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Abstract

Internet of Things (IoT) applications rely on low-power
wide-area networks (LPWANSs) for gathering data from
widely dispersed devices over long distances. As [oT appli-
cations are growing in various domains, LPWANs are get-
ting prone to jamming attacks. Jamming causes excessive
packet loss, throughput reduction, long delays, and lower
energy efficiency in these networks. Existing anti-jamming
work in IoT mainly considers jamming in the communica-
tion channel between the gateway/base station and the server.
In this paper, we propose to mitigate jamming in LPWANSs
using a game theoretic approach. To our knowledge, this
is the first work on anti-jamming in LPWAN. Game the-
ory can realistically model the interaction between jammer
and LPWAN nodes because both try to maximize their utility
while minimizing their opponent’s. While it has been used
for anti-jamming approaches in various wireless networks,
they either make simplified assumptions or are not directly
extendable to LPWANSs due to their devices’ severe power
constraints. A key characteristic of our approach is that we
offload all the computations and communications needed for
playing the games to the base station that has more power
and energy, thereby preserving the energies of the LPWAN
devices. The proposed game theoretic approach is designed
considering SNOW (Sensor Network Over White spaces), an
LPWAN architecture to support scalable wide-area IoT over
the TV white spaces. We develop the game based on fre-
quency hopping and transmission power adjustment as anti-
jamming actions. Finally, we evaluate the effectiveness of
our jamming mitigation technique through both physical ex-
periments and NS-3 simulations. The results show that our
technique mitigates jamming by improving packet reception
rate, throughput, and energy consumption per packet up to
31.83, 30.77, and 34 times, respectively.
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1 Introduction

The Internet of Things (IoT) applications, such as sens-
ing and monitoring, smart agriculture, and smart city, aim
to utilize IoT devices to enhance the quality of life, health,
and safety of the communities in both rural and urban areas.
Due to the growing demand for these applications, the num-
ber of IoT devices is increasing rapidly and is expected to
reach approximately 29 billion by 2030 [42]. IoT devices
are often powered by batteries, dispersed widely (e.g., in
thousands) over long distances, and connected to gateways
or base stations (BSs) for data gathering using wireless tech-
nologies such as low-power wide-area networks (LPWAN5)
or wireless sensor networks (WSNs). As a result, they are
very prone to wireless jamming attacks. Jamming is the
disruption of communication between a sender and receiver
through the intentional transmission of interfering wireless
signals on the same channel by one or multiple adversaries.
Severe jamming may cause excessive packet loss, throughput
reduction, longer transmission (Tx) delays, and lower energy
efficiency in any wireless network.

A number of studies have addressed mitigation of jam-
ming in wireless networks [29, 37, 46, 34, 18, 25, 48, 26, 47,
50, 31]. But these studies do not focus on jamming in the IoT
networks. Although several works focus on mitigating jam-
ming in different types of IoT networks, none considers jam-
ming in LPWAN [24, 41, 20, 19]. They consider jamming in
the communication channel between the access point/BS and
the server. However, the communication channel between
the IoT devices and the access point can also be jammed in
a real-life scenario. Besides, this kind of jamming is more
challenging to mitigate, as the IoT nodes are very power-
constrained, unlike access points. In this paper, we propose
to mitigate jamming in LPWANSs that connect numerous IoT
devices to gateways/BSs. Only a few existing works have
considered jamming in LPWAN [22, 11, 13, 21, 28]. How-
ever, they mainly focus on the effect of jamming in these



networks and hardly discuss about jamming mitigation tech-
niques suitable for LPWAN. None of these works proposes
any technique that can mitigate jamming in LPWAN. To the
best of our knowledge, this is the first work on mitigating
jamming in LPWAN.

We propose to mitigate jamming in LPWAN using a game
theoretic approach. Game theory can realistically model the
interaction between the jammer and the LPWAN nodes be-
cause both try to maximize their utility or benefit while min-
imizing their opponent’s. It has been used before for miti-
gating jamming in various wireless networks [48, 24, 19, 26,
47, 50, 31]. The system model used in [24, 19] to formulate
game theory is not extendable to LPWANSs. In [31], the au-
thors use spectrum sensing to defend against jamming that
can quickly drain the batteries of the LPWAN devices. In
[48], the authors use game theory for transmission power to
mitigate jamming. However, their game model reaches equi-
librium after one action from each player, which is unreal-
istic. Besides, using only transmission power is insufficient
to mitigate jamming in LPWAN as the devices are extremely
power-constrained. In [26, 47, 50], channel hopping for cog-
nitive radios relies on simplified assumptions (e.g., the users
and the jammers take actions simultaneously). Besides, fre-
quency hopping alone is insufficient for combating jamming
[32]. Except [48], the rest of the works consider simultane-
ous action from the user and jammer, making them imprac-
tical.

We propose a multi-fold game-theoretic approach to mit-
igate jamming in LPWANS, considering their characteristics
and the constraints of their devices. Instead of considering
simultaneous action, our approach models the games as the
leader and follower subgames. Besides, our approach con-
siders playing the game continuously rather than ending after
one move. Unlike the single-game approach used in all the
existing works, our approach is designed to handle different
jamming situations by playing games using multiple param-
eters. In our approach, all the computations and communi-
cations needed for playing these games will be offloaded to
the BS that has more power and energy, thereby preserving
the energies of the LPWAN devices.

