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Abstract
The IPv6 over Bluetooth Low Energy (BLE) standard

defines the transfer of IP data via BLE connections. This
connection-oriented approach provides high reliability but
increases packet delays and introduces substantial overhead
to manage BLE connections. To overcome these draw-
backs, we present the design and implementation of IPv6
over BLE advertisements, a standard-compliant connection-
less approach. We deploy our proposal on low-power IoT
hardware and comparatively measure key network perfor-
mance metrics in a public testbed. Our results show that IP
over BLE advertisements offers network performance char-
acteristics complementary to IP over connection-based BLE,
trading lower reliability for shorter latency.

1 Introduction
The Internet of Things (IoT) is highly fragmented [5]. In

the low-power wireless IoT, heterogeneous link layer tech-
nologies compete, each requiring dedicated (smart) gateways
to connect to the Internet. Bluetooth Low Energy (BLE) is
the most deployed low-power radio technology today [18]
and the IP over BLE standard [14, 15, 30] allows to seam-
lessly connect BLE devices to the Internet. Furthermore,
BLE offers best in class low-power characteristics [9,27,40]
as well as reliable network performance [35], making it a
promising default link layer in the low-power IoT. Enabling
BLE as go-to lower layer for low-power wireless IP networks
has the potential to mitigate fragmentation in the IoT.

IP over BLE, however, works on top of BLE connections,
which leads to the following three disadvantages. First, be-
fore exchanging IP data, any node must open BLE connec-
tions to one or more adjacent peers. Managing these connec-
tions automatically poses overhead on BLE nodes. Further-
more, there are no protocols for automated BLE connection
management available yet. Second, the number of concur-

rent BLE connections is typically limited to ≈15 peers due
to restrictions in memory and radio scheduling. Third, the
current IP over BLE standard [30] increases packet delays
because BLE connections are time-slotted. Typical laten-
cies of IP over BLE networks are substantially larger com-
pared to networks based on carrier-sense multiple access
(e.g., IEEE802.15.4) [35].

In order to mitigate the disadvantages of the current IP
over BLE standard, we propose exploring the transfer of IP
data using the connection-less mode of BLE. We do not aim
for replacing the existing connection-oriented IP over BLE
design but offer an alternative based on the same technology,
to allow IoT developers to optimize deployments depending
on requirements. Possible new scenarios include use cases
where nodes suffer from the overhead and difficulty of es-
tablishing BLE connections. One use case is the provision-
ing of devices. IP over connection-less BLE can be used to
effortlessly connect devices to remote provisioning services
without the overhead of managing BLE connections. An-
other possible scenario is the massive deployment of nodes
in small areas that would suffer from the limited connection
count per peer. One example for this is the self-tracking of
products on high density assembly lines that at certain stages
need to report their state. A third field of use cases evolves
around applications that demand low-latency interaction. An
example of this is building lighting as targeted also by Blue-
tooth Mesh [17]. Here, fast user feedback, for example when
using light switches, is desirable. As both connection-less
and connection-based designs are using the same software
(BLE and IP stacks) and hardware (radios) they can be de-
ployed and run simultaneously, which finally will increase
IoT use cases for BLE networks allowing a flexible mapping
of services to communication mode at runtime.

In this work, we present the protocol design and prototype
implementation of IPv6 data over connection-less BLE. We
utilize the extended advertisements, which are introduced in
Bluetooth version 5.0 [16]. Extended advertisements have
the advantage of offering a MTU of up to 65 Kbytes through
packet fragmentation capabilities provided by a BLE con-
troller. They are, thus, able to carry full IPv6 packets with
a minimum MTU of 1280 bytes on top of a lean software
system. In contrast to this, legacy BLE advertisements
would allow only for a maximum payload of 31 bytes per
packet. This small MTU would require complex fragmenta-
tion schemes implemented on an intermediate layer between



IP and BLE in addition to 6LoWPAN-based header compres-
sion [7, 29].

We systematically measure key performance metrics in
practice based on 15 low-power BLE nodes in the FIT IoTlab
testbed [3]. We analyze reliability, latency, and energy con-
sumption in different single- and multi-hop network topolo-
gies and compare them to the performance of connection-
based IP over BLE networks. Our results show that us-
ing (connection-less) BLE advertisements offers lower la-
tency (on average 1.5× to 5× lower for comparable con-
figurations) but less reliability (1% to 80% packet loss vs.
<0.01%) and increased power consumption (radio always
on).

Currently, Bluetooth Mesh [17] is the only standard to
transfer (proprietary) data over connection-less BLE. In con-
trast to our proposal, however, Bluetooth Mesh does not sup-
port arbitrary IP packets but is limited to the flooding of
specific, small data frames (<20 bytes) and does not sup-
port fragmentation. Bluetooth Mesh aims for vendor-specific
simplified scenarios, whereas our proposal targets flexible
Internet-like deployments.

In summary, we make the following contributions:
1. The first, standard-compliant design to transfer IPv6

data over BLE extended advertisements. (§ 3.1)

2. A publicly available, open source implementation based
on the operating system RIOT and the BLE stack Nim-
BLE. (§ 3.2)

3. Reproducible experiments conducted on real-world
hardware. (§ 4)

4. A comparative performance evaluation including net-
work and system measures to show protocol mechanics
in contrast to connection-based IP over BLE networks.
(§ 5–§ 6)

All artifacts, including implementations and raw data, are
publicly available, details see Appendix A.
2 Background

BLE supports three modes to transfer data: the
connection-less legacy advertising mode, the connection-
less extended advertising mode, and the connection-based
mode. Connection-less communication is usually used to en-
able the discovery of services and to broadcast data for fur-
ther processing to unknown peers. Connection-based com-
munication aims for communication between direct peers,
e.g., in the IP over BLE standard [15,30]. This section briefly
presents core background on all three modes with a focus on
embedding data.
2.1 Connection-less BLE Communication

Legacy advertising is used in Bluetooth Mesh [17] and
the extended advertising mode was introduced in Bluetooth
5.0 [16].
Legacy Advertising. Legacy advertising supports a max-
imum payload of 31 bytes. The advertisement packets are
sent periodically in so-called advertising events during an
advertising interval, depending on the configuration between
20ms and 10.48s, see Figure 1. To counteract unwanted syn-
chronization between nodes, a random jitter between 0ms
and 10ms is added between each connection event. Each
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Figure 1: BLE packet flow when transferring payloads A
and B using legacy and extended advertisements as well as
connection-based communication.

advertisement packet is sent via the primary advertisement
channels, three predefined channels that are exclusively re-
served for advertisements to achieve some level of robust-
ness. This mode is unidirectional (no link layer acknowledg-
ments) and unmanaged (no CSMA scheme).

