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Abstract
Most Internet of Things (IoT) air quality monitoring net-

works measure and report regulated pollutants such as O3,
NO, NO2, SO2 or CO and PM2.5, PM10 particulates. How-
ever, there are pollutants such as black carbon that are not
regulated by the authorities and are rarely measured, and
if they are measured, the instrumentation is very expensive.
One way to obtain measurements with cheaper equipment is
to use the proxy concept, where from indirect measurements
of other pollutants a virtual sensor is constructed using ma-
chine learning techniques. In this work, we design a ma-
chine learning-based proxy for black carbon based on low-
cost sensor (LCS) nodes. We compare three techniques to
build the proxy: support vector regression, random forest and
a neural network. The LCSs have to be pre-calibrated also
using machine learning techniques, linear or nonlinear. The
results show, using data from a real deployment of IoT air
quality sensor nodes, that the results obtained by the proxy
with LCSs (R2=0.72) using support vector regression are a
good approximation in terms of performance to those ob-
tained by a proxy using high-cost reference instrumentation
(R2=0.76).

Categories and Subject Descriptors
I.2.1 [Computing Methodologies]: Artificial Intelli-

gence—Applications and Expert Systems

General Terms
Air quality monitoring sensor networks, IoT.

Keywords
Low-cost sensors, machine learning, proxy.

1 Introduction
Governmental air quality monitoring networks measure

regulated pollutants such as O3, NO, NO2, SO2 or CO
and particles PM2.5, PM10 with reference stations that have

a high cost, using very accurate and expensive sensors.
Reference stations measuring the mentioned pollutants cost
around 100 KEuros. For this reason, in recent years there
has been a great interest in the development and deployment
of IoT air quality monitoring networks using low-cost sen-
sors (LCSs) [14]. Such sensors are cheaper, in the tens of
Euros, so that a measurement node, adding electronics, com-
munications and an array of sensors, can be developed at a
cost of around 1 KEuro. The challenge for such nodes is data
quality, so there is an effort in the research community to im-
prove the quality of the data reported by such IoT nodes us-
ing machine learning techniques. Another challenge in this
type of monitoring networks is that there are pollutants that
have a great impact on health, such as black carbon (BC),
which is not regulated. This means that only very expensive
BC sensors are available, with costs per sensor in the tens of
KEuros, which results in very few BC measurements by the
authorities. A novel way to measure this type of pollutant,
since there are no low-cost sensors available, is by indirect
measurements in what is called a virtual proxy sensor or sim-
ply a proxy. A virtual sensor is a mathematical artifact that
estimates the values that a physical sensor would produce
when no physical sensor is available. Examples of use are
when a sensor malfunction, or when performing node main-
tenance or relocation of a sensor node. For example, Ferrer-
Cid et al. [8] realized a virtual O3 sensor using graph signal
processing techniques involving nodes neighboring the tar-
get sensor. A proxy is a specific type of sensor in which
the virtual sensor is realized from indirect measurements, in
this case, sensors that do not measure BC but measure other
pollutants such as O3, NO2, NO, PMx, or submicron parti-
cle number concentration. In addition, environmental mea-
surements such as temperature and relative humidity usually
have an impact on the results, so the estimation has to take
these environmental parameters into account. In this paper,
we analyze a BC proxy sensor using IoT nodes including
LCSs for air quality monitoring. More specifically:

• propose a machine learning-based BC proxy model us-
ing indirect IoT LCSs measures;

• calibrate the LCSs using multiple linear regression
(MLR) and support vector regression (SVR);

• compare three possible BC proxy models using: i) sup-
port vector regression (SVR), ii) random forest (RF),
and iii) an artificial neural network (ANN);



• evaluate the performance of the BC proxy with two real
data sets obtained from real equipment. The first data
set comes from indirect measurements taken by refer-
ence instrumentation that measure exact regulated pol-
lutant measurements, and thus, acts as baseline proxy,
and the second data set comes from real IoT wireless
nodes that include LCSs. We compare the results of
both proxies against measures taken by a high-cost BC
sensor instrumentation.

The paper is organized as follows: section 2 gives the re-
lated work, and section 3 presents how to build a machine
learning-based BC proxy. Sections 4 and 5 describe the data
sets used and the performance of the BC proxy. Finally, sec-
tion 6 concludes the paper.