We develop our game theoretic approach for jamming
mitigation in SNOW (Sensor Network Over White spaces).
SNOW is an LPWAN architecture to support scalable wide-
area [oT over the TV white spaces [40, 38, 39, 36, 35].
White spaces are the allocated but locally unused TV chan-
nels [9, 10]. Compared to the ISM band, they have a much
wider, less crowded spectrum in rural and most urban areas,
with an abundance in rural areas [14]. SNOW thus avoids
the crowd in the limited ISM band and the cost of the li-
censed band. Compared to cellular LPWANs, SNOW does
not need wired infrastructure, making it suitable in rural and
urban areas. It is characterized by asynchronous, low power,
and massively concurrent communications between numer-
ous nodes and a BS (base station) over long distances, en-
abling scalable, wide-area IoT in white spaces [40, 38, 39].
With the rapid growth of IoT, LPWANSs will suffer from a
crowded spectrum due to long range, making it critical to
exploit white spaces. Our approach is extendable to other
LPWAN:S.
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Figure 1: The SNOW architecture.

We design the game theoretic approach for SNOW based
on frequency hopping and transmission power as anti-
jamming actions. We evaluate the effectiveness of our jam-
ming mitigation technique through both physical experi-
ments and NS-3 [5] simulations. We compare the effec-
tiveness of our proposed game theory approach in SNOW
against the current SNOW’s link layer protocol (baseline) in
the simulation. The results demonstrate that our proposed
technique mitigates jamming by improving packet reception
rate, throughput, and energy consumption per packet up to
31.83, 30.77, and 34 times, respectively, compared to the
baseline.

In the rest of the paper, Section 2 gives an overview of
SNOW. Section 3 describes the related works. Section 5 de-
scribes the game design, solution, and convergence. Sec-
tion 6 provides the evaluation results. Finally, Section 7 con-
cludes the paper.

2 An Overview of SNOW

Here we provide a brief overview of the SNOW archi-
tecture [38, 39, 40, 36]. Its full description is available in
[40]. Due to long transmission range, the nodes in SNOW
are directly connected to the BS, forming a star topology as
shown in Figure 1. We use ‘node’ or ‘device’ to indicate
a sensor node. The BS knows the locations of the nodes
through manual configuration or some existing WSN local-
ization technique [27]. It is line-powered and hence is not
powered-constrained. It also has much more computational
capability compared to the SNOW nodes/devices. The BS
periodically determines white spaces by providing locations
of its own and of all other nodes in a cloud-hosted white
space database through the Internet. The BS uses wide white
space spectrum as a single wide channel consisting of one or
more white space channels, which is split into narrowband
orthogonal subcarriers, each of equal bandwidth. Bandwidth
is defined as the width of the spectrum (range of spectrum).
Each node has a single half-duplex narrowband radio. It
sends/receives on a subcarrier. Like any typical IoT device,
the nodes are powered from small batteries as they are usu-
ally deployed in various outdoor environments where power
sources may not be readily available. Hence, the nodes are
energy-constrained, and do not do spectrum sensing or cloud
access. As shown in Figure 1, the BS uses two radios — one
for only transmission (called Tx radio) and the other for only



reception (called Rx radio) — to facilitate concurrent bidirec-
tional communication.

A key design goal of SNOW is to achieve high scala-
bility by exploiting wide spectrum of white spaces. Hence,
its physical layer (PHY) is designed based on a Distributed
implementation of OFDM for multi-user access, called D-
OFDM. D-OFDM splits a wide spectrum into numerous
narrowband orthogonal subcarriers enabling parallel data
streams to/from numerous distributed nodes from/to the BS.
A subcarrier bandwidth is in kHz (e.g., 50kHz, 100kHz,
200kHz, or so depending on packet size and needed bit rate).
Narrower bands have lower bit rate but longer range, and
consume less power [16]. The nodes transmit/receive on or-
thogonal subcarriers, each using one. A subcarrier is modu-
lated using Binary Phase Shift Keying (BPSK) or Amplitude
Shift Keying (ASK). If the BS spectrum is split into v subcar-
riers, it can receive from v nodes simultaneously using a sin-
gle antenna. For downlink transmission, it uses one common
subcarrier for every node which is not used for uplink com-
munication [36]. To receive acknowledgement (ACK) of an
uplink transmission, a node switches to this downlink sub-
carrier after making an uplink transmission on its assigned
subcarrier. Several subcarriers can be reserved as backup
downlink subcarriers.

A SNOW node has communication range of several miles
at very low transmission power (e.g., at 0 dBm). Note that
the BS can choose to use any part (any bandwidth) of the
available white space spectrum based on its need or the avail-
ability of white space. The band used by the BS is split into
subcarriers and assigned to the nodes for node-BS commu-
nication. An added advantage of the SNOW design is that
it allows to use fragmented spectrum at the Rx radio of the
BS. When we cannot find consecutive white space channels
while needing more, the BS may use non-consecutive chan-
nels as a single channel. The subcarriers in the unused part
of the BS’s chosen spectrum will not be used and will be
ignored in encoding and decoding.