To receive advertisements, nodes listen periodically on
one of the primary advertising channels (scan event) based
on the scan interval. An active radio in RX mode is expen-
sive in terms of energy. The Bluetooth standard, thus, allows
the receiver during each scan event to only activate the radio
during the scan window. If the scan window is shorter than
the advertising interval, advertising packets might get lost.
There exist a number of approaches on how these parame-
ters can be optimized to balance energy usage and delivery
probability [26, 37, 38].

In common advertising use-cases (e.g., beaconing), de-
vices use a fixed payload. When considering less predictable
application data such as carried in IP packets, this data
should preferably be sent within a single advertising event.
Since there is no guarantee that an advertising event is re-
ceived, a single payload is typically transmitted in multiple
advertising events, hence implementing a fixed number of
link layer packet retransmissions. This is, for example, ap-
plied in Bluetooth Mesh, which defaults to carry the same
payload in 5 connection events [17].

When transmitting IP data using legacy advertisements,
the limited payload becomes a major bottleneck. To encap-
sulate IP data into the payload of advertising packets, an ad-
ditional advertising data header of at least 6 bytes is required,
leaving only 25 bytes for IP data. Even when using header
compression techniques (e.g., defined in 6LoWPAN [7,23]),
packet fragmentation would then be needed.
Extended Advertising. Extended advertising allows for
larger payloads and is based on legacy advertising. Instead of
carrying data in (very limited) packets via the primary chan-
nels, extended advertising uses these packets to refer to one
of 37 data channels and a start time. The actual payload is
then sent at the specified start time on the given data channel
in one or more chained data packets (see Figure 1).



By containing only a short pointer, the packets sent on
the 3 advertising channels need less air time for transmis-
sion. This reduces collision probability on those potentially
crowded channels. The collision probability for data packets
is reduced by utilizing all 37 data channels for their trans-
mission.

By splitting the payload over multiple chained packets,
extended advertising allows to transfer up to 65 Kbytes in a
single advertising event. Fragmentation and reassembly into
link layer data packets is done by the Bluetooth controller,
which relieves higher layers from implementing fragmenta-
tion schemes to transfer full IPv6 MTUs.

2.2 Connection-based BLE Communication
In contrast to advertisements, which are transmitted in

the broadcast domain, BLE connections are always point-to-
point. In a connection between two nodes, one node acts as
connection coordinator while the peer node is the connec-
tion subordinate.1 Similar to advertising events, the com-
munication in the connection-based mode is structured into
connection events. Each connection event consists of at least
a single data packet exchange between the coordinator and
subordinate. This can be repeated multiple times in the same
event until no payload is left to send or the next connection
event starts. If one of the peers has no data to send, it will
send empty packets. Each connection event takes place on
one of the 37 available data channels.

BLE connections provide a point-to-point service guaran-
teeing first-in-first-out, in-order, and complete data delivery.
To achieve this, data packets are retransmitted on the link
layer until they are acknowledged. If by either side no valid
packet is received during a specific amount of time, the con-
nection is considered lost and is closed. Consequently, as
long as connections are active, there is no packet loss on the
link layer [35]. The IP over BLE standard [13,15,30] is using
this connection-based mode.

3 IPv6 over BLE Extended Advertisements
This section describes our design to enable connection-

less IPv6 communication over BLE. The core idea is to
carry IPv6 packets in the payload of BLE extended adver-
tisements, using either directed advertisements or undirected
advertisements to transmit unicast or multicast data, respec-
tively.

In the remainder of this paper, we will denote our pro-
posed design IP-BLE-Adv, while the standardized IP over
connection-based BLE is denoted 6BLEMesh.

3.1 Protocol Design
Requirements. Wherever applicable, our proposal shall
comply with the 6BLEMesh standard. In detail,

1. the support of an MTU of ≥ 1280 bytes across all links
to prevent the fragmentation of IPv6 packets [10] and
to utilize the built-in functionality of extended adver-
tisements.

2. the use of 6LoWPAN header compression [29].

1The terms “coordinator” and “subordinate” used in this paper diverge
from Bluetooth specifications, to support non-discriminatory language.
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Figure 2: Encoding and fragmentation of an IPv6 packet
(blue) into a BLE PDU consisting of Advertising Data (AD)
segments, each starting with a dedicated AD header (yellow).
The first segment contains the custom sequence number (red)
to detect duplicates.

3. the support of unicast and multicast messages, where
multicast messages can be transmitted via broadcast
(similar to IEEE 802.15.4) but unicast messages should
be filtered on the link layer.

Advertising Types. All data is transferred using BLE ex-
tended advertisements. BLE supports different types of ex-
tended advertisements. In our design, all advertising packets
are non-connectable and non-scannable. To maximize the
use of built-in functionality of the BLE controller, we sug-
gest to use non-directed packets to transfer multicast mes-
sages and directed advertising packets for unicast messages.
The latter allows to utilize built-in packet filtering of an BLE
controller, which prevents the need to filter on the upper layer
and thus saves processing and energy.
Advertising Data Encoding. The Bluetooth standard re-
quires the payload of advertising packets to be encoded in
the advertising data (AD) format. This format comprises a
list of one or more generic length-type-value fields with a
1 octet length field, a 1 octet type field, and a variable length
data field. The structure of the data field depends on the value
of the type field [19].