2 Related work
Virtual sensors [12] are intelligent sensors that produce

estimators of a physical phenomenon, and are used in place
of real sensors to temporarily replace physical sensors. For
example, Woo et al. [17] develop a virtual sensor to provide
a micro-scale personal air pollution information services, us-
ing a CFD-based air quality modeling system. Zaidan et
al. [18] propose the use of virtual sensors to calibrate CO2
sensors and to estimate BC concentrations. On the other
hand, Ferrer-Cid et al. [8] proposes to use a graph signal pro-
cessing framework whose graph is constructed from the data
and in which virtual sensors for air quality sensor networks
can be developed, showing for example in [9] how to use
signal reconstruction methods such as Laplacian interpola-
tion or kernel-based graphical signal reconstruction models.
Proxies have already been used as indirect sensors in other
disciplines. For example, Coulby et al. [7] use a CO2 IoT
node to produce a ventilation proxy in indoor environments.
There are few studies on how to develop a BC proxy. The
main ones are the work of Zaidan et al. [19] where they pro-
pose a BC proxy based on white-box and black-box, using a
Bayesian neural network for the black-box. This work shows
for the first time that good results can be achieved for a proxy
despite the complexity of the model used. Fung et al. [11]
propose an input-adaptive BC proxy, using least squares lin-
ear regression but with the drawback of having to train sev-
eral models with different features in case any of the sensors
fail. More recently, the use of simpler machine learning tech-
niques has been tested using data from reference stations to
obtain the values of a BC proxy to test the exposure of people
in the city of Barcelona, Spain [16]. In this paper, we inves-
tigate a BC proxy that uses LCS instead of only reference
stations, which are much more expensive and compare three
proxy candidates (SVR, RF and ANN) as possible machine
learning models.

3 Black carbon (BC) proxy model
3.1 Calibration of low-cost sensors

The reference station sensors are perfectly calibrated and
are recalibrated monthly. However, LCSs typically come un-
calibrated and have to go through a calibration step. As an
example, the alphasense OX-B431 (O3) electrochemical sen-
sors used in this paper measure O3 and NO2 simultaneously
and are very sensitive to temperature and relative humidity,
so to calibrate this sensor you have to train a supervised ma-

chine learning regression method, either linear or nonlinear,
whose input is the sensor measurements of O3 and NO2, tem-
perature and relative humidity. The regression uses as true
values those obtained by the reference station in a calibra-
tion process that is called in-situ calibration [5, 13]. Once
the model is trained, hyperparameters are obtained that al-
low estimating pollutant concentration values. The rest of
the LCSs follow a similar methodology.

Thus, to calibrate these LCSs, the calibration model con-
siders that an array of P sensors is involved. We define pairs
{xi,yi}N

i=1 where N is the number of measurements, xi∈RP

is the i-th sensor measurement, yi is the i-th reference value,
and the goal of the supervised machine learning method is
to find a model that approximates the reference value with a
function that depends on the model parameters, i.e., learn the
function fcal : RP→R, with P the number of sensors partici-
pating in the array:

yi = fcal(xi)+ εi; ∀i = 1, ..,N, (1)

where εi is the error assumed to be independent and iden-
tically distributed with zero mean and variance σ2. There
are several supervised machine learning methods to learn
the function fcal(·), among which we can find multiple lin-
ear regression, k-nearest neighbors, random forest, or sup-
port vector regression [5, 6, 10, 13]. We will choose a lin-
ear model (multiple linear regression, MLR) and a nonlinear
model (support vector regression, SVR), which have been
proven as good models [10], and compare which is the better
calibration model for our LCSs.

For the case of the MLR, a linear function fcal(xi)=β0 +

β
T xi is used, where β0∈R (offset) and β∈RP (bias) are the

coefficients to be learnt during the training phase. On the
other hand, the SVR makes use of the ”kernel trick” where
the data is implicitly mapped to a higher dimension in or-
der to find a better regression curve but doing all compu-
tations in input space via a kernel function k(x,x′), and the
curve is fitted using fcal(xi)=∑

N
i=1(α̂

∗
i − α̂i)k(x,xi)+b. The

values for the parameters α̂
∗
i , α̂i and b are found by solv-

ing a quadratic convex optimization problem. The objective
function to solve is obtained with the dual formulation of the
problem, minimizing an ε loss function and using a penal-
ization term C. We have chosen to work with the radial basis
function (RBF) kernel, as it has proven to work well in these
air quality LCSs [10].