Currently, the sensor nodes in SNOW use a very simple
and lightweight CSMA/CA approach for transmission like
the one used in TinyOS [7]. Since each node (non BS) has
just a single half-duplex radio, it can be either receiving or
transmitting, but not doing both at the same time. The nodes
join the BS through a joining process using special subcarri-
ers that are relatively stable.

SNOW has been implemented on USRP (universal soft-
ware radio peripheral) [2] and TI CC1310 [6] devices. Cur-
rently a dual-radio USRP (universal software radio periph-
eral) [2] device connected to a computer is used as the
SNOW BS while the CC1310 devices work as SNOW nodes
[36]. An open-source implementation of SNOW is available
at [1].

3 Related Work

Many existing works have studied techniques for han-
dling severe interference or jamming for wireless networks
[33]. These works mainly rely on spread spectrum tech-
niques, increased Tx power, antenna polarization or direc-
tional transmission, and packet fragmentation [29, 37, 46,
34, 18, 25]. Most of the above approaches are tailored for the

IEEE 802.15.4 standard [46, 34, 18] only. While Tx power
control is a common technique that applies to the LPWANS,
using only Tx power to combat jamming is often ineffective
since the maximum Tx power of an LPWAN node is quite
low (typically < 20dBm).

Several jamming mitigation approaches depend on reg-
ular message exchanging with a central coordinator node,
causing considerable energy consumption and degrading the
scalability [29, 37, 25, 18]. JAMMY [44] is an approach
for WSN based on TDMA (Time Division Multiple Access)
MAC protocol requiring strong time synchronization both in
the network and between the network and the jammer. Thus,
it may not be suitable for an LPWAN. Jamming mitigation
through multipath routing has been studied as well [8, 30],
which also may not be applicable to LPWANS as the latter
adopt machine to machine (M2M) communication.

Several game theoretic approaches have been proposed
for modeling jamming over the past few years, including
modeling communication channel [23, 15], wireless net-
working [12, 49], IoT networks [24, 41, 20, 19], and cog-
nitive radios [17, 26, 47, 50]. These models are based on a
simple zero-sum game between the jammer and transmitter-
receiver pairs, having hierarchical games (non-cooperative
Stackelberg games) or even cooperative games if the re-
ceivers can collaborate to achieve the goals. Additionally,
they derive the optimal defense strategies based on adver-
sarial conditions using different parameters (e.g., transmis-
sion power, hopping, spectrum sensing, and distribution over
multiple spectrums).

In [26, 47, 50], channel hopping for cognitive radios re-
lies on simplified assumptions that the users and the jam-
mers take actions simultaneously. As studied in [32], fre-
quency hopping alone is not sufficient for combating jam-
ming. Besides, these approaches cannot be adopted directly
in LPWANSs. A recent work has studied a game theoretic
approach for handling the jamming attack on control chan-
nels in cognitive radio networks [31]. Adopting that policy
for LPWAN (SNOW) will require spectrum sensing to de-
termine the spectrum at each device, which is highly energy
consuming and can quickly drain the batteries of the devices.
Mitigating jamming between the access point and the Inter-
net has been studied in [48, 24, 19]. However, it does not
provide any solution for jamming on the nodes. In [48], the
game considers only one move from each player, which is
not applicable in real-world.

In this paper, we propose a complex and practical game-
theoretic approach instead of a simple game-theoretic ap-
proach to mitigate jamming on LPWAN nodes. Our designed
game is suitable for LPWAN devices having low computa-
tion power and battery life. The BS computes and plays these
games on behalf of the nodes. When the game reach conver-
gence, the BS establish the LPWAN (SNOW) network. Un-
like the existing work [26, 47, 50], the BS and jammer need
not take actions simultaneously in our model. Instead, they
follow a leader and follower game model where the jammer
keeps playing the game against the BS as a follower, thereby
making our approach a practical and effective choice.



4 System and Attack Model

In this section, we describe our system model as well as
the attack model used by the jammer.

Base Station |-

(%) : Group of nodes
: A SNOW node
: Jammer

< : Jamming signal

D DL

Figure 2: The jamming attack model in SNOW.

We consider a jamming attack scenario in an LPWAN
based on SNOW and develop our anti-jamming techniques.
Specifically, we consider a SNOW network with an Internet-
connected BS and a set of SNOW nodes/devices that directly
communicate with the BS. In addition, there is a jammer that
will intentionally try to disrupt the node to BS communica-
tions in the SNOW network.

Note that the SNOW BS gets the list of white space chan-
nels through a cloud-hosted database by accessing the Inter-
net. Let the set of k available white space channels be de-
noted by W = {w;,wa,--- ,wi }. These channels have center
frequencies & = {f1, f2, -, fr} where f; is the center fre-
quency of white space channel w;. We consider n groups
(subsets) of SNOW nodes § = {S1,52,--,S,}, as shown in
Figure 2. Each group (set) of nodes S; has up to max; num-
ber of SNOW nodes, and all nodes of a group S; use a sin-
gle white space channel w;. Namely, each node in S; is as-
signed a subcarrier from the white space channel w;. From
the available white spaces, suppose the BS (i.e., the SNOW
network) uses the first n channels from set %/ denoted by
Wy = {wi,wa,---,w,} where n < k. The BS keeps the
list of the remaining white space channels (i.e., available but
unused white space channels) Wq = {wy,11,Wy12, -, Wi}
Every node of a set s; has its uplink subcarrier assigned by
the BS.

