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Abstract
Research in wireless sensor networks has resulted in a re-

markable breadth of highly capable systems. However, while
specialized protocols perform well in the setting they were
designed for, they often lack the ability to quickly adapt once
operating conditions change drastically. Of particular impor-
tance is resilience to node and link failures, as clusters of
nodes that lost their leader or split apart need to re-organize
and find each other again. With Demos, we present a low-
power wireless protocol that ensures robust network orches-
tration despite such failures. Demos rapidly finds consen-
sus on leadership with its cluster coordination mechanism
even if the set of nodes fluctuates by introducing new elec-
tion quorums. In addition, a novel cluster discovery scheme
enables autonomous clusters to merge on the fly and max-
imize network coverage. Experiments with controlled mo-
bility on a multi-hop network of 24 nodes demonstrate that
Demos maintains a reliable data exchange despite severe
disruptions and adapts to changes within seconds. We fur-
ther find that Demos’ ability to continuously coordinate and
discover achieves highly robust orchestration of fully au-
tonomous clusters.
Categories and Subject Descriptors

C.2.1 [Computer-communication Networks]: Network
Architecture and Design—Distributed networks, wireless
communication; C.2.2 [Computer-communication Net-
works]: Network Protocols; C.3 [Special-purpose and
Application-based Systems]: Real-time and embedded sys-
tems
General Terms

Design, Experimentation, Reliability
Keywords

Fault tolerance, Consensus, Network orchestration, Con-
current transmissions, Wireless sensor networks

1 Introduction
While many wireless sensor networks (WSNs) rely on

static nodes and infrastructure such as data sinks, a growing
class of applications features mobile nodes and autonomous
operation. Examples of particular societal and industrial im-
portance range from human sensing [25, 44] to multi-agent
systems [22, 27]. Re-configurable hardware [4], flexible
physical layers [7], and data-driven media access [40] pro-
vide the necessary robustness and adaptivity for such appli-
cations on the link layer. However, current network-layer
solutions still fall short of fulfilling their requirements.

Problem. Imagine a swarm of drones in a search-and-rescue
scenario. It requires continuous coordination and data ex-
change among drones over a wireless multi-hop network to
jointly localize human victims [50, 51] or to safely navigate
complex spaces [27, 35]. During a mission, the network
may split into multiple clusters voluntarily (e.g., when mul-
tiple regions of interest are identified) or unexpectedly (e.g.,
due to sudden non-line-of-sight conditions). Using current
network-layer protocols, such a network split causes a loss of
coordination for a subset of drones [17, 24, 39, 54] or renders
the drones unable to reconnect and merge into one complete
network [32, 33, 34], thus endangering mission success.

The root of this problem is that nearly all existing
network-layer solutions centrally orchestrate the nodes.
Within a cluster of connected nodes, which may comprise all
or only a subset of the nodes in a network, a coordinator dis-
tributes information to synchronize the nodes and instructs
them on when each one may communicate. If the coordina-
tor becomes unavailable, orchestration is halted and the data
exchange breaks down. While node mobility [25, 44] can
cause such disruptions, static clusters may also be affected
due to node or link failures [1, 53]. Despite its relevance, cur-
rent designs [24, 32, 33, 39, 54] cannot quickly and safely ap-
point a new coordinator after arbitrary node and link failures.
While some protocols permit nodes to re-establish coordina-
tion after a network splits into clusters, they lack the means
for these clusters to discover each other and merge [20, 34].

For robust orchestration despite node and link failures, a
protocol needs to (i) accurately identify nodes in a cluster
and their traffic demands, (ii) maintain reliable communi-
cation in spite of frequent network topology changes, and
(iii) discover and merge clusters. These features enable au-
tonomous networking as required by emerging applications.



Contribution. We present Demos, the first low-power wire-
less protocol that provides robust network orchestration for
autonomous multi-hop networking. Demos features a novel
consensus mechanism to reliably determine a cluster coordi-
nator and to ensure that cluster information remains up-to-
date. By minimizing network state, Demos swiftly adapts its
data exchange and instantly reacts to changes in the network.
Key to this robustness is Demos’ ability to preserve orches-
tration in case the current coordinator becomes unavailable
based on newly introduced election quorums. Combined
with a unique cluster discovery scheme, nodes always re-
main in exchange with connected nodes and quickly merge
clusters to maximize coverage. By building on concurrent
transmissions [19, 29], Demos reliably propagates informa-
tion while being agnostic to network topology changes. This
flexibility enables the protocol to inherently support frequent
network fluctuations and high node mobility.

This paper makes the following major contributions:
• We introduce Demos, the first low-power wireless pro-

tocol that achieves robust network orchestration despite
arbitrary node and link failures.

• We propose novel methods for cluster coordination and
discovery, enabling autonomous clusters that can dy-
namically split and merge to increase network coverage.

• We provide an open-source implementation of Demos
and demonstrate its ability to robustly orchestrate nodes
under challenging conditions in testbed experiments.

Based on the application and protocol requirements specified
in Section 2, we give an overview of Demos in Section 3. We
describe the protocol in more detail in Section 4 and provide
a formal analysis in Section 5. In Section 6, we test Demos
in various mobility and failure scenarios and demonstrate its
ability to adapt on the spot and ensure maximal connectivity.

2 Motivation and Challenges
We first discuss the application requirements, deduce pre-

requisites for robust network orchestration, and then identify
the challenges we need to overcome in the design of Demos.
2.1 Application and Protocol Requirements
Application requirements. Autonomous systems typically
feature different traffic categories (e.g., control, coordina-
tion, and application data [22]). As each category differs
in bandwidth and temporal resolution, the application must
be able to specify and adapt its traffic demands. Especially
in multi-agent systems, reliable real-time traffic is indispens-
able, with requirements changing over time depending on
the developing scenario (e.g., switching from searching for a
victim to streaming video feeds after localization [22]).

To support mobile networks such as drone swarms, con-
sistently maintaining connectivity such that no node remains
isolated is paramount [50, 51] and should be temporally and
spatially robust. However, due to large coverage areas and
precarious environments, multi-hop communication is often
a must [22] and needs to cope with a dynamic topology [31].

Most important, however, is the ability of nodes to self-
organize into an autonomous network by detecting nearby
nodes and establishing communication. Nodes may fre-
quently encounter network fluctuations [51] and seek to dy-
namically exchange information whenever possible [50].
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Figure 1. Demos provides network orchestration for the ap-
plication. Based on two link-layer primitives, it establishes
coordination, discovery, and adaptivity on the network layer.