3.2 BC proxy model
In order to build the proxy, we use supervised nonlinear

regression machine learning algorithms due to the nonlinear
nature of the data [19]. We denote by yBC∈RN the BC val-
ues provided by the reference instrumentation, where N is
the number of samples. Then, we can group the set of LCS
calibrated measurements into a sensor matrix XScal∈RN×PS ,
where PS=|S | is the dimension of the calibrated sensor set
S . It is possible that there is overfitting in the model due to
the high number of sensors that can participate in the cre-
ation of the proxy. For this reason, the set of predictors was
iteratively reduced using a feature elimination mechanism.
The backward feature elimination (BFE) algorithm consists
of the machine learning model starting with the entire set of



predictors, and at each iteration, the predictor that has the
least impact on the model is removed from the model. The
process is repeated until no other predictor can be removed
without a statistically significant loss of fit. We can select the
best subset of SFS sensors to use as predictors, where S is the
set of available sensors:

S ⇒
BFE

SFS ⊂ S (2)

Now, the data matrix involved in the design of the proxy
model is given by XSFS∈RN×PFS , where PFS=|SFS| is the di-
mension of the sensor array selected by the BFE algorithm.
The data-driven proxy model, then, can be defined as:

yBCi ≈ fproxy(xFSi), i = 1, . . . ,N (3)

where fproxy: RPFS →R is the function that estimates the BC
concentrations. For modeling the proxy function fproxy(·),
we propose to compare three non-linear models: support
vector regression (SVR), random forest (RF), and an arti-
ficial neural network (ANN).

Algorithm 1 Proxy sensor model for black carbon estima-
tion.
Input: {S,XS,Yref, fcals (·),yBC, fproxy(·)}

▷ Obtain LCS calibrated data for the proxy
1: for s∈S do
2: if s is calibrated then
3: xscal ← Get Sensor(XS)
4: else
5: ys← Get Ref(Yref)
6: Zs← Select Features(XS)
7: xscal ,Θs← Calibrate LCS(Zs,ys, fcals (·))
8: end if
9: XScal ← Add To Proxy Training Matrix(xscal )

10: end for

▷ Train proxy model
11: SFS,Θproxy← BFE(XScal ,yBC, fproxy(·))

▷ BC proxy estimation for new measurements
12: while xnew do
13: for s∈SF S do
14: xnew← fcals (xnews ,Θs)
15: end for
16: x̃BC ← fproxy(xnew,Θproxy)
17: end while

As explained before, SVR is a kernel method that maps
the data in a higher feature dimensional space and makes use
of the kernel trick to find a better regression curve but doing
all the calculations in the input space through a kernel func-
tion. The RF method differs from SVR in that it combines
several decision trees by sampling the data set via bootstrap-
ping. Finally, the ANN algorithm consists of layers of inter-
connected units, in which a node of a given layer receives as
input a linear combination of the values of the nodes in the
previous one, which is then mapped via a non-linear activa-
tion function. We use a fully connected feed-forward neural
network with as many nodes per layer as the number of pre-
dictors and two hidden layers at most. Both hyperbolic tan-
gent and rectified linear unit were tested as activation func-
tions. To avoid overfitting we set an early-stopping if there
is no improvement in the MSE after 10 epochs.

The BFE mechanism is linked to the supervised machine
learning mechanism used. For each supervised mechanism
the BFE result can be different and therefore a different set
SFS can be chosen. When the set SFS is fixed, the trained
model will set the hyperparameters to be used in the estima-
tion process.

Algorithm 1 describes the steps followed in the design of
the BC proxy: the input of the algorithm is the set of sensors
S, the sensor raw data XS, the reference sensor data Yre f , the
sensors calibration function (per each sensor of set S) fcals(·),
the reference BC data yBC, and finally the BC proxy function
fproxy(·). Lines 1-10 describe the calibration of the available
LCS and obtains the hyperparameters Θs for each calibra-
tion model and the calibrated data that will participate in the
proxy model; line 11 trains the BC proxy model with the
calibrated sensor values using a BFE algorithm. The output
are the set of selected sensors SFS participating in the proxy
model and the hyperparameters Θproxy of the proxy model.
Finally, lines 12-17 estimate new BC concentrations. First,
each sensor concentration is estimated using the sensor cali-
bration hyperparameters, and then with these values the BC
concentration is estimated with the proxy function.