Encoding IP data packets into this format poses two chal-
lenges: (i) there is no predefined AD type to carry IP data
and (ii) the maximum length of a single AD field is limited
to 254 bytes. To address (i), we opted to use the AD type
Service Data - 16 bit UUID (0x16). In this type, the
data section of the AD field starts with a 2 octet Bluetooth
service UUID and is followed by the IP payload including
a prepended sequence number (see below). Due to the lack
of a standardized service identifier for IP-BLE-Adv we use a
custom, non-standard 16-bit UUID (e.g., 0xabdc).

Subtracting the 2 octet UUID, this design leaves 252 bytes
of IP data in each AD segment. If an IP packet exceeds
this size, it is split into multiple chained AD segments of the
same type, where each segment is filled with the maximum
possible amount of data before a new segment is started.
The encoding of a 512 byte IPv6 packet is illustrated in Fig-
ure 2. As a result, each IP packet to be transferred, includ-
ing a custom sequence number, is encoded into a continuous
list of chained AD segments. This list is passed as a sin-
gle block to the BLE stack. Fragmentation if this block into
link layer packets and their reassembly is carried out trans-



parently by the BLE stack, based on configured HCI and
link layer packet sizes. This BLE-level fragmentation and
reassembly is independent of the structure of AD segments.
Data Reception. All nodes are expected to constantly listen
for incoming packets to maximize reception reliability. This
behavior is also specified for Relay nodes in Bluetooth Mesh
or for nodes in CSMA/CA-based IEEE802.15.4 modes. It
implies that the scan interval and scan window are equal.

Operating nodes in an always-on radio state per default
conflicts with energy requirements, but it is sufficient to gain
insights on the network performance of IP-BLE-Adv net-
works. Looking into concepts to improve energy efficiency
by duty cycling the radio, like the friend role defined by
Bluetooth Mesh, would be desirable. This is, however, not
in scope of this work.
Data Transmission. A single extended advertising event
consists of 3 advertising packets sent on each of the three ad-
vertising channels, as well as 1 or more chained packets con-
taining the actual payload sent on one of the 37 data channels
(see § 2). Ideally, each IP packet is sent in a single advertis-
ing event. Due to packet losses on the advertising channels,
radio switching delays on the receiver, and the unidirectional
nature of advertising packets, there is no guarantee that peer
nodes receive a packet. Repeating the same payload in multi-
ple consecutive advertising events does significantly improve
the packet delivery ratio. Our design offers to configure this
number of static retransmissions in the same style as Blue-
tooth Mesh does this for Relay nodes. In § 5.2 we present
our findings towards optimizing this parameter.
Duplicate Detection. By retransmitting IP packets through
multiple connection events, nodes potentially receive the
same IP data packet multiple times. As we do not require
duplicate detection on upper layers, BLE stacks must be able
to detect these duplicates. The Bluetooth standard defines
means for duplicate detection on advertising packets in the
BLE controller. In practice, this duplicate detection is im-
plemented using buffer memory holding the latest received
packets to be compared with newly received ones. Espe-
cially on memory constrained devices, this buffer space is
limited. We noticed that in environments with a high amount
of advertising traffic, these buffers are not able to hold a suf-
ficient amount of data and hence will fail to detect duplicates
reliably.

As the built-in duplicate detection is unreliable, we intro-
duce a 1 octet sequence number that is prepended before the
IP payload. This sequence number is incremented for each
IP payload that is transmitted. Each receiver maintains a ta-
ble of link layer source addresses and last received sequence
number for each neighbor. Incoming packets are then fil-
tered by comparing the included sequence number against
the last seen sequence number of packets from the same
source address. If the sequence numbers are equal, the in-
coming packet must be a duplicate and is dropped.
3.2 System Design and Implementation
High-level Idea. Our proposed solution consists of a
6LoWPAN-enabled IP stack connected to a BLE stack, in-
cluding a wrapper module between the stacks, taking care
of forwarding and converting IP in both directions (see Fig-
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IPv6 over BLE Adv. Wrapper (IP-BLE-Adv)

Generic Access Profile (GAP)

BLE L2CAP
BLE Link Layer

BLE Physical Layer

Figure 3: IP-BLE-Adv network stack. Our proposal repre-
sents a wrapper (green) between a common BLE stack (blue)
and a common 6LoWPAN/IPv6 stack (orange).

ure 3). In the context of the IP stack, the wrapper module
acts as a plain network interface exposing the 6-byte BLE
addresses as link layer addresses following the specifica-
tion in the IP over BLE standard [30]. The interaction be-
tween the wrapper module and the BLE stack is restricted
to the Generic Access Profile (GAP). Next to the BLE con-
troller, on the host side, our design requires only the Logical
Link Control and Adaption Layer Protocol (L2CAP) layer to
be implemented. In 6BLEMesh, the presence of a defined
Generic Attribute Profile (GATT) service is required by the
Internet Support Profile (IPSP) [15]. The service aids the es-
tablishment of BLE connections, and hence is not needed in
our implementation.
Implementation. We implemented the proposed design in
a fully open-source platform based on the RIOT operating
system [2, 6] and the Apache NimBLE BLE stack [1]. For
IPv6 networking, we utilize GNRC, the default IPv6 stack in
RIOT [28].

All IP data forwarding as well as link layer address han-
dling is implemented in a single, separate software module,
which allows to easily include or exclude IP-BLE-Adv in a
RIOT image. In the context of the GNRC network stack,
this module acts as a network interface by implementing the
GNRC netif interface. To interact with the NimBLE BLE
stack, the proposed module uses the NimBLE GAP API, in
particular the ble gap ext family of functions.

On data reception, the NimBLE GAP API may, depend-
ing on the overall packet size, fragment incoming data into
chunks and pass those chunks sequentially to the API user.
The received IP data is encoded into one or more BLE adver-
tising data format segments (see § 3.1). However, in order
to be able to extract the IP packet, access to the full packet
is needed. To achieve this, our implementation introduces
an intermediate receive buffer that holds at least one full
IPv6 MTU plus the overhead generated by the advertising
data field headers, leading to an additional RAM usage of
1.3 Kbytes.