Protocol requirements. From the preceding application re-
quirements, we deduce the following requirements for a suit-
able network-layer protocol. To cater to strict and challeng-
ing traffic demands, communication should be scheduled to
prevent contention and ensure efficient use of the limited
bandwidth [17]. Reliable scheduling requires the collection
of traffic demands from the currently participating nodes and
uniquely assigning time slots to avoid packet collisions.

To cope with time-varying communication links, network
orchestration should have minimal dependence on the cur-
rent topology. As a consequence, the protocol should be suf-
ficiently robust to ensure that the exchange of data is pre-
served despite unexpected node and link failures.

Lastly, to autonomously and rapidly coordinate communi-
cation without the potential for contradicting decisions, each
cluster should choose a unique cluster coordinator. The elec-
tion of a coordinator must fulfill the conditions of agreement
(i.e., all connected nodes elect the same node), termination
(i.e., if there are valid candidates, one must eventually be
elected), validity (i.e., the elected node must be part of the
cluster), and stability (i.e., a new coordinator is only elected
if the previous one has become unavailable) [5, 15].

2.2 Challenges
For a protocol design that autonomously schedules traffic,

supports reliable multi-hop networking, and robustly orches-
trates a network as outlined above, Demos must be able to

(i) elect a coordinator in a cluster of unknown size,
(ii) preserve communication when a cluster splits away,

(iii) continuously discover other nearby clusters, and
(iv) merge clusters to maximize network coverage.

Next, we investigate each challenge in more detail and iden-
tify existing shortcomings that motivate Demos’ design.
Electing a cluster coordinator. Most leader election algo-
rithms rely on knowing the exact network size [45] and only
consider election a start-up problem [2] or after long peri-
ods of inactivity (e.g., 2 min [20]). However, our application
may require elections at any moment because node and link
failures can cause a leader to suddenly disappear. Elections
should only occur if the current coordinator is unavailable
to preserve stability and must result in a unique decision for
agreement based on votes from an unknown set of nodes.
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Figure 2. A Demos round consists of three phases: Consensus, communication, and discovery. During consensus, E pairs of
proposal (P) and voting (V) slots are used for cluster coordination (E = 2 in this illustration). While the first pair is assigned
to the leader of the previous round, later ones are designated so other nodes may get newly elected. The communication phase
consists of a notification (N), a scheduling (S), and multiple data (D) slots. For discovery, nodes interact with other clusters.

Network split. Two clusters that separated could continue to
use the same schedule. For at least one cluster, however, the
coordinator is no longer available. So far, protocols then usu-
ally fall back to bootstrapping after a prolonged timeout [20].
Instead, the leaderless nodes may swiftly initiate an election
and autonomously establish the new traffic demands.
Cluster discovery. After re-establishing cluster coordina-
tion, clusters may operate independently. However, such
splits lead to a gradual decay of the network into patches with
limited individual coverage. For recombination, a secondary
radio could be used in parallel [10, 25] to look for other clus-
ters in the vicinity without affecting the data exchange on the
primary radio. To avoid such an increase in complexity and
costs, a holistic protocol design may instead combine data
exchange and discovery. However, most neighbor discov-
ery protocols depend on a fixed structure [18, 42] as they are
not co-designed with a scheme to exchange application data.
Furthermore, they focus exclusively on the pairwise discov-
ery of nodes and do not cater to multi-hop networks.
Cluster merging. Once another cluster has been discovered,
a node could independently leave its previous cluster and
synchronize to the new one. While this straightforward ap-
proach based on pairwise discovery and individual decision-
making is predominant [13, 52], such a design only gradu-
ally increases network coverage. Even worse, as discovery
can be bi-directional, merging could be simultaneously at-
tempted in both directions and data exchange may collapse
as nodes attempt to synchronize to disbanded clusters. Alter-
natively, nodes may leverage cluster-internal communication
and exchange their discoveries to take a collective decision,
but long delays for merging clusters could remain an issue.

3 Designing Demos
Demos aims to achieve one of the early visions of WSNs:

To facilitate the distribution of sensor nodes in a deploy-
ment area, which would then automatically coordinate and
communicate by themselves without detailed preconfigura-
tion [36]. To this end, Demos provides robust network or-
chestration which enables nodes to constantly exchange data
and maximize their coverage despite a fluctuating network
topology. By introducing dynamic cluster coordination, the

protocol tackles the first two challenges presented in Sec-
tion 2.2 and ensures that nodes maintain coordination even
after a network splits into multiple clusters. With its cluster-
wide discovery scheme, Demos overcomes the remaining
challenges and offers an autonomous, recuperating commu-
nication service among all connected nodes. In the follow-
ing, we first present the overall design principle before giving
an overview of Demos’ structure and protocol phases.
3.1 Demos in a Nutshell

Demos is a network orchestration protocol that continu-
ously re-elects a cluster coordinator and aggregates informa-
tion on all connected nodes. During this election, the co-
ordinator periodically collects the votes and traffic demands
of nodes in the cluster and then assigns exclusive time slots
through scheduling. For this communication, the cluster uses
a frequency channel that directly depends on its coordinator
to prevent interference with others. However, if no coordi-
nator is available, the nodes follow a shared randomized se-
quence of node IDs to deterministically elect a new leader.
After the exchange of application data, a distributed cluster
discovery scheme detects neighboring clusters and notifies
the cluster coordinator. The entire cluster may then decide to
merge simultaneously with its neighboring cluster.

