have used to develop their model. The
heterogeneity in the 5G datasets might lead to model overfit-
ting for the same set of hyperparameters, such as the number
of estimators and max depth of the RF decision tree. Thus,
we have kept these as default in the Python setup.
Time Series Forecast (TS) [26]: In [26], the authors have
explored different time series forecasting mechanisms, such
as ARIMA and EWMA to predict the network throughput.
The simple ARIMA version mentioned in [26] uses past
samples of the throughput data. The exogenous features
other than the target, i.e., throughput, are not considered for
prediction here. We implement this ARIMA model as a base-
line for our evaluation.

7.3 Overall Performance
We have evaluated and compared the performance of Fed-

Put under two setups – (a) with the simulated dataset and (b)
with the publicly available 5G dataset. For FedPut imple-
mentation, we have used a history window size of H = 5
seconds and a prediction window size of W = 1 second.

In Figure 6, we visually compare the actual vs. predicted
throughput for different algorithms with respect to time for
the simulated 5G user. Compared to the other baselines,
we observe that FedPut provides a closer match between
the actual and the predicted throughput. To analyze further,
Figure 7(a) shows the corresponding R2 scores for differ-
ent throughput predictors for the simulated 5G dataset. It
is observed that while the average R2 score of ARIMA and
RF-based learning models is 69% and 63.1%, respectively,
that of LSTM increases to 82% and of FedPut increases to
91.4%. It may, therefore, be inferred that our proposed Fed-
Put based network throughput prediction algorithm achieves
a reasonably high prediction accuracy. This is mainly be-
cause FedPut captures both the hardware as well network
heterogeneity across all user devices and locations in a col-
laborative manner through the designed federated setup. The
combined effect manifests in improved accuracy.

7.4 Impact of Model Initialization
In Figure 7(b), we show the prediction accuracy for the

four 5G datasets – (i) Simulated-5G, (ii) Lumos-5G, (iii)
Irish, (iv) MN-Wild. For each dataset, we have performed
the prediction using three different initialization methods :
(i) Random model initialization - here the central model
is initialized with random weights, (ii) 4G bootstraping -
here the central model is initialized with weights obtained
from the model trained with 4G data as discussed in Sec-
tion 6, and (iii) 5G data trained model initialization where
the central model is initialized using the weights obtained
from the four 5G datasets trained model. For this purpose,
we have merged 70% data from each 5G dataset and trained
the model using our LSTM framework. We evaluate the R2
score of each 5G dataset for the rest of the 30% data. Here we
observe model initialization with the 4G dataset gives us bet-
ter prediction accuracy. This is because the 4G dataset is col-
lected across multiple locations using different mobile phone
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Figure 6. Actual vs predicted throughput (a) using FedPut, (b) using Raca2020 based model, (c) using TS based model,
(d) using Minovski-RF
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Figure 7. R2 score (a) for FedPut, Random Forest, ARIMA and LSTM (b) different initialization methods, and (c) R2
score, MSE, and training time of FedPut algorithm for different history and prediction window size

users and various network operators, making the model rich
in information and more robust for model initialization. The
central model initialized with the 5G dataset performs worse
because - a) it relies on the simulated dataset and b) the real-
world 5G datasets that have been collected from fewer geo-
graphical locations in comparison to the 4G dataset. Further-
more, the individual heterogeneity of the 5G datasets makes
model prediction difficult.

7.5 Impact of the Window Size
First, we show the impact of the history window size (H)

and the prediction window size (T ) on the R2 score and train-
ing time of the proposed FedPut algorithm in Figure 7(c). It
is observed that keeping H fixed, if we increase T , then the
average R2 score reduces. This is because the throughput
is predicted for a long time into the future, which reduces
its dependence on historical information. The training time
is seen to increase slightly with the increase in the length
of the history window or prediction window. This is due
to the corresponding increase in the number of training data
points. It is particularly noted that the proposed algorithm
faithfully predicts the future throughput for a historical win-
dow of H = 5 as well as H = 10 seconds with an R2 score of
more than 90%. Further, an increase in H does not improve
the R2 score any further.

7.6 Impact of Federated Iterations
We have next simulated the performance of FedPut in a

5G mmWave setup as described in Section 3.3, by increas-
ing the number of federated iterations as well as the number
of users. For this experimentation, we have used the four
simulated 5G users. The result is shown in Figure 8. In the
first federated iteration, we used a single user. In the subse-
quent iterations, we have increased the number of users in-
dividually. It is observed from Figure 8 that with the gradual
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Figure 8. Convergence in the R2 score while increasing
the federated rounds and adding new users

increase in the number of federated iterations, the R2 score
initially increases to a certain level and then saturates.
7.7 PoC: Video Streaming Application

A popular application that benefits from accurate through-
put prediction is ABR media streaming from various video
sources. We next evaluate how the QoE of ABR video
streaming can be improved using FedPut.
7.7.1 Integrating FedPut with ABR Algorithms