4 Data set
We consider two types of measurements, those obtained

by reference instrumentation and those obtained with nodes
deploying LCS. The reference values, Table 1, were mea-
sured at the reference station located in located in Palau Reial
(41◦23′14′′N, 2◦6′56′′E, 80 m.a.s.l.), Barcelona, Spain. Ref-
erence BC mass concentrations were monitored using a mul-
tiangle absorption photometer (MAAP, Thermo ESM An-
dersen Instrument) fitted with a PM10 inlet, operating on a
1 min time resolution. The total particle number concen-
trations (N) was measured with a water-based condensation
particle counter (WCPC TSI 3785) with 5 min time resolu-
tion. The temporal resolution of these reference measure-
ments are given by the commercial equipment. The ref-
erence station is equipped with high-cost instrumentation
for measuring the particulate matter concentrations (PM1,
PM2.5, PM10), tropospheric ozone (O3), dioxide of nitrogen
(NO2) and monoxide of oxygen (NO). Meteorological vari-
ables (temperature and relative humidity), which are used
only as a corrector in the proxy using reference stations, were
obtained from a meteorological station located on the roof
of the Faculty of Physics of the Univ. of Barcelona, about
400 m from the Palau Reial station. All data was aggregated
at 10 min resolution.

Two IoT nodes with LCS were deployed: the first is a
commercial node called PurpleAir PA-II node [15], and that
measures PM1, PM2.5 and PM10. This node is equipped with
a PMS5003 dual laser particle counter. Built-in WiFi en-
ables the air quality measurement device to transmit data to
the real-time PurpleAir Map, which is stored and made avail-
able to any smart device. The data can be downloaded with
a 10 min resolution. The second node, Captor node, is an
experimental prototype developed at Universitat Politecnica
de Catalunya (UPC) for real IoT deployments. This node
includes three electrochemical Alphasense sensors; one OX-
B431 O3 sensor [3], one NO2-B43F NO2 sensor [2] and one



(a) Captor node scheme

(b) Arduino model

Figure 1. Captor node scheme (a) and a picture of the
Arduino model with an NO2 sensor, a O3 sensor and a
temperature and relative humidity sensor.

NO-B4 NO sensor [1], and one DHT1 Grove air tempera-
ture (T) and air relative humidity (RH) sensor to measure the
internal box environmental temperature and relative humid-
ity. The Captor node, Figure 1, uses a Raspberry Pi as cen-
tral processing unit connected via an I2C bus to the sensing
subsystems. A pair of Alphasense electrochemical sensors
with their individual sensor boards (ISBs, [4]) are connected
to an Arduino Nano microcontroller unit (MCU) that sends
the collected data to the Raspberry pi central processor. The
temperature and relative humidity sensor are connected to
the I2C bus. The Raspberry pi polls the sensor subsystems
on a round-robin basis and finally sends the data to a server
in the cloud via a wireless communication radio unit. The
sampling rate can be reconfigured, and for our experiments
it was set to 1 s for the powered node version, while it was
set to 5 min with a duty-cycle mechanism for the battery-
powered node version. The data are aggregated at a resolu-
tion of 10 min to match those of the reference station.

5 Results
We divide the results section into LCS calibration and BC

proxy construction. The methodology to train the sensor cal-
ibration methods and to train the proxy are the following: i) a
randomly selected fraction of the data set (75%) was used for
training the model, and the remaining fraction (25%) for val-
idating the model, ii) a 10-fold cross-validation strategy was
used to obtain the model’s hyperparameters by averaging the
root-mean square error (RMSE), iii) then, to ensure that the
calibration or proxy model is trained on a diverse range of in-
put variable concentrations, the data sets were randomized.
This approach prevents the model from learning patterns that
are specific to a particular time or season, and instead chal-
lenges it with a broad range of concentrations, reducing the
effect of variations due to different seasons or times of day.

Table 1. Data sets used in the BC proxy model.
VAR. # SAMPLES PERIOD RESOL. MEASUREM.