To support such abrupt changes in the network topology
and provide a robust data exchange despite high node mobil-
ity, Demos builds on a link layer utilizing concurrent trans-
missions [55], as displayed in Figure 1. Such network flood-
ing is topology-agnostic and permits reliable communica-
tion due to its inherent redundancy. Based on these primi-
tives, Demos provides novel mechanisms for the coordina-
tion (Section 4.1) and discovery (Section 4.2) of clusters as
well as for adaptivity to changing conditions (Section 4.3).
3.2 Protocol Structure

Demos is structured into rounds of period T which all
nodes of a cluster C ⊆ N execute synchronously, where
N = {i∈N | 1≤ i≤N} is the total set of nodes in a network.
Each round consists of three phases, as illustrated in Fig-
ure 2. To elect a coordinator, the cluster votes on the propos-
ing nodes during the consensus phase and exchanges the cur-
rent traffic demands. During the communication phase, a
contention slot can be used to notify the cluster coordinator



of discovered clusters. If the coordinator decides to merge
with another cluster, it then instructs its cluster to disband,
as further described in Section 4.2. Otherwise, it broadcasts
a schedule which is subsequently followed to sequentially
disseminate application data. In the final discovery phase,
nodes use the rest of the round to listen for and advertise to
other clusters in the vicinity. If another cluster is discovered,
the coordinator is notified in the next round.
Communication primitives. Demos builds on two comple-
menting types of concurrent transmissions, a one-to-all and
an all-to-all primitive. One-to-all floods, as introduced by
Glossy [19], are employed for most slots of the protocol and
consist of a packet that is initially broadcasted by a single
node and then concurrently forwarded by each receiver. An
all-to-all primitive like Chaos [29], on the other hand, is used
during the consensus phase to efficiently propagate the vote
and traffic demand of each node through the network by con-
tinuously merging information during consecutive sub-slots.
Combining these primitives enables Demos to aggregate in-
formation in parallel from an unknown set of nodes with an
all-to-all exchange and then schedule one-to-all floods that
reliably reach their target with minimal latency.
Deterministic randomization. Demos repeatedly seeds a
number generator to share randomized state without explicit
distribution. Sequences produced by this deterministic gen-
erator are used to (i) create a non-repeating sequence of des-
ignated leaders for the consensus phase, (ii) map the node
ID of a cluster coordinator to a frequency channel on which
the cluster communicates, and (iii) assign non-overlapping
reception (RX) and transmission (TX) slots for discovery.

3.3 Consensus Phase
The consensus phase consists of E pairs of proposal (P)

and voting (V) slots. The first pair is reserved for the pre-
vious leader that coordinated the cluster in the last round to
provide stability. If the election is unsuccessful, as explained
in Section 4.1, the remaining pairs are designated to poten-
tial successors. A designated leader that is part of the cluster
proposes if it has not yet voted in the current round and can
be elected as the new cluster coordinator upon success.
Proposal. Apart from the first P slot in which the previous
leader can propose, the remaining E−1 slots are designated
according to a randomized sequence containing the total set
of nodes N . The offset inside this sequence is based on the
round counter r and the election counter e ∈ [1,E) and is
synchronized across the cluster. The designated node then
proposes to ask others for their vote in the current round.
Voting. A node that received a proposal casts its vote if
it has not already done so in an earlier V slot of the same
round. Together with its current traffic demand, votes from
all nodes are then exchanged within the cluster and continu-
ously merged. At the end, the designated leader locally de-
termines the result of the election, as detailed in Section 4.1.

3.4 Communication Phase
After having established consensus on the cluster coordi-

nator and aggregated the current demand, the communica-
tion phase is executed. A notification (N) slot permits nodes
to inform the coordinator about other discovered clusters.

The cluster coordinator then decides whether a merge should
be conducted, as explained in Section 4.2. The following
scheduling (S) slot is used to either disseminate information
on the cluster to be merged with or to distribute a sched-
ule based on the current demands of the nodes. To avoid
that missing demand information occasionally causes nodes
to not be scheduled, a received demand is valid for up to P
rounds. Lastly, application data is exchanged during multiple
consecutive data (D) slots if a schedule has been received.
Notification. To extend pairwise to cluster-wide discovery,
a node floods a received beacon containing information on
a discovered cluster so it reaches the coordinator. As access
is contention-based, only one of potentially multiple discov-
ered clusters is successfully reported per round.
Scheduling. The S slot enables the coordinator to instruct
the cluster on how to continue. If it has decided to merge, it
propagates the necessary information so its cluster can align
itself to the communication and frequency channel of the
new cluster. Otherwise, the coordinator distributes a sched-
ule based on the previously gathered traffic demands, includ-
ing a bitmap containing the current members of the cluster.
Data. Each D slot is assigned to a node that may initiate a
one-to-all flood of application data. All others assist in prop-
agating a received packet by retransmitting it concurrently.
3.5 Discovery Phase

The discovery of other clusters occurs during the remain-
ing round time on a dedicated frequency channel that is
shared among all clusters. To guarantee overlapping discov-
ery phases between clusters, we presume that the phase dura-
tion Td exceeds T/2. To permit the adaptation of Td depend-
ing on the currently demanded number of D slots and round
period T , Demos employs probabilistic discovery [36]. The
discovery phase is split into slots of fixed length, during
which nodes either transmit a beacon (B), listen, or remain
idle based on given probabilities. Building on this scheme,
Demos leverages cluster coordination to increase its energy
efficiency. As the communication ranges of nodes in a clus-
ter overlap and they would hence operate redundantly if they
simultaneously perform discovery, we deterministically di-
vide discovery across the cluster by assigning non-idle slots
to nodes. If another cluster is discovered, the cluster coordi-
nator is informed in the next N slot, as shown in Figure 3.

4 Demos in Detail
Next, we focus on the two key concepts that enable De-

mos to form autonomous clusters, cluster coordination and
cluster discovery. Thereafter, we examine how the protocol
leverages its flexibility and adapts to changing conditions.
4.1 Cluster Coordination

Without packet loss, the election of a coordinator is undis-
puted as all nodes of a cluster receive the first proposal and
cast their votes accordingly. However, the minimum required
number of votes in favor to safely call elections, called quo-
rum, is non-trivial when considering imperfect communica-
tion and variable cluster sizes. Based on a subset of votes,
the cluster must determine a unique leader. We develop two
novel methods to define quorums that enable nodes to still
find agreement on a coordinator under such circumstances.
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Absolute quorum. The classical solution to guarantee a
unique decision is to require agreement from a majority of
nodes [3, 28, 38, 39]. Therefore, the absolute quorum Qa
can be defined as Qa := F > Nc/2, where F is the number of
votes in favor of the proposal and Nc is the cluster size.

However, Nc varies over time. To accurately keep track
of the cluster size, each node locally estimates Nc and up-
dates this value each round as follows. Nodes include
their current estimate in the exchange during the V slot
and store the maximum of all received estimates as Nnet .
After the consensus phase, they further count the number
of votes they have encountered at least once as Nvotes (in-
dependent of whether they are in favor or against). Up-
dating the estimate of Nc then occurs in two steps. First,
a network filter sets Nc← ⌊α ·Nnet +(1−α) ·Nc⌋, with
α ∈ [0,1]. Thereafter, a temporal filter is applied to get
Nc← ⌊max(β ·Nvotes +(1−β) ·Nc,Nvotes)⌋, with β ∈ [0,1].
If a node has been elected as cluster coordinator, it distributes
its own estimate of Nc with the schedule during the S slot so
the entire cluster adopts the value of the leader.