For 6BLEMesh, we use the nimble netif implementa-
tion that is included in RIOT [35].

4 Experiment Setup
We evaluate our proposal (see § 3) based on low-power

hardware. This section describes the hardware and the
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Figure 4: Mapping of nodes in the FIT IoTlab testbed to network topologies deployed in our experiments, highlighting pro-
ducer (orange) and consumer (blue) nodes.

testbed we use to deploy the different scenarios we analyse.

4.1 Hardware and Software Configurations
Hardware. We use the nrf52840dk and nrf52dk de-
velopment boards from Nordic Semiconductor. Both fea-
ture 64 MHz ARM Cortex-M4F SoCs with on-chip BLE
5.2 support. In the context of this evaluation, the only rel-
evant differences between both platforms are the RAM and
ROM sizes: the nrf52840dk offers 1 Mbytes ROM and
256 Kbytes RAM while the nrf52dk offers 512 Kbytes
ROM and 64 Kbytes RAM. Both SoCs, especially the
nrf52dk, offer common memory and performance charac-
teristics of modern IoT platforms [8].
Testbed. All raw data analyzed in this paper is the out-
put of multi-node experiments conducted in the FIT IoT-
lab testbed [3] (https://www.iot-lab.info). IoTlab is an
open testbed that anyone can access by creating an account
free of charge.

We perform all experiments at the Saclay site of
the FIT IoTlab using 15 nodes (10×nrf52dk and
5×nrf52840dk). All nodes are within radio range of each
other and are located in the same room in a 1 m × 1 m two
dimensional grid. This room is located on the ground floor of
a typical office building without dedicated shielding, making
it subject to radio interferences in the 2.4 GHz band used by,
e.g., Bluetooth, WiFi, DECT. Figure 4(a) shows the spatial
distribution of the nodes in the testbed, which we deploy in
three different topologies (details see § 4.2).
Software configuration. The base of our implementation is
RIOT version 2021.09, commit c739516, and NimBLE ver-
sion 1.4, commit b9c20ad. We use the BLE default 1 MBit
mode and, if not stated otherwise, the default parameters de-
fined by RIOT and NimBLE.

For GNRC we enable 6LoWPAN [29] as well as gcoap to
support the Constrained Application Protocol (CoAP) [39].
We use the default GNRC packet buffer size of 6144 bytes
and set the gcoap buffer size to 5120 bytes. Router solic-
itations are turned off as they are not needed. In GNRC,
the link layer packet queue is configured to hold 4 IP pack-
ets. IP routes are configured statically by using the RIOT
shell commands to create the analyzed network topologies.
For 6BLEMesh the BLE connections are also setup statically
according to the configured IP routes. Dynamically created
network topologies are out of scope of this work because
there are no protocols for automated connection management
in 6BLEMesh networks available.

The NimBLE configuration of IP-BLE-Adv is based on
the default configuration of 6BLEMesh but with the major
difference that extended advertisements are enabled. Both
are configured to provide an MTU of 1280 bytes while the
NimBLE buffer size is configured to 8.9 Kbytes for both
setups. The link layer data length extension is enabled in
the controller and the HCI interface is configured to transfer
chunks up to 257 bytes, the maximum that NimBLE allows.
The maximum number of chained auxiliary packets per ad-
vertising event is configured to 10. Furthermore, we allow a
maximum number of 10 concurrent advertising instances.

4.2 Scenarios
We want to model network performance that resembles

real-world deployments and also take the characteristics of
low-power embedded hardware into account. For this rea-
son, we focus on analyzing network metrics on the appli-
cation layer by generating network load by sending CoAP
packets [39].

In common IoT scenarios, numerous nodes periodically
send their data to a gateway. To reflect this, we deploy
multiple producers and a single consumer. Producers pe-
riodically send data based on non-confirmable CoAP PUT
messages (i.e., no application layer retransmission) to a con-
sumer node. To prevent burst traffic, producers add a ran-
dom jitter to their periodic producer interval. If not stated
differently, each CoAP PUT message contains a payload of
100 bytes while the CoAP reply messages do not contain any
payload.

Our experiments use a many-to-one scenario with a single
consumer and 14 producer nodes. The scenario is deployed
in three different topologies: 1-hop star, 3-hop tree, and 14-
hop line. The star and tree topologies resemble setups that
are likely to be encountered in real-life. The line topology
is used to understand the network behavior under worst case
conditions. All topologies are created using static IP routes
such that the consumer is located in the center (star), root
(tree), or edge (line). The specific mappings of nodes is il-
lustrated in Figure 4.

5 Results
We compare network performance (i.e., reliability and la-

tency) and system performance (i.e., power consumption and
memory usage) for IP-BLE-Adv and 6BLEMesh in different
network setups.

https://www.iot-lab.info
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Figure 5: Distribution of CoAP round trip times for different producer intervals (1s, 5s) and varying advertising and connection
intervals in three network topologies (star, tree, line).

5.1 Basic Performance Characteristics
Figure 5 exhibits the latency of CoAP messages when

deploying IP-BLE-Adv and 6BLEMesh in a star, tree, and
line topology. We measure the latency as the time differ-
ence between sending a CoAP message and receiving the
corresponding (empty) ACK, which is sent even in non-
confirmable mode. Any packet loss leads to an infinite RTT.
We consider high and low network load (i.e., producer inter-
val of 1s ±.5s and 5s ±2.5s). Each configuration runs for
1h.

In IP-BLE-Adv experiments, we configure four different
advertising intervals (25ms, 50ms, 75ms, 100ms) and a static
packet retransmission of 2 packets, which results in 3 adver-
tising events for each IP packet (see § 5.2).