A state-of-the-art ABR streaming algorithm that uses es-
timated network throughput for video quality prediction is
fastMPC [35]. It uses the harmonic mean of the past through-
put to predict the future throughput. Keeping the rest of the
ABR algorithm of MPC intact, we have replaced the har-
monic mean throughput predictor with different throughput
prediction engines such as RF, LSTM as well as FedPut and
evaluated the performance of these ABR streaming in terms
of QoE. Thus, we have these four different ABR schemes –
(a) fastMPC, (b) RF-MPC, (c) LSTM-MPC, and (d) FedPut-
MPC. The RF and LSTM-based throughput predictor uses
70% of the simulated-5G dataset for training while FedPut is
trained via FL. The corresponding trained models are added
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Figure 9. (a) Video QoE under different ABR schemes, (b) average bitrate (Mbps) and bitrate variation (Mbps), (c)
average rebuffering time per segment
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Figure 10. Video QoE under different ABR schemes: (a) Empirical Cumulative Distribution Function (ECDF) of QoE
under different ABR schemes, (b) ECDF of avg. bitrate under different ABR schemes, (c) ECDF of bitrate variation
under different ABR schemes, (d) ECDF of rebuffering time under different ABR schemes

as the MPC throughput predictor, and finally, we perform the
video streaming simulation in our ns3-mmwave setup (Sec-
tion 3.2).
7.7.2 The Video Streaming Setup

The ABR video streaming in the 5G network has been
set up as a simulation in the ns3−mmwave [16] module as
outlined in Section 3.2. A minimum of 2 and a maximum
of 10 UEs under mobility have been deployed in the 1 km
× 1 km ns3 simulation scenario, with their average speed
varying between 5m/s and 20m/s. Correspondingly, there
are four different scenarios, for each of which we have run
ten simulation drops with different random seeds and a video
length of 250s. We have generated the simulation traces for a
typical user only for each of the four scenarios, thereby gen-
erating four different UE datasets. The results in this section
are the average over the 10 drops for each scenario.

As mentioned in Section 3.2, the throughput predictor
is hosted as a Python socket server. It collects the loca-
tion and network-related features from socket clients at the
UE and predicts the network throughput for the future time
window of 1s. The predicted throughput value is passed to
the socket client running at the ns3 UE, and based on the
predicted throughput, the MPC ABR controller chooses the
optimal chunk bitrate. The performance of the ABR algo-
rithm has been evaluated using the generic Quality of Expe-
rience (QoE) metric [35, eqn. (5)] with a video smoothness
penalty of one and a video rebuffering penalty of 4.3. The
ABR controller can support six possible bitrate values, from
6.5Mbps to 50Mbps (6.5, 10, 15, 20, 30, 50).
7.7.3 Results

The QoE for each ABR scheme is shown in Figure 9(a).
The QoE metrics of the different algorithms are shown in
Figure 9(a). It may be observed that FedPut-MPC yields

the highest average QoE compared to other variations. To
further analyze the QoE performance, we have plotted each
component of the QoE metric. Figure9(b) shows the mean
of the average bitrate and bitrate variation while Figure9(c)
shows the average rebuffering time per video segment. From
our observations, we find that the mean of the average bitrate
(Figure9(b)) of our proposed FedPut algorithm is compa-
rable to LSTM-MPC; however, FedPut outperforms LSTM
in terms of the rebuffering time per video segment of (Fig-
ure 9(c)) as well as the bitrate variation. As rebuffering
time and bitrate variation hurt the QoE estimation, thus, the
QoE of our proposed algorithm is slightly better than LSTM-
MPC. In Figure 10(a), we have shown the variation of the
Empirical cumulative distribution function (ECDF) of QoE
under the four ABR schemes. Our evaluation shows Fed-
Put-MPC outperforms other schemes and achieves a higher
QoE score. ECDF plots for individual components of QoE
metric are also demonstrated in Figure10(b), 10(c), 10(d).
These explain clearly that the distribution of average bitrate
is higher for FedPut-MPC predictor than the other predic-
tors. The opposite distribution is observed for bitrate varia-
tion and rebuffering time. This is because FedPut provides
a more robust throughput prediction that informs the video
streaming application of network conditions. The average
QoE of FedPut-MPC is 19.54% higher than the SOTA F-
MPC, compared to the closest competing LSTM-MPC pre-
dictor, FedPut-MPC gives 5.07% higher average QoE.

8 Conclusion
In this work, we have proposed FedPut, a FL based

throughput prediction algorithm for cellular networks. Un-
like existing machine learning-based throughput prediction
algorithms which are trained using centralized datasets, the
proposed algorithm facilitates distributed training of a deep



neural network-based model at end-devices. This addresses
the issue that service providers may be reluctant to share
their proprietary network information. Additionally, the use
of FL incorporates the user-specific variations of throughput
into the prediction engine, which makes it suitable for a wide
range of pervasive applications.
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