The jammer tries to jam the uplink subcarriers (used for
node to BS communications) of a set of nodes S;, as shown
in Figure 2. Unlike uplink subcarriers used for transmissions
by the SNOW nodes that are characterized by severe power-
constraints, the downlink subcarriers are used for transmis-
sion by the BS that does not have power constraints. There-
fore, the jammer does not waste its energy by jamming
downlink subcarriers. Note that, in this paper, we consider
there is one jammer trying to jam the SNOW nodes S. It can-
not jam the uplink subcarriers of more than one white space
channel w; at a time. Hence, the jammer can choose to jam
any group of nodes from .S, but only one group of nodes S;

can be jammed at a time. In doing so, the jammer is able to
interrupt all the uplink communications between the group
of SNOW nodes S; and the BS.

The jammer is reactive and can change its transmission
power and frequency by sensing the changed transmission
power and frequency used by the SNOW nodes. We con-
sider that the jammer has an energy budget for jamming our
SNOW network. This is a practical consideration as the cost
of jamming can outweigh the gain otherwise. Hence, it needs
to use its energy effectively and efficiently. When the jam-
mer reaches its energy budget, it stops jamming the SNOW
network.

S Proposed Game-Theoretic Approach for
Jamming Mitigation

In this section, we develop our game theoretic approach
for anti-jamming in SNOW. Note that game theory is a realis-
tic choice for this as it can model the interaction between the
jammer and the LPWAN nodes better as both parties try to
maximize their utility or benefit while minimizing the same
of their opponent’s. While it has been used before to de-
velop anti-jamming approaches in various wireless networks
[48, 24, 19, 26, 47, 50, 31], they are either based on sim-
plified assumptions or are unsuitable for LPWANs because
of their unique characteristics and severe power-constraints
of the devices. Therefore, we have developed a new game
theoretic approach for LPWAN, particularly considering the
unique characteristics and constraints of SNOW.

In this game, the players are the SNOW nodes and the
jammer. As mentioned in Section 4, the jammer is jamming
the uplink communication between the nodes and the BS.
The nodes try to maximize their total network throughput,
while the jammer tries to minimize their throughput. In our
case, the SNOW nodes are in a disadvantageous situation
compared to the jammer, as the nodes have significantly less
transmission power, battery life, and computation power than
the jammer. Besides, playing the game severely affects the
SNOW nodes’ battery life, as it adds a computation over-
head before each transmission. In such an adverse matchup,
we have to design the game to ensure there is no computa-
tion overhead for the nodes and they can keep transmitting
important sensor data successfully using low transmission
power. Therefore, we propose to offload all the computations
and communications for the game to the BS. After detect-
ing jamming on the nodes’ uplink subcarrier, the BS plays
the game on the nodes’ behalf until the convergence of the
game and determines the nodes’ action. Then it sends down-
link transmissions containing information about the nodes’
actions. The BS can use much higher TX power to combat
jamming in downlink channel. Hence, in this scenario, the
downlink is considered not to be jammed. The nodes decode
the control message and take action prescribed by the BS.

5.1 Game Design

There are many complexities in real-world jamming.
Thus, instead of simplifying our game by using just one pa-
rameter (i.e., transmission power/ channel hopping), we pro-
pose to change both of these parameters together to enhance
the accuracy of the game. In the game, the total utility de-
pends on all the parameters (i.e., signal-to-noise ratio, packet



reception rate, expected channel stealth, etc.), reflecting the
impact of all of them and making the game complex. Fur-
thermore, to make the game more realistic, we design our
game as a Stackelberg game instead of a Nash game. In
Nash game, there is an assumption that both players will take
action simultaneously. However, this aligns differently from
the real-life scenario of jamming, where a player can take
action after the other player has taken action. Thus, a Stack-
elberg game is more suitable here as there is a leader and
a follower. For our game, the nodes are the leader, and the
jammer is the follower. The jammer can observe the action
taken by the leader and choose its action accordingly. Even
though it makes the game more challenging for the nodes, it
is more realistic compared to Nash for this scenario.

5.1.1 Transmission power

Whether a received packet from the nodes of the jammed
group S; will be successfully decoded or not depends largely
but not only on the signal-to-noise ratio (SNR) at the BS.
Now, the nodes in group S; want to increase the packet trans-
mission rate and throughput at the BS and decrease energy
consumption for packet transmission. If the BS can de-
code the sent packets successfully, the nodes in group S; will
achieve a better packet delivery rate and throughput. This en-
sures that no retransmission is needed for that packet, which
can help decrease energy consumption. Hence, the utility of
this game heavily depends on the value of SNR for both play-
ers. However, we must also consider the transmission power
used for the battery-powered nodes. Because even though
higher transmission power increases SNR, resulting in better
packet transmission rate and throughput, it severely affects
the nodes’ battery life. Therefore, the utility of the nodes
needs to have a penalty for using higher transmission power.
We design the utility Uf(¢) for transmission power P;(¢) of
the nodes in the group S; at step ¢ as below.