SOURCE

BC 186367 2021/08/31 - 2022/01/31 1 min Ref. Stat.
O3 25924 2021/08/31 - 2022/01/25 10 min Ref. Stat.
NO2 25924 2021/08/31 - 2022/01/25 10 min Ref. Stat.
NO 25924 2021/08/31 - 2022/01/25 10 min Ref. Stat.
N 73436 2021/08/01 - 2022/05/19 5 min Ref. Stat.
PM10 24837 2021/08/01 - 2022/01/31 10 min Ref. Stat.

T 17712 2021/08/31 - 2021/12/31 10 min Met. Stat.
RH 17712 2021/08/31 - 2021/12/31 10 min Met. Stat.

O3 7373793 2021/08/31 - 2022/01/25 1 s LCS
NO2 7373793 2021/08/31 - 2022/01/25 1 s LCS
T 7373793 2021/08/31 - 2022/01/25 1 s LCS
RH 7373793 2021/08/31 - 2022/01/25 1 s LCS
NO 7410741 2021/08/31 - 2022/01/25 1 s LCS
PM1 136593 2021/10/19 - 2022/01/31 2 min LCS
PM2.5 139515 2021/10/19 - 2022/01/31 2 min LCS
PM10 136593 2021/10/19 - 2022/01/31 2 min LCS
N 130515 2021/10/19 - 2022/01/31 2 min LCS

5.1 Calibration of LCS
The accuracy of the proxy model depends on the quality

of the captured data. Thus, before building the proxy it is
necessary to calibrate the LCS, and test how accurate they
are with respect to the values obtained by the reference val-
ues. We calibrate the sensors using a linear (MLR) and a
nonlinear (SVR) method. Linear methods work fine for cali-
brating O3, NO2, and NO with R2 ranging from 0.81 to 0.86.
The nonlinear method improves the R2 by 4-6% (R2 between
0.86-0.9). In the case of PM10, the linear method produces
an R2 of 0.70. The nonlinear method improves the R2 by ap-
proximately 12% (R2=0.79). Figures 2.a), b), c) and d) com-
pare the values predicted with SVR with the values of the
reference station for O3, NO2, NO and PM10 respectively,
showing the good performance of the predictions in terms
of high values of R2 (≥ 0.79) and low values of RMSE. In
the case of O3 and NO2, which are less local phenomena
than NO and PM, a very good prediction is observed over
the whole range of values. On the other hand, both NO and
PM10 are more local physical phenomena that have peaks,
which makes these peaks more difficult to estimate, impact-
ing the R2 and RMSE. Since the SVR calibration results are
the best, we will use these estimated values as input values
for the BC proxy.

5.2 BC proxy using reference instrumentation
and LCS

To evaluate the performance of a BC proxy we have built
one proxy from data obtained from high-quality sensor in-
strumentation included in the reference station. We begin
with a proxy built with all the variables available in the ref-
erence station (O3, NO2, NO, PM10, N), where here N is the
total particle number concentrations, and the meteorological
station (T and RH) as correcting factors. We use the BFE
algorithm on the dataset composed of the reference instru-
mentation sensor (reference stations), with the objective of
creating a baseline BC proxy, i.e. a proxy with high-quality
data. Table 2 compares the best subset of predictors selected
by SVR, RF, and ANN in terms of R2 (Ref. Station col-
umn) using the BC reference instrumentation. We note that
the BFE algorithm chooses different features when using dif-



Figure 2. Ten-day time series for O3, NO2, NO, and PM10 after being calibrated by a SVR model. The reference station
values are included for comparison. RMSE and R2 are included for every calibrated pollutant.

ferent machine learning models. For example SVR chooses
as optimal features {O3, PM10, N, RH, T} and RF does not
choose the RH, {O3, PM10, N, T}. On the other hand, ANN
adds NO and NO2 as features to its optimal set {O3, NO2,
NO, PM10, N, T}. Thus, a first conclusion is that proxy per-
formance is sensitive to the features used depending on the
model selected.