This mechanism leverages centralized updates of Nc to
equalize estimates when a coordinator is available and other-
wise enables nodes to autonomously adapt until a new leader
is elected. First, the network filter applies α to warrant that
all nodes of a cluster use similar values and do not underesti-
mate the cluster size to avoid multiple simultaneous leaders.
A high α prevents a strong decrease when packets were lo-
cally missed but have been received by others. Lowering α

limits the influence of a single well-connected node if most
only receive a subset of votes so that chances for successful
elections remain high. The temporal filter integrates β to en-
sure that the estimate converges to the true size over time. If
more nodes than expected have been heard, the empirically
validated number of nodes is adopted to prevent an under-
estimation. Otherwise, the new estimate is weighted with β

for a gradual transition that smooths temporal fluctuations.
Relative quorum. The absolute quorum directly depends
on an accurate estimate of Nc to safely call a vote. As the
quorum is particularly relevant when a new leader needs to
be elected after nodes split apart and Nc changed drastically,
waiting until the estimates converge to the true value may
prevent the exchange of data for several rounds. To expedite

elections in highly mobile scenarios, we introduce a relative
quorum Qr that only depends on the fraction of votes in favor
of the proposal as gathered during the ongoing election.

To accomplish independence from Nc, we leverage the
known high reliability of concurrent transmissions [55].
Suppose that for a connected cluster of Nc nodes, a one-to-all
proposal reaches at least No = γo ·Nc nodes, with γo ∈ [0,1].
The designated leader then collects votes using the all-to-all
exchange in the V slot, with each of the No nodes that have
received the proposal submitting a vote. At least γa ·No sub-
mitted votes reach the designated leader, with γa ∈ [0,1]. In
other words, the leader receives V ∈ [γa · γo ·Nc,Nc] votes
and we can therefore bound Nc ∈ [V, V

γa·γo
]. As for the ab-

solute quorum, a result is unique if F > Nc/2 is satisfied.
Using the derived upper bound, a sufficient (but not neces-
sary) condition is F > V

2·γa·γo
. We can hence find a quorum

that is entirely based on the votes V of the current V slot as

Qr :=
F
V

>
1

2 · γa · γo

Extended absolute quorum. Knowledge of γo can also be
exploited to improve Qa. As at least No nodes receive the first
proposal and vote in its favor, at most Nc−No = (1−γo) ·Nc
votes remain uncast if a proposal was sent. It hence suffices
to receive F > (1− γo) ·Nc votes in favor to assert that no
other leader was previously elected, enabling us to define

Qa+ := F > min(
1
2
,1− γo) ·Nc

Both absolute quorums permit nodes to skip consensus
after having voted but rely on Nc and may result in multiple
leaders per cluster if the estimate does not reflect the actual
cluster size. While the relative quorum guarantees safe elec-
tions if γo and γa are valid assumptions, it requires participa-
tion in all E elections per round and thus needs more energy.
Demos supports the use of all three quorums, whose perfor-
mance we compare in real-world experiments in Section 6.4.
4.2 Cluster Discovery

With its cluster coordination, Demos enables dynamic
cluster management that tolerates faults and permits network
splits. However, to maximize its connectivity, the protocol



also requires a mechanism to detect and merge clusters. De-
mos builds on an established neighbor discovery scheme and
extends it to cluster-wide discovery to increase coverage. We
thereby leverage knowledge of other nodes in the cluster to
cooperate and distribute discovery across all of them.
Continuous discovery. In contrast to current WSN proto-
cols that treat discovery as an isolated task during bootstrap-
ping, Demos must retain the ability to find and merge clusters
while continuously exchanging data in parallel. As traffic
demand is dynamic and constantly influences the number of
scheduled D slots as well as the round period, the remaining
time for discovery is restricted and requires a highly adaptive
mechanism. The Birthday protocol [36] provides flexible
pairwise discovery and achieves low detection latencies de-
spite these constraints, as it does not require a fixed structure
and permits clusters to independently adjust parameters. By
splitting the discovery phase into slots during which nodes
transmit beacons with probability Pt and listen with Pl , dis-
covery is likely despite a low duty cycle of Pt +Pl .
Cluster-wide discovery. Demos extends this concept with
novel mechanisms to reduce energy consumption and dis-
covery latency. First, we leverage that Demos coordinates
an entire cluster and divide discovery equally across nodes
instead of performing it redundantly in parallel. By prohibit-
ing overlapping discovery slots within a cluster, we avoid the
scalability issues of other discovery protocols due to collid-
ing transmissions [26] and preclude inefficient simultaneous
listening periods. Assigning discovery slots to nodes merely
requires including the cluster members as a bitmap in the
distributed schedule and randomizing their order locally us-
ing a deterministic pseudorandom generator. Second, we ex-
ploit that Demos ultimately aims to discover clusters and not
individual nodes, for which a single node receiving a bea-
con from a node in another cluster suffices. By notifying the
entire cluster via the coordinator, all nodes can then switch
simultaneously without having to pause their data exchange.
Discovery interface. To merge with another cluster, a coor-
dinator must be able to align the communication of its own
cluster accordingly. The beacon distributed by a node during
discovery contains the relative time since the round started,
the round period T , the round counter r, the ID of the cluster
coordinator, and Nc to enable this synchronization. Know-
ing the start of the last round and T , another cluster may
directly reorient itself to the upcoming round and can infer
the current offset in the sequence of designated leaders based
on r. To remain valid, the time passed since the reception of
the beacon is added to the received time since the start of the
round when the beacon is forwarded during the N and S slots.
Merge criteria. When the coordinator receives information
on a discovered cluster, it must determine whether to merge.
To avoid that two clusters attempt to simultaneously merge
with each other, Demos relies on the ID of the cluster coor-
dinator and merges a cluster led by a node with a lower ID
into the cluster of a leader with a higher ID, as visualized
in Figure 3. To prevent a single node with a high ID from
temporarily disrupting the communication of a much larger
cluster, Nc can also be included as a merge criterion, with a
larger size dominating and the ID merely used to break ties.