UF (1) = SNR(P,(t), Py (t)) — P(1)

To further improve the utility, we incorporate the expected
Packet Reception Rate (PRR) to account for the uncertainties
in the complex communication channels. We achieve this by
introducing a function PRR(P;(¢), P;(¢)) that returns the ex-
pected PRR for node transmission power P;(f) and jamming
transmission power P;(¢) at step 7 by using the probabilis-
tic model obtained from previous (¢-1) steps. The modified
utility UF (t) of the nodes in group S; at step ¢ is as below.

UF (1) =SNR(P,(t), Py (1)) — Pi(t)
+PRR(P(1), Ps(t))

As the nodes in group S; aim to maximize the utility, the
optimal transmission power P;(¢) at step ¢ is as follows.

P (t) = argmax UiP(t)
P<P

= argmax (kleNR( (1), Pr(t)) —ka x Pi(t)
P<P

+ks X PRR(PA(1), P2 (1)) (1)

where ki, ko, k3 are the weights and P is the maximum trans-
mission power that a node can use.

For the jammer, a higher SNR of the nodes in the group S;
results in a higher penalty. The jammer has a power budget,
so it imposes a penalty if the higher transmission power is
used for jamming. Furthermore, the jammer can use a func-
tion PRR'(P;(¢),P;(t)) that returns the estimated expected
PRR of the nodes in the group S; for jamming transmission
power P;(t) at step ¢. Therefore, the utility of the jammer
UP(t) at step  can be expressed as follows.

UP(t) == SNR(P,(1),Ps(t)) — Ps (1)
*PRR/(Pi(t)vPJ(I))

As the jammer aims to maximize the utility, the optimal
transmission power Pj () at step ¢ is given by:

P;(t) = argmax U? (1)

Pr<Py

= argmax ( by x SNR(P;(t),P;(t)) — by x Py(t)

Pj<Py

by x PRR’(P,-(t),P,(z))) )

where b, by, b; are the weights and P; is the maximum trans-
mission power the jammer can use.

Even though eq. (1) seems optimal, it is not considered
the optimal solution for a Stackelberg game. In the Stack-
elberg game, the leader’s optimal action considers the fol-
lower’s optimal action. Thus, considering the optimal trans-
mission power of the jammer Pj (¢), we rewrite eq. (1) as fol-
lows, which is the Stackelberg optimal transmission power
for nodes in group S; at step ¢.

P/ (t) = argmax (kl x SNR(P;(t),Pj (1))
Pi<P

— ko X Bi(1) +ks X PRR(P,(1), P} (1))
3)

Therefore, the tuple (P (t),Pj(t)) corresponding to the
eqs. (1) and (2) is the Stackelberg equilibrium for the trans-
mission power.

5.1.2 Frequency Hopping

Along with transmission power, the nodes in group S;
adopt frequency hopping. Frequency hopping refers to
changing the white space channel for all the nodes in group
S;. Frequency hopping combined with transmission power
can be a powerful tool to mitigate jamming. However, before



hopping to a white space channel at any step ¢, the group of
nodes needs to know the expected search time of the jammer
for that white space channel. For now, let us assume we have
a function A(f;(¢)) that returns the expected utility using the
probabilistic model based on search time of the jammer, ob-
tained from previous (¢-1) steps. Thus, the utility function
UF (¢) for the nodes of group S; at step ¢ for hopping to a
white space channel with frequency f;(¢) is as follows.

U (1) = h(f(1))

As the nodes in group S; aim to maximize the utility, the
optimal white space channel at step ¢ with frequency f*(¢) is
as follows.

fr(t)= argmax U (r)
fmin Sﬁ Sfmax
= argmax
Smin<Si < fmax

ka % h(fi(1)) “

where k4 is the weight, f,;,;, and fy,,, are the minimum and
maximum center frequencies for the TV channels.

While designing the utility function of the jammer, we
have to account for the expected count of hops in step ¢ be-
sides the expected search time of the jammer for that white
space channel. To incorporate these, we introduce an addi-
tional function ¢(f;(¢)) that returns the expected utility us-
ing the probabilistic model based on the count of hops for
the white space channel with frequency f;(¢), obtained from
the previous (r — 1) steps. Thus, below is the utility function
U ,F (¢) for the jammer at step ¢ for hopping to a white space
channel with frequency f;(z).

UJ (1) = =h(fi(t)) = c(f1(1))

As the jammer’s goal is to maximize the utility, the opti-
mal white space channel at step ¢ with frequency f;(¢) is as
follows.

fi(t)=argmax U (1)
fm[n Sf]gfmax

= argmax
f}nin Sf] Sfmm

(fb4 < h(f (1)) — bs x c(f,(r))) )

where b4, bs are the weights.

Akin to transmission power, even though eq. (4) seems
optimal, it is not considered the optimal solution for a Stack-
elberg game. In the Stackelberg game, the leader’s optimal
action considers the follower’s optimal action. Thus, consid-
ering the optimal white space channel frequency of the jam-
mer f}(t), we modify eq. (4) as below, which is the Stackel-
berg optimal white space channel frequency for hopping for
nodes in group S; at step ¢.

ka X h(fi(1), f7 (1)) ©)

fi'(t) = argmax
fmin Sfiffmax

Therefore, the tuple (f;(z),f;(t)) corresponding to the
eqs. (4) and (5) is the Stackelberg equilibrium for the white
space channel frequency.