Now, we construct a BC proxy using LCSs. The RMSE
and R2 are calculated, again, using the reference BC in-
strument (column LCSs). In this case, we do not perform
the BFE, as we want to compare the BC proxy using LCSs
against the baseline BC proxy using reference data. We ob-
serve that the BC proxy using LCS performs close to the
BC proxy using features measured by the reference station,
which is the best proxy we can obtain given a given machine
learning model. Among the models used, we see that SVR
offers the best performance with an RMSE=0.37 µg/m3 and
R2=0.76 if we use the data from the reference stations versus
an RMSE=0.41 µg/m3 and R2=0.71 if we use LCS. These
results are in agreement with the results obtained in the same
area during 2 years (2018 and 2019), with reference stations,
and where seasonality was also studied [16]. Finally, we

Table 2. BC proxy comparison after backwards feature
selection.

Predictors subset Ref. Station LCSs

RMSE (µg/m3) R2 RMSE (µg/m3) R2

SVR O3, PM10, N, T, RH 0.37 0.76 0.41 0.71
RF O3, PM10, N, T 0.41 0.71 0.47 0.68
ANN O3, NO2, NO, PM10, N, T 0.41 0.71 0.41 0.71

also observe whether some overfitting is present in the BC

proxy calculations with LCS because the optimal model us-
ing BFE is calculated on the reference station data which
does perform a cross-validation process to avoid overfitting.
The point of using the reference data is that it acts as a base-
line case since we know that they are accurate data, whereas
if we perform a BFE on the LCS data, the selection of the
BFE will be very dependent on the quality of each sensor
at every moment and the set of sensors in the data set. We
have run a BFE with SVR on the LCS sensors to see how
different the choice of features is, doing cross-validation as
is done with the BFE on reference data. The results of this
experiment showed that the optimal set of predictors is com-
prised of {O3, NO2, N0.5, N1, T, and RH}, where in the set
appears the count suspended particle sizes N0.5, N1 instead
of total count N and PM10, obtaining a slightly better perfor-
mance than when using the set obtained from the reference
station RMSE=0.39 µg/m3, R2=0.77. However, it is worth
mentioning that the LCS uses counts of suspended particle
sizes to derive PMx concentrations, so particle counts and
particle concentrations are related in the values reported by
the LCS and may participate interchangeably. Nevertheless
in the reference station data set we had only the aggregated
value of particle number N, and not the individual channels.
One would expect the BC proxy with reference data to out-
perform the LCS BFE selection if we had access to PM2,5
or PM1 data. However, the reference station did not provide
such data.

Figure 3 provides the time series of both proxies and com-
pares them with the values obtained by the BC reference in-
strument. Even though both models follow BC instrument
trend, the BC proxy model trained with the reference sta-



tion measurements is better at predicting high values than
the LCS proxy model. The greatest difficulty is in predicting
local BC peaks that occur occasionally. These peaks are a
challenge and one of the lines of research to follow, in order
to improve their prediction.

Figure 3. Time series for BC proxy using SVR as model.

6 Conclusions
In this paper, we have described the design of a proxy for

BC using LCSs. Proxies are virtual sensors that substitute for
real sensors, when these are not available, by means of indi-
rect measurements. To test the performance of the proxy, we
have deployed LCS IoT nodes that measure particle number
concentrations (N), PM1, PM2.5, PM10, O3, NO2, NO, tem-
perature and relative humidity. We have first calibrated with
supervised linear and nonlinear machine learning models the
LCS showing the quality of the estimates in terms of RMSE
and R2. We found that the nonlinear SVR model gave the
best estimation results. We then trained the BC proxy model
using three techniques, RF, SVR, and ANN. First, we per-
formed a BFE to reduce the number of sensors participating
in the proxy. We have first compared a BC proxy created
only with indirect measurements captured by a reference sta-
tion. This experiment shows us the best we can do with as
accurate as possible measurements taken by instrumentation
used to report official data from government agencies. The
proxy is evaluated in terms of RMSE and R2 with data from
a high-cost BC sensor that gives accurate values, giving, the
best model (SVR), a R2 of 0.76. The second experiment is to
create the BC proxy using data taken by IoT nodes deploying
LCS. In this case, we observe that the BC proxy using LCS
approximates (R2=0.71) the BC proxy using data measured
by the reference station, showing that the approximation is
quite good. We believe, as unresolved lines of work, that it
is necessary to investigate how to obtain a more robust proxy
taking into account the loss of data in the different features
participating in the proxy, using for example missing value

imputation methods.
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