In 6BLEMesh experiments, to account for high reliability,
we use randomized connection intervals [35] such that these
intervals match the advertising intervals used in IP-BLE-Adv
(i.e., [15:35]ms, [40:60]ms, [65:85]ms, [90:100]ms). To be
independent of background noise, we conduct all IP-BLE-
Adv experiments outside of office hours. We consider back-
ground noise in detail in § 5.3.
IP-BLE-Adv. The reliability of IP-BLE-Adv differs greatly
depending on the network topology and load but, in general,
significantly decreases when the network load increases. For
example, using an advertising interval of 50ms and increas-
ing the load from one packet every 5s to every 1s, reduces the
CoAP packet delivery rates from 98.2% to 89.1%, 94.5% to
73.2%, and 67.9% to 20.8% in star, tree, and line topology,
respectively. The reason for these losses is twofold. First,
a higher network load increases the chance of packet col-
lisions in the physical domain. Second, more packets in-
crease radio scheduling conflicts, especially at the consumer
node. In multi-hop tree and line topologies, these effects be-
come multiplied because the overall number of packets sent

is increased due to hop-wise packet forwarding along longer
paths. For example, in our setup, the overall number of pack-
ets sent among all nodes is 6× higher in the line topology
compared to the star topology. Furthermore, even if we con-
figured multi-hop topologies based on IP routes, packets are
sent in the same radio domain. Given that all nodes are in
radio range of each other, packet collisions even via inde-
pendent (IP) routes are observed.

The CoAP packet latency shows a stair effect. These steps
are caused by the static retransmissions of advertising pack-
ets and the width of the steps is defined by the advertising
interval. The delay transitions are most pronounced in the
star topology. In the tree and line topology, processing and
queuing delays along intermediate nodes smoothen transi-
tions. In all configurations, we found that over 90% of the
successful CoAP acknowledgments are received after 2.5×
of the average hop count.

Comparison to 6BLEMesh. The results of 6BLEMesh (see
Figure 5) are in line with prior work [35]. In all 24 experi-
ments, no CoAP packet was lost. The network load caused
by a producer interval of 1s does not lead to an overload
in 6BLEMesh, only the delay slightly increases in multi-hop
topologies.

In terms of reliability, 6BLEMesh is superior compared to
IP-BLE-Adv. Under relaxed network conditions, though, IP-
BLE-Adv achieves packet delivery rates that are acceptable
for a wide range of IoT applications. In terms of latency,
we observe a different picture: time-sliced channel hopping,
which enables reliability in 6BLEMesh, comes to the price of
increased packet delay. In IP-BLE-Adv, packets are always
sent immediately, i.e., when they are handed to the Bluetooth
Stack. Then, packet delays are only affected by (relatively
small) processing and retransmission delays. Especially in
scenarios with short paths (e.g., star topology), IP-BLE-Adv
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Figure 6: CoAP round trip time CDFs for different packet retransmission counts and producer intervals in a star topology
network and an advertising interval of 50ms.

experiences significant shorter round-trip times compared to
6BLEMesh.
5.2 IP-BLE-Adv Configuration Parameters

We identified two major configuration parameters that
predominantly effect the network performance of IP-BLE-
Adv networks, the retransmission count and the advertis-
ing interval.
Retransmissions. The unidirectional transmission of BLE
advertisements challenges a reliable link layer because it pre-
vents the implementation of acknowledgments to confirm
successful messages. To increase the reliability of data trans-
missions, we apply a static retransmission scheme that de-
fines how often an advertising event is replicated, similar to
Bluetooth Mesh [17].

Figure 6 illustrates the impact of the retransmission, de-
ployed in a star topology network and an advertising interval
of 50ms. A higher a number of retransmissions increases the
overall reliability, as expected, but few retransmissions have
surprisingly notable impact. Focusing on the high load sce-
nario (1s producer interval), the PDR significantly increases
with a single retransmission (from 75.8% to 86.5%). Addi-
tional retransmissions have lower impact. A PDR of 90.0%
requires 5 retransmissions. This behavior can be reproduced
in different topologies and under different network loads.

The results in Figure 6 further illustrate a drawback of
fixed retransmissions. The reliability of the first advertis-
ing event reduces with the number of retransmissions and
thus packet delays increase. The reason for this is that nodes
need to spend more time transmitting data while spending
less time listening for incoming data, thus, the chance to
miss incoming packets grows. In our configuration, this can
be observed particularly on the consumer node (not shown),
which experiences the most IP traffic. In our scenario, two
retransmissions provide the best tradeoff between reliability
and packet delay.
Advertising interval. The advertising interval defines the
amount of time between two consecutive advertising events
and thus the retransmission delay. It is worth noting that a
Bluetooth controller does not apply the configured value di-
rectly when scheduling advertising events, because the Blue-
tooth standard defines to add a random jitter of 0 to 10ms be-
tween two advertising events. This jitter leads to less sharp

transitions and a slight slope in the distribution of retrans-
missions (see Figure 6).
5.3 Noise Resilience

IP-BLE-Adv uses the three primary advertising chan-
nels to deliver data. These three channels can also be
used by other BLE applications (e.g., BLE beacons [25],
Covid Warn Apps [4]) or interfere with external sources
(e.g., WiFi, DECT). This leads to the assumption that IP-
BLE-Adv is less resilient to non-related radio activity com-
pared to 6BLEMesh, which benefits from 37 typically less
crowded data channels.

All used testbed nodes are located in an office building
and are thus subject to diurnal radio background noise. To
illustrate the impact of such noise on the network perfor-
mance, we conducted 18h producer-consumer experiments
in a star topology during working hours, 7AM – 12AM
(UTC+2). The experiments were conducted with 2 retrans-
missions and an advertising interval of 50ms for IP-BLE-Adv
and a connection interval of [40:60]ms for 6BLEMesh.

Figure 7(a) compares the CoAP packet delivery rates for
both network setups and shows additionally the link layer
PDR of the 6BLEMesh network. The 6BLEMesh PDR
is constant during the entire experiment and no impact of
the external radio activities during office hours is visible.
The time-sliced channel hopping makes IP-BLE-Adv robust
against external interferences.