5.1.3 Combining Transmission power and Frequency
Hopping

Even though we designed the Stackelberg equilibrium
separately for the transmission power and frequency hop-
ping, we can combine the equilibriums to obtain the final
Stackelberg equilibrium for our game. We can get the opti-
mal formulation for the nodes of the group S; for step ¢ by
combining the egs. (3) and (6), where G; is our game func-
tion for nodes of group S;.

Gi(P; (1), £7 (1)) = argmax (ki x SNR(P(1),; (1)
<P
fminé]‘ 1 Sf max

—ky X P,(I)
+ k3 x PRR(Pi(t), P} (1))

+ kg X hi(ﬁ(t)’f;(t>))

Similarly, by combining the egs. (2) and (5), we can get
the game function for the jammer as below.

Gy(P;(t),f7(t)) = argmax (—by x SNR(Pi(z),Ps(1))
Pi<pPy
fmin Sfl Sfmax
— by x Py(t)
—b3 x PRR'(Pi(t),Ps(t))

—Dby x hy(fi(t))
—bs x CJ(fJU)))

Note that even though the game function for the nodes of
S; depends on optimal transmission power and white space
channel frequency of the jammer for step ¢, the jammer’s
game function does not incorporate such dependency as it
takes its action after observing the optimal action taken by
the nodes of S;. Furthermore, the optimal transmission power
and white space channel frequency can be used by every
node of group S;, when the game reaches convergence.

5.2 Solution of the Game

As our proposed game function is complex by incorporat-
ing a lot of real-world scenarios and can not be mathemati-
cally modeled beforehand, applying the traditional equation-
solving approach is not realistic. Many functions (i.e., ex-
pected channel search time, expected packet reception rate,
expected number of hops) related to the game depend on the
quality of communication in the real world and can not be
mathematically modeled accurately beforehand. Thus, we
propose to solve this game function incorporating a learning-
based approach through using novel node agent and jammer
agent based on Reinforcement Learning (RL) [43]. Specifi-
cally, we propose to use Non-cooperative Multi-Agent Re-
inforcement Learning (NMARL) to solve our game. Re-
inforcement Learning is a sub-field of machine learning that
focuses on learning by rewarding and penalizing any exe-
cuted action by the agents in a complex environment. The



main advantage of reinforcement learning lies in modeling
complex real-world scenarios through interaction with the
environment by trial and error.

To leverage the advantages of reinforcement learning to
solve our game, we use the BS (on behalf of the nodes) and
the jammer as agents. According to our game functions, both
of the agents are non-cooperative, meaning their actions try
to focus on minimizing the other’s reward while maximizing
its own. To incorporate our game utility for both the nodes
and the jammer, we propose to use their utilities as reward
and penalty in the reinforcement learning framework. To ac-
commodate all the complex functions (i.e., expected chan-
nel search time, expected packet reception rate, the expected
number of hops), we use complex communication channels
in the real-world as the environment for our NMARL.

Understanding the use of NMARL. NMARL is suitable
for our game, as the agents interact with the complex com-
munication channel that is very difficult to model without
prior interactions. Furthermore, NMARL can give a very
good quality solution for the optimization problem formu-
lated by the game-theoretic approach. The node agent takes
action that maximizes its total utility while predicting the
next optimal action of the jammer agent. The jammer agent
observes the action taken by the node agent and decides its
optimal action for that step. This is exactly the same as the
Stackelberg game.

Moreover, the agents affect each other’s reward through
their actions while not sharing any information and trying to
reduce the reward of the other agent. However, it is difficult
for the low-powered and computationally-constraint SNOW
nodes to interact with the environment and execute action
against the other agent. Thus, we propose to use the BS as
the node agent. The BS interacts with the environment and
executes the action on behalf of the nodes during the train-
ing process. Specifically, during training the BS uses its Tx
radio to transmit on behalf of SNOW nodes while receiving
through the Rx radio mimicking the SNOW nodes’ action.

Translating the game functions to NMARL. Some
game functions (i.e., expected channel search time, expected
packet reception rate, the expected number of hops) can be-
come easier to predict while using the NMARL. We propose
quantifying the channel search time, packet reception rate,
and the number of hops for each step through packet trans-
mission by both the jammer and BS. During the training,
the expected value of these parameters can be obtained af-
ter each action executed by the agents at each step ¢. All of
these values are reflected through the agents’ reward value
(i.e., total utility) for step ¢. The reward value for all the ac-
tions can be stored in a Q-table [45]. Note that the reward
value is obtained using the agents’ utility derived in the Sub-
section 5.1. Even though using NMARL we can get a very
good quality solution for our complex game function, it does
not guarantee an optimal result.