4.3 Cluster Adaptivity
Building on top of robust cluster coordination and a net-

work structure that continuously adjusts to the underlying
topology, Demos can adapt essential protocol parameters to
cater to the current application requirements. To maximize
its flexibility and reduce complexity, the protocol does so by
deliberately maintaining minimal persistent network state.
Traffic demand. To support high node mobility, Demos
must expect frequent changes in the coordinator and the set
of nodes belonging to a cluster. Therefore, classical solutions
such as explicit registration when joining [10, 43] and time-
outs to remove unavailable nodes [20] are not applicable. To
continuously adapt the communication schedule according
to current demand, Demos includes requests directly in the
all-to-all communication of the V slot. As this exchange en-
sures that the demands of all nodes in the cluster are always
up-to-date at the elected leader despite network splits and
merges, it can immediately react to changes.
Round period. Many round-based protocols adopt a fixed
round period T to circumvent scheduling [23, 29] or tem-
porally improve liveness by maintaining communication de-
spite the unavailability of the coordinator [32, 33]. However,
such a limitation severely restricts the flexibility of a proto-
col, as it fixes parameters such as the frequency of cluster
coordination, the number of data slots, and the likelihood
of discovery. It further constrains the protocol in reacting
to changing real-time scheduling requirements. Demos per-
mits the cluster coordinator to adapt T and communicate its
current value in the S slot. This flexibility is made possible
by its robust cluster coordination, as Demos tolerates miss-
ing such an update by quickly re-electing a leader after de-
synchronization. Combined with cluster discovery, the pro-
tocol rejoins nodes that are out-of-sync and thereby ensures
continued connectivity while offering high adaptivity.
Frequency channel. Demos employs separate frequency
channels per cluster based on the node ID of the cluster coor-
dinator to prevent packet collisions when clusters encounter
each other. This mechanism further inherently avoids heav-
ily contested channels due to external interference, as it
causes nodes to synchronize with leaders on reliable frequen-
cies. By voluntarily yielding as coordinator if the packet re-
ception rate drops below a given threshold, Demos supports
blacklisting of frequencies to boost its robustness.
4.4 Practical Example

To illustrate Demos’ concepts, Figure 4 depicts how a net-
work splits and merges again. The previous leader proposes
itself for re-election in the first P slot of each round to con-
firm the availability of the coordinator. However, a change in
the network topology causes the network to temporarily split
into two clusters in round 2. While leader 1 can still coordi-
nate one cluster, the other consisting of nodes 3 and 4 must
wait for a designated P slot to elect a new leader. The stable
re-election of leader 1 is made possible by our novel rela-
tive quorum, as the cluster size Nc could not be re-estimated
yet and would have prevented a successful election based
on an absolute quorum. With two autonomous clusters led
by nodes 1 and 4, the cluster discovery mechanism enables
them to merge once the communication link between nodes
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Figure 4. In round 1, a network of four nodes coordinated by node 1 successfully re-elects its previous leader. After a topology
change breaks the communication link between nodes 2 and 3 in round 2, the network splits into two clusters. As soon as a P
slot is designated to a node from the leaderless cluster in round 3, nodes 3 and 4 independently resume the data exchange. After
the link is re-established in round 4, node 2 notifies node 1 about a received beacon (B) and the clusters merge in round 5.

2 and 3 recuperates in round 4. As the clusters operate on a
separate frequency band, packet collisions are prevented dur-
ing the discovery and merge process. The beacon containing
the cluster information is received by node 2 and forwarded
to the leader using the N slot, whereafter node 1 decides to
merge due to its lower ID and the network is reunited again.

5 Formal Analysis of Election Latency
We now formally investigate the expected number of elec-

tions if a new coordinator is required. After a network
splits, at least one new cluster coordinator must be elected.
As Demos cycles through a non-repeating randomized se-
quence of the total set of nodes N to designate leaders in
the consensus phase, knowing the expected latency until a
new cluster coordinator can be established is essential to es-
timate when communication may resume. Supposing a clus-
ter size Nc and N = |N |, the probability that a designated
leader is not part of the cluster is (N − Nc)/N. We find
pL = 1− (N−Nc)·(N−Nc−1)·...·(N−Nc−L+1)

N·(N−1)·...·(N−L+1) = 1− (N−Nc)!(N−L)!
N!(N−Nc−L)!

that a leader is successfully elected within L tries. Similarly
to pL, we derive the expected number of tries until success

E[L] =
N−Nc+1

∑
L=1

L · (N−Nc)!(N−L)!Nc

N!(N−Nc−L+1)!
=

N +1
Nc +1

For example, if a network of N = 24 nodes splits in half,
Demos only requires 1.92 elections on average to establish a
new leader. As shown in Figure 5, even if only a small cluster
of Nc = 5 nodes separates, using E = 3 it likely already elects
a new leader in the second round. These analytical results
closely match our experiments in Section 6.4.

6 Evaluation
Demos is designed to provide high robustness and flex-

ibility even under challenging conditions. To examine the
protocol in action, we test (i) its ability to maintain cluster
coordination despite node and link failures, (ii) the adaptiv-
ity to a fluctuating network topology that separates and com-
bines clusters, (iii) the performance of the quorums intro-
duced in Section 4.1, and (iv) Demos’ energy efficiency with
its novel cluster coordination and discovery mechanisms.
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Figure 5. For all network sizes, Demos only requires few
elections on average until a new designated leader proposes
for clusters containing more than a small fraction of nodes.

6.1 Implementation
To support a wide coverage area using LoRa and also pro-

vide more efficient GFSK communication if a shorter range
suffices, we utilize a Semtech SX1262 RF transceiver driven
by an STMicroelectronics STM32L433CC microcontroller.
Operating in the 868 MHz band, its broad TX power range
from −9 to +22 dBm enables further adaptation to the tar-
geted communication range. For our indoor tests, we use the
GFSK modulation at 250 kbps and a TX power of +7 dBm.

Slot primitives. All-to-all communication during the V slot
is based upon Chaos [29], with all nodes of a cluster prob-
abilistically initiating the exchange of votes and demands.
One-to-all floods, as employed in the P, N, S, and D slots,
use Glossy [19] with consecutive transmissions for reliabil-
ity [30]. For the discovery phase, one-to-all beacons are sent
in Glossy slots with an increased RX duration. Multiple con-
secutive transmissions boost the discovery reliability and en-
sure overlaps with listening slots of other clusters in the dis-
covery phase. Furthermore, beacon flooding quickly spreads
information when multiple clusters converge simultaneously.