In IP-BLE-Adv, the CoAP PDR exhibits a different pic-
ture: during office hours successful CoAP packet delivery
decreases. To shed light on the reason, Figure 7(b) shows
the aggregated number of unrelated BLE advertising pack-
ets received by all IP-BLE-Adv nodes during the experiment.
Even though these packets are only a subset of the external
noise, a correlation between increased noise and decreased
CoAP PDR in the IP-BLE-Adv network is visible. We con-
clude that IP-BLE-Adv is not critically sensitive to external
noise (i.e., 5% additional packet loss) but environments with
high radio activity have a negative impact on packet delivery
rates. This is not the case in 6BLEMesh.
5.4 Energy Consumption

Energy consumption is a key metric in low-power IoT net-
works. As the FIT IoT-LAB does not provide any functions
to measure the energy consumption directly, we derive this
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Figure 7: Impact of radio interference and background traffic on the network performance of IP-BLE-Adv and 6BLEMesh in
star networks.

star tree line star tree line
0.0
1.0
2.0
3.0
4.0
5.0
6.0

Root node (consumer)

star tree line star tree line

Leaf node (producer)

Network topologyRa
di

o 
ac

tiv
ity

 [%
]

IP-BLE-Adv

6BLEMesh IP-BLE-Adv 6BLEMesh

(a) Radio usage for TX.

star tree line star tree line
0.0

20.0
40.0
60.0
80.0

100.0
Root node (consumer)

star tree line star tree line

Leaf node (producer)

Network topologyRa
di

o 
ac

tiv
ity

 [%
]

IP-BLE-Adv 6BLEMesh IP-BLE-Adv 6BLEMesh

(b) Radio usage for RX.

Figure 8: Comparison of radio utilization of IP-BLE-Adv and 6BLEMesh for the root node (consumer) and one selected
leaf node (producer) and different network topologies. Advertising interval for IP-BLE-Adv is 50ms, connection interval for
6BLEMesh is [40:60]ms.

metric based on radio usage. Assuming that a node is only
active when sending or receiving network data, such as in
our experiments, the radio activity does provide a close esti-
mate of the actual energy consumption. To measure the radio
activity of each node, we count the time a radio is active in
receive or transmit mode by inserting software counters di-
rectly in the low-level radio driver code.

Figure 8 shows the radio usage relative to the experiment
runtime for the root of the network and a single selected leaf
node. All experiments have been running for 1h with an ad-
vertising interval of 50ms and 2 retransmissions in IP-BLE-
Adv and a connection interval of [40:60]ms in 6BLEMesh.

IP-BLE-Adv nodes experience more transmit events com-
pared to the 6BLEMesh nodes (see Figure 8(a)). Although
in each network topology the same number of CoAP pack-
ets traverse the network, the overall number of BLE packets
is significantly larger in the IP-BLE-Adv networks because
multiple packets are needed for each advertising event and
the static packet retransmission. Differences become even
more significant when measuring the amount of receiving
time (see Figure 8(b)) since IP-BLE-Adv requires that nodes
always listen. The aggregated radio activity of IP-BLE-Adv
nodes is below 100%, though, due to radio switching and
CPU overhead.

If we assume an average current consumption of 4.6mA
while the radio is active, as given in the datasheet of our IoT
hardware, the node lifetime would last at most 50h using a

230mAh coin cell battery. In practice, this value would be
smaller due to TX activity and energy consumed by other
CPU activity. In comparison, the same node in a 6BLEMesh
network with a radio activity of 0.5% has an average current
consumption of 23µA and would last for 416 days on the
same battery.

Without optimization our IP-BLE-Adv design does not al-
low for the same level of low-power deployments as possi-
ble with using 6BLEMesh. However it is important to note,
that we are comparing two extremes here. The energy con-
sumption of IP-BLE-Adv is at its upper bound due to the per-
manently active radio. Duty cycling the radio and defining
different roles could significantly improve the energy con-
sumption (see § 7). The numbers for 6BLEMesh in contrary
present a lower bound as they depict a leaf node with only a
single BLE connection. Router nodes will need to run neigh-
bor discovery and connection management protocols involv-
ing additional BLE advertising and scanning which will in-
crease power consumption in practice.

However, the energy consumption of non optimized IP-
BLE-Adv is on par with other popular low-power WPAN
technologies, such as unslottet IEEE802.15.4, and is a mag-
nitude lower than the use of WiFi on embedded devices.

5.5 Memory Usage
When analyzing memory requirements we consider two

aspects to provide a complete picture: (i) the static RAM
and ROM usage reserved and computed at linking time, and
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Figure 9: Compile-time memory usages of the IP-BLE-Adv and 6BLEMesh benchmark binaries, separated into different system
components.
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Figure 10: NimBLE packet buffer usages for a set of 1h experiments deployed in different network topologies, using an
advertising interval of 50ms in 6BLEMesh and 2 retransmissions and a connection interval of [40:60]ms in IP-BLE-Adv.

(ii) the actual amount of RAM that is used at runtime. Note
that it is common to use only preallocated static memory in
low-end embedded systems. This is also the case in RIOT
and NimBLE.

Figure 9 compares the static memory usage between IP-
BLE-Adv and 6BLEMesh. Although the IP-BLE-Adv Blue-
tooth stack is less complex, the resulting firmware image is
7.5 Kbytes larger compared to the 6BLEMesh build. The
reason for this is that NimBLE currently cannot be config-
ured to support extended advertisements without BLE con-
nection handling functions. Hence, enabling extended adver-
tisements adds additional RAM and ROM usage to IP-BLE-
Adv, while 6BLEMesh does not use that feature.

In 6BLEMesh, the RAM usage depends on the precon-
figured number of BLE connections a node can maintain si-
multaneously. For each BLE connection an additional RAM
block of 1056 bytes needs to be allocated.

We want to emphasize that the measured code sizes can
be decreased significantly when moving to production code.
Our experiment applications contain a number of large soft-
ware modules, such as the RIOT shell and our custom event
logging, that can be dropped in user applications. Further-
more, to limit the impact of overflowing buffers, the Nim-
BLE and GNRC packet buffers are configured to fill the un-
used RAM space, which can also be decreased in practice.