Learning process. The agents are trained for all possible
actions by interacting with each other through the environ-
ment (complex communication channel). The reward values
that reflect the game utility for all the actions can be stored
in a Q-table as part of Q-learning [45]. Note that both agents
have separate Q-table, and it is not shared. It is not necessary
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Figure 3: Experimental setup.

that this training has to happen against a real jammer. The BS
(node agent) can be trained against a mock jammer and the
vice versa. Later, the BS can use the trained data against a
real jammer. After training, the BS takes a new action only if
an action can yield higher utility than the current one. There-
fore, it is important to explore all the actions in the action
space and the combination of the actions against each other
for both agents during training. This ensures proper mod-
eling of the communication channel and the other agent’s
action.

Proof of Convergence. At every step of the game, the
agents take an action only when the action can yield higher
utility than the current one. This implies that our game util-
ity function is monotonically increasing, which means after
finite time steps there will be no other action in the finite ac-
tion space that can yield higher utility than the current one.
In that scenario, neither the node agent nor the jammer agent
has any incentive to take an action, which defines the con-
vergence of the game. When the game reaches convergence,
the BS assigns the white space channel for the SNOW nodes
of group S;. Note that before convergence, the BS plays the
game against the jammer on behalf of the SNOW nodes of
group S;.

6 Evaluation

We first train the RL model using a mock jammer in NS-
3 [5] for 18 hours to evaluate our proposed game-theoretic
approach for mitigating jamming in SNOW. After training
the model, it is used in both Experiment and Simulation.
From the discussion in Section 3, it is evident that the ex-
isting jamming mitigation techniques cannot be applied to
LPWANSs (i.e., SNOW [38, 39, 40], LoRA [4]). There-
fore, we compare our anti-jamming technique with the cur-
rent SNOW protocol as a baseline in both the experiment
and simulation. Furthermore, we compare our proposed ap-
proach to the separate usage of transmission power and fre-
quency hopping in simulation, as it can demonstrate how
much improvement our combined approach adds to commu-
nication quality.
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Figure 4: Experimental result.

6.1 Experiment

We perform a small-scale experiment using an indoor
setup to evaluate our approach. We load our previously
trained RL model in the BS for our experiment.
6.1.1 Setup

As depicted in Figure 3, we implement our experiment
in an indoor setup. We use GNU radio [3] and two Univer-
sal Software Radio Peripheral (USRP) B200 devices [2] to
implement the BS and jammer. Along with the game imple-
mentation, we set the jammer to transmit a jamming packet
whenever it senses any signal on the TV white space chan-
nel. The jammer also uses the same trained RL model as the
BS. As SNOW nodes, we use TI CC1310 [6], a commercial
off-the-shelf (COTS) device. A SNOW node’s transmission
interval, packet size, and total packet transmission are set to
1 minute, 40 bytes, and 1000, respectively. We assign 98
kHz bandwidth for each node and set the maximum retrans-
mission number to 2. The nodes start to transmit packets
after the game convergence in the BS. Maximum transmis-
sion power for the SNOW node is set to 15 dBm, while the
jammer has maximum transmission power of 25 dBm.
6.1.2 Experimental Results

For evaluation, we use three metrics (i.e., Packet Recep-
tion Rate (PRR), Throughput, and Energy Per Packet (EPP)).

. __ _Total Received Packet
* PRR s calculated as PRR = Total Transmitted Packet *

e Throughput is calculated as Throughput =
Total Received Packet at the BS xPacket Size
Total Time :

. Total Energy for Transmissi
o EPP is calculated as EPP = OtaTm';fEZC el Pk — -

Note that Total Energy for Transmission includes the addi-
tional energy used for retransmission. Thus, lower EPP indi-
cates better performance, while higher PRR and throughput
show better performance.

We vary the number of nodes from 1 to 3 for our experi-
ment. As depicted in Figure 4(a), irrespective of the number
of nodes, our approach achieves a high PRR of 94%, which is
significantly better than vanilla SNOW (the baseline) that has
a PRR of only 5.4%. Moreover, our approach demonstrates
substantially improved throughput performance and achieves
a throughput of up to 335.88 bps compared to 18.36 bps of

the baseline as depicted in Figure 4(b). Finally, it outper-
forms the baseline vastly by decreasing the energy consump-
tion from 58.82 mJ to 6.37 mJ per packet as depicted in Fig-
ure 4(c). In terms of all the metrics, our approach achieves a
very good quality of communication under jamming.

6.2 Simulation

We use NS-3 [5] for large-scale evaluation. In the simula-
tion environment, the nodes are situated within a 690-meter
radius of the BS, while the jammer is placed 700 meters from
the BS. Moreover, all the nodes and the jammer are station-
ary in this simulation. The packet size and transmission in-
terval are set to 40 bytes and 1 sec in the simulation. More-
over, the SNOW network uses a single white space chan-
nel for this simulation, which ensures all the nodes are af-
fected by the jammer. We run simulation for 120 minutes for
each setup (i.e., varying number of nodes, varying number
of retries). We use the same trained RL model for all setups
for consistency. During the simulation, the game reached
convergence within 10-15 minutes, and the BS informed the
jammed nodes of their new white space channel and trans-
mission power. Thus, the jammed nodes started transmission
after 10-15 minutes.