Randomization. Demos integrates two different sources for
randomization, a built-in hardware unit that produces truly



random output as well as a deterministic generator yielding
pseudorandom numbers based on a given seed value. The
former ensures that the usage of the Chaos sub-slots [29] dif-
fers between nodes and data can be exchanged, while the lat-
ter initially generates a fixed randomized sequence for des-
ignating leaders and the mapping of leader IDs to frequency
channels. The designated leader is then selected in each elec-
tion e using a sequence offset (E−1) ·r+e, where E denotes
the number of elections per round and r is the round counter.
Before each discovery phase, the deterministic number gen-
erator is re-seeded based on the ID of the cluster coordinator
and r to locally compute the slot assignments for discovery.
Research artifacts. We provide the source code of Demos
as open source [9]. Additional test scripts grant extensive
control of experiments on FlockLab [48] by dynamically
activating nodes at run time, offer the ability to easily sweep
parameters, and visualize results to study their impact.
6.2 Experimental Setup
Test scenario. To test Demos under realistic conditions
in confined spaces where non-line-of-sight conditions par-
tition the network into clusters, we utilize the FlockLab
testbed [48]. 24 nodes are spread across one floor of an office
building and provide fixed node locations. In addition, we
employ a mobile node that is moved to dynamically change
the network topology. We use four configurations to examine
Demos’ effectiveness in a variety of scenarios. 12 nodes with
a mean hop distance of 1.31 form the smallest network, while
an extended set of 18 nodes has an average of 1.65 hops, and
all 24 nodes communicate via 1.84 hops on average. Figure 6
illustrates the fourth setup where a mobile node connects two
clusters of static nodes.
Protocol parameters. For our tests, we use a round pe-
riod of T = 3s. By default, we conduct E = 2 elections
during the consensus phase, with each V slot split into
36 all-to-all sub-slots to exchange votes and demands. A
received demand is valid for up to P = 10 rounds. Each
node requests 1 data slot per round and sends 20 bytes using
3 transmissions per flood in one of 30 D slots. The remaining
time of Td = 0.56 ·T is used for discovery. Due to Demos’
fast discovery and merging mechanism, we do not expect
multiple clusters to converge simultaneously and therefore
we set Pt = Pl = 0.5 to minimize the discovery latency [36].
The clusters share 14 non-overlapping frequency channels
for communication, with an additional one reserved for dis-
covery. We set α = 0.5 and β = 0.33 and find safe lower
bounds γo = γa = 0.9 based on an empirical packet recep-
tion rate (PRR) exceeding 97.6% for one-to-all and 93.1%
for all-to-all primitives in the three static configurations.
Baseline. To investigate the impact of Demos’ novel clus-
ter coordination and discovery mechanisms, we compare it
to LWB [20], a well-known protocol that builds on the same
one-to-all floods to exchange data. While LWB relies on a
preconfigured host node that coordinates the network, it is
one of the only WSN protocols that include a failover policy
if the coordinator is unavailable. In case of a host failure,
nodes independently hop across frequency channels and try
to reach the fixed coordinator on this channel. As in De-
mos’ S slot, the host distributes a schedule for a subsequent
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Figure 6. A mobile node traverses a corridor from left to
right and then returns to its start position, thereby changing
the network topology between two clusters of nodes.

succession of data slots that correspond to Demos’ D slots.
Demand is registered using a contention slot and assumed
to be constant for multiple rounds. Exploiting this limita-
tion, the host sends the next schedule already at the end of a
round and retransmits it at the start of the next one to boost
the reception probability of schedules.

6.3 Robustness to Network Topology Changes
To investigate how Demos reacts to changes in the net-

work topology, we start with a static experiment and exam-
ine the behavior of the protocols when the coordinator fails.
In a second experiment, we instead include a mobile node
and cause the network to first separate into two clusters and
recombine again afterward. Throughout the experiments, we
monitor the PRR, i.e., the percentage of received data pack-
ets compared to the maximal number of data packets that
could have been received by all nodes in the network (i.e.,
sent packets times the number of receivers).
Scenario: Node failure. We employ 12 nodes distributed
across the testbed, as depicted in Figure 6. 11 of these nodes
are static, whereas node 6 is mobile. While Demos uses
the relative quorum Qr, presented in Section 4.1, to elect its
leader dynamically, LWB is configured to use node 12 as the
host (“H1”), with node 3 serving as a failover (“H2”) [20].
The timeout until nodes switch to the failover is set to 1 min.

In a first experiment, we keep node 6 static and let Demos
elect a leader. After 60 s, we trigger a node failure by turning
node 12 off and observe the behavior of Demos and LWB.
Results: Node failure. Figure 7 shows the measured PRR
of Demos and LWB as well as the optimal PRR over time.
We find that all Demos nodes quickly discover each other
and form a network, as Demos gathers and updates the cur-
rent traffic demands instantly by aggregating them in the V
slot directly preceding scheduling. At 60 s, we observe that
the PRR dips as no more packets can be received by the
faulty node 12. Even though node 12 was the leader as others
merged with its cluster due to its high node ID, the remaining
nodes directly elect a replacement when the previous leader
is unavailable and seamlessly continue communication with-
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Figure 7. Failure of the host node halts LWB’s communica-
tion until a failover takes over, while Demos instantly elects
a new leader and approaches the optimal PRR at all times.
Missed schedules cause minor PRR drops for both protocols.

out a single missed round. LWB on the other hand adapts
much slower to changing traffic demands, with at most a sin-
gle node sending its demand per round. The protocol further
suffers from a catastrophic drop in PRR once the host fails
as no schedule is distributed anymore. After the nodes time
out while listening for the host, the failover host slowly ac-
cumulates the demands again until LWB finally approaches
the optimal PRR as well, 107 s slower than Demos.
Scenario: Link failure. In a second experiment, we investi-
gate how the failure of an essential link between two clusters
influences their data exchange. We let the nodes establish a
network and start moving node 6 from left to right after 60 s.
Once arrived at 105 s, node 6 remains stationary for a minute
before returning to its start position which it reaches at 210 s.
This recombination is particularly demanding as the clusters
are uncoordinated and may interfere with each other.
Results: Link failure. In Figure 8, we observe that De-
mos quickly establishes a single network consisting of all
12 nodes as in the first experiment. Once node 6 starts to
move down the corridor at 60 s, its connectivity with clus-
ter A (nodes 7–12) diminishes. As cluster B (nodes 1–6) re-
lies on this link to communicate with cluster A, the reduced
link quality results in a gradually decreasing PRR. At 88 s,
we find that the link between the two clusters has completely
failed and they can only communicate internally at maxi-
mally 2·6·(6−1)