Figure 10 exhibits the memory used in the NimBLE
packet buffer during runtime of different 1h experiments. We
choose an advertising interval of 50ms with 2 retransmis-
sions in the IP-BLE-Adv setup and a connection interval of
[40:60]ms in the 6BLEMesh setup. We show the buffer us-
age of the root node (consumer), which experiences the most
network traffic, and a selected leaf node (one producer), ex-

periencing the least traffic. Other leaf nodes show the same
behavior.

The buffer usage of the root node in the IP-BLE-Adv net-
work slightly increases with increasing network traffic. In
contrast to this, in 6BLEMesh networks, the root node uses
significant more buffer space, not only when the number of
open connections grow (star vs. tree vs. line), but also when
network load increases (producer interval 5s vs. 1s). The
buffer usages on the leaf node are comparable in both ap-
proaches but are slightly more volatile in 6BLEMesh.

6 Discussion
Relevance of Bluetooth. The number of annually shipped
BLE devices is expected to reach 6.4 billion in 2025, of
which 770 million are smart home devices [20], with an esti-
mated market size surpassing USD 16.7 billion by 2026 [24].
This will ensure a steady availability of both BLE-enabled
end-user products and BLE-enabled micro controller plat-
forms including software support. After its introduction,
BLE was attested the potential to disrupt the IoT [36]. Im-
proving IP over BLE by a lean connection-less mode enables
additional low-power IoT network scenarios. For example,
mobile nodes, which will benefit from reduced overhead be-
cause connection management is not needed, or massive de-
ployments since nodes do not need to keep additional states
for each neighbor, which is particularly important in the con-
text of memory-constrained devices.
Bluetooth Mesh vs. IP-BLE-Adv. Similar to IP-BLE-
Adv, Bluetooth Mesh is connection-less but, in contrast, lim-
ited in exploiting BLE channels and forwarding because of
two restrictions. First, Bluetooth Mesh uses only the pri-
mary advertising channels, whereas IP-BLE-Adv leverages



both three primary and 37 secondary channels to reduce
the load on the primary channels. Second, Bluetooth Mesh
floods packets, whereas IP-BLE-Adv can leverage efficient
IP-based routing. Hence, IP-BLE-Adv performance proper-
ties describe an upper bound for Bluetooth Mesh. Further-
more, IP-BLE-Adv allows for arbitrary IP packets instead
of small packets that follow a specific data model, granting
more freedom when implementing Internet services and ap-
plications.
802.15.4 vs. IP-BLE-Adv. Our results show that IP-BLE-
Adv networks offer performance properties that are on par
with common IEEE 802.15.4-based networks [21] and thus
sufficient to efficiently run advanced IoT protocols and ap-
plications in multi-hop environments. Especially in scenar-
ios of relaxed network loads and topologies with short paths,
data transmission is reliable (<10% packet loss). From a sys-
tems perspective, the biggest advantage of IP-BLE-Adv com-
pared to IEEE 802.15.4 is reduced complexity. The same
radio hardware and software can be used to implement both
connection-less and connection-based communication. Fi-
nally, IP-BLE-Adv provides a higher data rate (8×), which
reduces transmission time and thus energy consumption.
6BLEMesh vs. IP-BLE-Adv. 6BLEMesh outperforms IP-
BLE-Adv in terms of reliability (§ 5.1) and energy consump-
tion (§ 5.4) but leads to higher packet latency. The time
sliced channel hopping in 6BLEMesh allows for extremely
efficient radio usage and reliable data transfer. The manage-
ment of allocating channels, however, adds radio and CPU
overhead as well as latency. We argue that IP-BLE-Adv is a
deployment option for IP over BLE applications that need to
be optimized for low latency and effortless neighbor discov-
ery while being able to tolerate certain overhead in terms of
energy consumption and packet loss. These include, e.g., de-
vice provisioning and high density assembly line scenarios
(see § 1).

When configuring IP-BLE-Adv networks, we identified
the advertising interval and the retransmission count as ma-
jor parameters influencing the network performance (§ 5.2).
The advertising interval is directly correlated to the latency
of retransmitted packets while the retransmission count im-
pacts reliability. For the latter we found that a retransmis-
sion count of 2 events provides the best trade-off between
increase in network load and reliability gains, where values
above 2 did only marginally increase the reliability. In the
current state of the IP-BLE-Adv design, where nodes use a
scanning duty cycle of 100% (radio in RX per default), the
impacts of different parameters on the energy consumption
are negligible.

Because both approaches depend on the identical base
system of radio hardware and Bluetooth stack, they could
be run simultaneously on the same node. As of now this is
not supported by our implementation but can be added in the
future. This would allow for more sophisticated use cases
where e.g. a node could use IP-BLE-Adv to acquire provi-
sioning information on how to join a local 6BLEMesh net-
work.
Implementation and debugging pitfalls. The BLE features
utilized by IP-BLE-Adv are common to any BLE 5.0 stack

(and newer versions). In contrast to the implementation of
6BLEMesh, which uses L2CAP connection-oriented chan-
nels, we did not experience any stability issues with Nim-
BLE. Reaching a stable configuration of NimBLE to handle
large extended advertising data (i.e., IP data) was, however,
challenging. A number of parameters for the controller, HCI,
and host levels needed to be synchronized to enable stable
transfer of advertising data payloads (see § 4.1).

The Bluetooth standard does not require that the lengths
of the individual advertising data (AD) segments and the
fragmentation of these BLE payloads into link layer packets
by the controller are aligned. This means that the AD head-
ers do not have to be aligned with the payloads of the trans-
mitted radio packets. This leads to a pitfall when debugging
IP communication using external packet sniffers. The indi-
vidually captured packets are then marked broken by tools
such as Wireshark for not containing valid AD segments. To
allow for seamless debugging we aligned the maximum size
of AD segments with the controllers maximum link layer
packet size.
Further system support. In this paper, we have focused
on connected, constrained microcontrollers, which challenge
system implementations but will become more popular in
the future. Currently, mobile consumer devices play a major
role when supporting BLE. Our proposal can also be imple-
mented there. To the best of our knowledge, iOS and An-
droid, the two dominant mobile platforms, support both all
BLE features and APIs that are needed to run IP-BLE-Adv in
user space. Porting IP-BLE-Adv allows for direct communi-
cation between mobile and embedded devices opening new
use cases, e.g., using mobiles as border routers.