6.2.1 Performance under Varying Number of Nodes

In this simulation, we vary the number of nodes from 50
to 240 while the maximum retransmission number is 2. In-
creasing the number of nodes too much in a white space
channel can decrease the bandwidth (i.e., subcarrier width)
significantly for each node. In the simulation, we noticed
that we could increase the number of nodes to 240 without
compromising the performance much when there is no jam-
mer. Thus, we choose 240 as the highest number of nodes to
evaluate our approach in the presence of a jammer.

As depicted in Figure 5(a), even when the number of
nodes increases, the PRR remains almost the same. It drops
very slightly for higher number of nodes, which occurs due
to lower bandwidth. The throughput increases almost lin-
early as shown in Figure 5(b) with the increasing number of
nodes, and the reason is the increasing number of transmitted
packets by a higher number of nodes while the PRR remains
similar to the lower number of nodes. The EPP increases
slightly due to the higher number of packet retransmission
for the increasing number of nodes. Even though the PRR
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Figure 6: Performance under varying number of retransmissions (in NS-3).

is almost the same, it is achieved through more retransmis-
sions than the lower number of nodes. Overall, our approach
outperforms the baseline by 31.83, 30.77, and 34 times for
PRR, throughput, and EPP, respectively.

6.2.2 Performance under Varying Number of Re-
transmissions

In this setup, we vary the maximum number of retrans-
missions from O to 3. We notice that increasing the num-
ber of retransmissions does not improve performance beyond
two retransmissions in the presence of the jammer.

Figure 6 shows the impact of the varying number of re-
transmissions. From Figure 6(a), it is eminent that without
any retransmission, the PRR becomes lower. However, when
the number of retransmission is 2 or 3, the PRR is almost
the same. The throughput is analogous to the PRR for the
varying number of retransmissions. Even though more re-
transmissions improve communication quality, they can sig-
nificantly increase energy consumption, as depicted in Fig-
ure 6(c). Even though the increase seems negligible com-
pared to the baseline, it can impact power-constraint SNOW
nodes’ battery life. The SNOW without any game-theory can
improve PRR and throughput by at most 1% by retransmit-
ting the packets. The performance improvement is very triv-
ial for PRR and throughput. Furthermore, the higher num-
ber of retransmissions causes very high energy consumption
resulting in very high EPP. Compared to the baseline, our

game-theoretic approach performs significantly better for all
the metrics.

6.2.3 Performance Comparison with Non-Combined
Approaches

In this simulation, we compare our combined game-
theoretic approach with the non-combined game-theoretic
approach. We train two new RL models using transmis-
sion power and frequency hopping separately. Thus, one RL
model plays the game using only transmission power, while
the other uses only frequency hopping. We use these two
models in the simulation and compare their results with our
combined game-theoretic approach. For this simulation, we
use 50 nodes and two maximum numbers of retransmissions.
All other variables (i.e., simulation time, distance) remain
the same as other setups.

As depicted in Figure 7, the game-theoretic approach that
combines both the transmission power and frequency hop-
ping is outperforming isolated transmission power and fre-
quency hopping significantly for all the metrics. This re-
sult demonstrates that our proposed game-theoretic approach
can outperform basic SNOW protocol as well as the game-
theoretic approaches with one knob. From Figure 7, it is
noticeable that even though the isolated knobs perform inad-
equately compared to our proposed approach, they still out-
perform the basic SNOW protocol by a large margin.

Among the isolated knobs, the transmission power
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evinces its superiority in all the metrics and time of conver-
gence. During simulation, we noticed that the transmission
power game could converge faster than the frequency hop-
ping game. In fact, during multiple 120 minutes of simu-
lation duration, the frequency hopping game never reached
the convergence. Even though the transmission power game
converges, it takes more than 1 hour to reach convergence
compared to 10-15 minutes of the combined approach. As
for the metrics, the transmission power game achieves more
than double PRR and throughput while having a significantly
better EPP.

All the results demonstrate that our proposed game-
theoretic approach for mitigating jamming in SNOW im-
proves the network performance significantly.

7 Conclusion

In this paper, we have proposed a game-theoretic ap-
proach for mitigating jamming attacks in LPWANs. Today,
IoT applications rely on LPWAN technologies for gathering
data from widely dispersed devices over long distances. As
IoT applications are rapidly growing in various domains, in-
cluding smart cities, smart agriculture, healthcare, and com-
munity safety, LPWANSs are getting prone to jamming at-
tacks. Jamming may cause excessive packet loss, through-
put reduction, longer delays, and lower energy efficiency in
these networks.

We have developed the proposed game theoretic approach
considering SNOW, an LPWAN architecture to support scal-
able wide-area IoT over the TV white spaces. While game
theory has been used for anti-jamming approaches in various
wireless networks, they either make simplified assumptions
or are not directly extendable to LPWANs due to their de-
vices’ severe power constraints. A key characteristic of our
approach is that we offload all the computations and com-
munications needed for playing the games to the base station
that has more power and energy, thereby preserving the en-
ergies of the LPWAN devices. We have developed the game
based on frequency hopping as well as transmission power
adjustment as anti-jamming actions. We have implemented
and evaluated the effectiveness of our jamming mitigation
technique through both physical experiments and NS-3 sim-

ulations. The results demonstrate that our proposed tech-
nique mitigates jamming by improving packet reception rate,
throughput, and energy consumption per packet up to almost
31.83, 30.77, and 34 times, respectively.
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