12·(12−1) = 45% PRR. By directly electing a leader
for cluster B, Demos matches this new optimal performance
immediately after the complete split. This success is only
made possible by our novel quorums, as nodes in both clus-
ters could not win a classical majority vote that requires more
than 6 nodes. The plots in Figure 8 tracing the states of the
protocol illustrate that Demos maintains its data exchange
without interruption in contrast to LWB, as can be seen in the
nodes of both Demos clusters continuously being scheduled.
Once node 6 returns to its former position, the two clusters
quickly discover each other. Leveraging cluster discovery,
all nodes merge simultaneously, visible by the PRR surging
back to the maximum at 206 s. LWB takes much longer to
activate its failover policy after the clusters split apart. After
a minute during which cluster B attempts to bootstrap and
only cluster A can communicate at 22% PRR, node 3 starts
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Figure 8. Moving node 6 splits the initial network topology
into two clusters. Demos (middle) elects a cluster coordina-
tor for each of them after separation and maintains optimal
PRR by recombining the clusters when node 6 returns to its
start position. LWB (bottom) only forms a second cluster
after prolonged bootstrapping and cannot utilize the restored
network topology to maximize the PRR as it lacks discovery.

as a failover host at 157 s. Subsequently, cluster B gradually
ramps up its data exchange on a separate frequency channel.
As LWB lacks continuous cluster discovery like all WSN
protocols apart from Demos, it is unable to merge clusters
even after the original network topology has been restored
and remains limited to less than half of the optimal PRR.
6.4 Dynamic Cluster Coordination

Next, we compare the three quorums Qa, Qa+, and Qr
introduced by Demos in terms of election latency, stability,
and energy costs. In Section 5, we determined an expected
election latency of E[L] = N+1

Nc+1 elections until a designated
leader may propose. Based on the subsequently cast votes,
the quorum then stipulates whether the election was success-
ful. Hence, E[L] is a lower bound for finding a new leader.
Scenario. To examine the differences between the quorums,
we use E = 3 elections per round and test networks of 12,
18, and 24 nodes. After 30 s without disturbance, we cause
two-thirds of the network, including its coordinator, to fail.
During the next 30 s, we observe when elections occur and
how stably the network performs under the new conditions.
We run 60 tests per combination of quorum and network size
and always mutate the sequence of designated leaders.
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Figure 9. After a major disruption, Qa takes multiple rounds
until the estimated Nc is low enough for a successful election.
Leveraging the high reliability of concurrent transmissions,
Qa+ and Qr match the optimal election latency (gray). Black
bars show the 25th and 75th percentile around the mean.

Table 1. Instabilities in the first 30 s (“pre-fault”) occur less
often than fluctuations thereafter (“post-fault”). Qr demon-
strates excellent robustness without a single flawed election.

Quorum Qa Qa+ Qr
Network size 12 18 24 12 18 24 12 18 24

Pre-fault er. 0 0 1 0 1 0 0 0 0
Post-fault er. 13 6 4 0 1 1 0 0 0
Total errors 24 (13.3 %) 3 (1.7 %) 0 (0.0 %)

Results: Latency. As the classical, fixed quorum N/2 [28,
39] can never be satisfied with Nc = N/3, we do not further
consider it for this evaluation. Figure 9 depicts the average
number of elections until a new leader could be established
for the absolute and relative quorums. As expected, we find
that Qa requires multiple rounds until the estimated cluster
size Nc is low enough for a node to gather a majority of
votes. This latency slightly increases with the total network
size, from 7.33 elections for 12 nodes to 7.83 for 24 nodes.
On the other hand, Qa+ and Qr can immediately find a new
cluster coordinator once the previous leader becomes un-
available. We discover that both need only 2.90 elections
on average for 12 nodes and 2.95 elections for a network of
24 nodes. These numbers further validate our formal analy-
sis from Section 5 experimentally, based on which we expect
at least 2.6 elections and 2.77 elections respectively.

Results: Stability. We encounter only a single run using
Qa (0.56%) in which a previously elected leader is not suc-
cessfully re-elected during the steady first 30 s as it could not
gather enough votes to pass the quorum. However, due to
the delay in estimating the new cluster size after the node
failures, the first elected node cannot preserve its leadership
and loses it again within a few rounds in 12.78% of runs
using Qa. As seen in Table 1, this fluctuation predominantly
affects the smallest network of 12 nodes where a single miss-
ing vote is often decisive and is quickly succeeded by stable
elections thereafter once Nc has converged. Qa+ is much
more robust, with only 1.67% of runs encountering two si-
multaneous leaders that both temporarily fulfill the quorum
and immediately merge. Lastly, Qr did not experience a sin-
gle instability or unexpected loss of leadership in 180 runs.
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Figure 10. When using the absolute quorums Qa and Qa+,
the rest of the consensus phase may be skipped after voting.
In contrast, nodes employing Qr need to participate in each
election to ensure that the fraction of votes remains valid.

Results: Costs. To analyze the energy costs of the clus-
ter coordination mechanism, we combine the reception (RX)
and transmission (TX) costs of the P and V slots in Figure 10.
As expected, nodes using the absolute quorums Qa and Qa+
can leverage the fact that they only have to participate in a
single election per round until they have cast their votes, after
which they may skip the remaining two elections. In con-
trast, Qr depends on the participation of all nodes, as receiv-
ing information on previously cast votes is necessary to pre-
vent multiple leaders based on the fraction of votes in favor.
This requirement results in an overhead that scales linearly
with E, as seen in Qr’s costs which are three times higher
compared to Qa and Qa+. Due to the excellent scalability of
the all-to-all primitive, doubling the number of nodes from
12 to 24 merely increases TX costs by 25.8%, and Demos’
total overhead remains almost identical.
Verdict. We observe a trade-off between robust elections
and energy efficiency. Qa does not require assumptions on
the communication reliability and reduces its energy con-
sumption by only taking part in one election per round
in most cases, but takes longer to succeed after network
changes and suffers from occasional instabilities while Nc is
re-estimated. On the other hand, Qr is the most stable quo-
rum and does not rely on an accurate estimation of the cluster
size, but requires nodes to participate in each election even if
they already cast their vote. We find that Qa+ strikes a good
balance by matching Qr in its low election latency while only
necessitating participation in one election per round.
6.5 Comparing the Costs of Robustness