7 Related Work
Transferring data over BLE advertisements in multi-hop

networks has been standardized by the Bluetooth SIG in
Bluetooth Mesh [17] and been extended by third-parties to
support extended advertisements [33]. Bluetooth Mesh uses
proprietary network and data protocols and does not support
transfer of IP data. To the best of our knowledge, there is no
prior work on transferring IP over BLE advertisements.

In earlier work [34], we showed that static packet re-
transmissions combined with flood-based routing applied by
Bluetooth Mesh significantly multiplies the number of ad-
vertising packets sent. This behavior does not apply in
IP-BLE-Adv networks due to IP-based routing instead of
flooding. The performance of CoAP in common large-
scale IEEE 802.15.4 networks was analyzed by Gündoğan et
al. [21]. IP-BLE-Adv shows a similar network performance.

Nikodem et al. [31] analyzed the reliability of BLE ad-
vertisements in a star topology consisting of 200 nodes. They
show that increasing advertising traffic does significantly re-
duce packet delivery rates. Our results are in line with this
observation. More recent work by Zachariah et al. [43]
shows, however, that data reception rates for BLE advertise-
ments in such dense networks can be significantly improved
by dynamically adjusting packet redundancy. Our work is
compatbile with the proposed framework. Applying it to im-
prove the reliability of IP-BLE-Adv networks will be part of
our future work.



Potential optimizations of our initial design may rely on
prior work. In our current IP-BLE-Adv proposal, all nodes
use a BLE scanner duty cycle of 100% to keep the design and
implementation lean and simple. To improve energy con-
sumption, we could adapt parts that focused on optimizing
BLE advertising and scan parameters given measures such as
reliability or energy [12,26,37,38,41]. Further optimization
schemes to reduce radio interference [11,22,42] and network
load [32] in BLE advertising networks could also be applied
to optimize IP-BLE-Adv networks.
8 Conclusion and Outlook

In this work, we presented IP-BLE-Adv, multi-hop IPv6
over BLE extended advertisements. In contrast to other com-
mon connection-less, low-power IoT technologies such as
IEEE 802.15.4 and Bluetooth Mesh, IP-BLE-Adv features
higher data rates and less energy consumption as well as
higher throughput and the flexible implementation of Inter-
net services and applications. Our experiments based on
real IoT hardware deployed in a mid-sized testbed show
that IP-BLE-Adv can complement IP over connection-based
BLE (6BLEMesh). IP-BLE-Adv networks offer low latency
and reliability that is sufficient in many multi-hop deploy-
ments as long as the network load is relaxed. 6BLEMesh, on
the other hand, is robust even in stressed networks and tai-
lored to very low-power scenarios. Therefore, IP-BLE-Adv
closes the gap towards a standard-compliant BLE stack that
provides both connection-less and connection-based com-
munication in Internet scenarios. We plan to analyze pos-
sible interferences due to concurrent operation and cross-
dependencies in future research.
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A Artifacts
All artifacts used to create the results in this paper are

publicly available. These artifacts are composed of the ac-
tual implementation of IP-BLE-Adv, tooling for conducting
experiments in the FIT IoTlab testbed and analyzing their
results, as well as all the raw output of all experiments. Us-
ing these artifacts anyone should be able to reproduce our
results, not only based on the provided raw data but also by
re-running our experiments in an automated fashion.

Our IP-BLE-Adv experiments are based on the implemen-
tation described in § 3.2. To support full reproducibility, the
exact configuration parameters used in the conducted exper-
iments are listed in § 4.
A.1 Hosting

All artifacts produced in this work are available through
the following sources:

https://github.com/haukepetersen/RIOT/
tree/ipbleadv

Contains the source code to create a RIOT image that
supports IP-BLE-Adv.

https://github.com/haukepetersen/
mynewt-nimble/tree/ipbleadv

Contains the NimBLE branch used in our experiments.

https://github.com/ilabrg/
artifacts-ccr-ipbleadv

Contains the detailed experiment descriptions and the
tooling needed to run and analyze them.

https://zenodo.org/record/8112830/
files/ipbleadv_logs_raw.zip

Contains the raw data gathered during our experiments.
The data can be used to replicate the results presented
in this work.

A.2 Software Platform
The IP-BLE-Adv module is located under

pkg/nimble/jelling as part of the linked RIOT branch.
This implementation includes a number of software hooks
for collecting and printing trace data used for analyzing
network packet flows.

The NimBLE branch also contains a number of custom
print functions used to trace packets through the BLE stack.
A.3 Experimentation Framework

All experiments were controlled using a custom experi-
mentation framework that takes care of allocating and con-
trolling the nodes used in the testbed as well as collecting
the experiment output. In this framework, each experiment
is fully described in a dedicated YAML configuration file.
Based on these configuration files it is possible to re-run any
experiment.

The directory tools/ contains the tooling used to analyze
the experiment results and to create the figures presented in
this paper.

The README.md contains more detailed descriptions of
the framework and step-by-step instructions on its usage.

https://github.com/haukepetersen/RIOT/tree/ipbleadv
https://github.com/haukepetersen/RIOT/tree/ipbleadv
https://github.com/haukepetersen/mynewt-nimble/tree/ipbleadv
https://github.com/haukepetersen/mynewt-nimble/tree/ipbleadv
https://github.com/ilabrg/artifacts-ccr-ipbleadv
https://github.com/ilabrg/artifacts-ccr-ipbleadv
https://zenodo.org/record/8112830/files/ipbleadv_logs_raw.zip
https://zenodo.org/record/8112830/files/ipbleadv_logs_raw.zip
https://anonymous.4open.science/r/ipbleadv_exp-7637
https://anonymous.4open.science/r/ipbleadv_exp-7637
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