While we have seen in Section 6.3 that Demos excels in
reacting to a node failure through its cluster coordination
mechanism and facilitates cluster merges through its cluster
discovery scheme, these features introduce additional costs.
Therefore, we investigate the energy overhead of Demos and
its components and compare it to LWB [20] as a baseline.
Scenario. We test both protocols for networks of 12, 18, and
24 nodes. We run each configuration for 15 min and skip the
first 30 s to only observe steady-state behavior. Demos em-
ploys Qa+ as a quorum based on the verdict in Section 6.4.
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Figure 11. Comparing the management (M) and transport
(T ) duty cycles of LWB, the consensus and communication
part of Demos (DemosC), and the discovery scheme of De-
mos (DemosD), we find that the energy overhead quickly di-
minishes for larger networks even for low data packet rates.

Results. In Figure 11, we separately look at the consen-
sus and communication part of Demos (DemosC) and its
discovery scheme (DemosD). We further differentiate be-
tween management traffic M (such as the P, V, and S slots for
DemosC and the N slot for DemosD) and the transport of data
T (D slots for DemosC and the discovery phase for DemosD).

As both LWB and Demos schedule equivalent traffic de-
mands and use the same underlying one-to-all floods, the
transport costs match. The management overhead of both
protocols slightly rises with the network size as more in-
formation has to be shared and the average hop distance in-
creases, prolonging listening until a packet reaches a node.
However, we find that even though Demos updates the com-
plete cluster information each round, this merely increases
RX time by 92.3% and TX time by 51.1% on average com-
pared to LWB. Note that the current data rate at 1 packet per
round is minimal; in a real scenario, the demand to transport
data is usually significantly higher [22]. As the discovery
slots are distributed across nodes using Demos’ concept of
cluster discovery, even the current maximal rate of continu-
ously transmitting (Pt = 0.5) or listening (Pl = 0.5) is domi-
nated by consensus and communication. If slower discovery
is permitted or if discovery can be temporally discontinued
in a static scenario, these costs diminish even further.

7 Related Work
Robust networking. While Demos offers an exceptional de-
gree of resilience, many protocols can also adjust to chang-
ing conditions to varying extents. LWB [20] centrally sched-
ules a series of Glossy floods [19], but adapts slowly and suf-
fers from collapsing data exchange and network splits when
the coordinator is unavailable. Chaos [29] and Mixer [23]
only require a coordinator for synchronization but restrict
nodes to sharing a fixed amount of information. Hybrid [46]
and Harmony [33] leverage a combination of Glossy and
Chaos slots to improve robustness. However, Hybrid only
collects data centrally at the coordinator, while Harmony can
only enable fixed assigned slots and cannot cope with pro-
longed network splits. Instead, Demos supports the delivery

of an arbitrary number of packets to any node and can merge
clusters without restrictions. Furthermore, Demos dynami-
cally elects a cluster coordinator and handles a node failure
instantly without affecting the rest of the network.

To boost the reliability of floods, Dimmer [40] and
OSF [7] flexibly adjust link-layer parameters depending on
the current conditions and SmarTiSCH [54] alters the tim-
ing and frequencies of transmissions to mitigate interference.
However, these protocols handle orthogonal issues to Demos
and do not address a failure of the coordinator or the discov-
ery of other clusters to maximize data exchange.
Coordination in WSNs. Consensus protocols such as
OTR [8], A2 [3], and WirelessPaxos [39] agree on a value
such as a leader ID without leveraging it to bootstrap fur-
ther communication. Other protocols such as STARC [43]
require an explicit handover from a previous leader, which is
infeasible after leader failures. Therefore, protocols based
on concurrent transmissions either hard-code the coordi-
nator [23, 24, 29] or exclusively elect during bootstrap-
ping [2, 20]. Timeout-based detection of leader absence is
prone to failure and hence is usually configured to multiple
minutes [20], and thereafter takes dozens of seconds to elect
a substitute [2]. At the other extreme, STeC [11] elects an ad-
hoc leader each round but prerequires external synchroniza-
tion, and BUTLER [34] constantly synchronizes but cannot
coordinate a decentralized network. Classical leader elec-
tion algorithms for ad-hoc networks are also inapplicable, as
they require the availability of most nodes of a known net-
work [6], guaranteed message delivery [45], at least dozens
of network floods [5], or unrealistic restrictions on message
propagation [15]. Demos’ cluster coordination avoids time-
outs through continuous re-elections, handles failures with
minimal delay, and supports arbitrary network splits.
Neighbor discovery. Both randomized [36, 49] and deter-
ministic [18, 42, 47] discovery protocols focus primarily on
pairwise discovery [14]. As packet collisions increase with
network size and impede discovery [26], self-adapting cy-
cles [12] and the probabilistic skipping of transmissions [21]
preserve a low discovery latency even for dense networks.
Demos solves this issue by integrating nodes into clusters
and dividing transmissions across its members to mitigate
collisions. Group-based discovery shares discovery sched-
ules to assist neighboring nodes [13, 52] or deliberately
de-synchronizes them to boost the group’s discovery suc-
cess [37]. Sharing information on discovered nodes [16]
and a symbiosis of group management and discovery [41]
are concepts that are also found in Demos. Demos extends
these concepts so that entire clusters of nodes can efficiently
run cluster discovery while continuing to exchange data, and
adds synchronized merging in combination with cluster co-
ordination to consistently maximize network connectivity.

8 Conclusion
This paper introduces Demos, a highly robust protocol to

orchestrate autonomous clusters in low-power WSNs. By
combining a novel cluster coordination mechanism based
on constant elections with a continuous cluster discovery
scheme that leverages cluster information to reduce discov-
ery latency and energy costs, Demos supports highly mobile



networks and persistently maximizes connectivity between
all nodes. We introduce three new quorums to determine
a cluster coordinator and show that this mechanism effort-
lessly handles node failures and network splits. By instantly
merging clusters, we demonstrate that Demos achieves the
optimal PRR and gracefully reacts to changes in the network
topology. With its high robustness, Demos serves the vision
of dynamic and mobile clusters that operate autonomously
and automatically recover from any node or link failure.
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