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ABSTRACT
The security of data, in motion and at rest, depends on the ability to
exchange session keys between communicating parties. Key agree-
ment approaches can provide the additional security assurance
of perfect forward secrecy, however, for many Internet of Things
resource-constrained devices the session key establishment process
is too costly in terms of energy consumption and processing time. In
this paper, we quantify the energy consumption and execution load
when performing session key establishment. We develop a software
security framework, implementing both lightweight key transport
and key agreement, the latter based on elliptic curve Diffie-Hellman
(ECDH). Measurements are taken using energy and digital-events
monitoring tools. We find that key agreement implemented via
software requires a quantity of energy thousand of times greater
than a key transport approach. Also, we measure and quantify how
much a hardware implementation can improve energy and execu-
tion time performance. Our research provides critical information
for practitioners in selecting the appropriate hardware and security
scheme for IoT applications.
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•Networks→ Security protocols; Network reliability; • Security
and privacy→ Key management.
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1 INTRODUCTION
The emergence of the Internet of Things (IoT) over a decade ago
started intense research into resource constrained devices. Initial
attempts at securing communications using traditional asymmetric
key exchange protocols was deemed infeasible given the limited
computational capabilities of the devices at the time. However, more
recent IoT devices provide increased energy efficient computational
performance. Additionally, some devices now also include asymmet-
ric cryptographic hardware support. Understating the applicability
of these approaches to constrained IoT applications mandates a
thorough understanding of power and resource requirements, and
yet this information is largely lacking from the literature [18]. In
this paper we carry out a performance analysis of key exchange
approaches on recent IoT devices. The analysis compares energy
and time performance for various key exchange approaches, across
multiple hardware platforms. Refresh of agreed keys increases the
security of a connection, but places more burden on the constrained
hardware, making the choice of refresh period a compromise. Quan-
titative data into the resource requirements will allow engineers to
optimise this design choice.

It is becoming increasingly important that, in wireless networks,
security be extended to the resource constrained ‘Endpoint’. This is
for two reasons. Firstly, there is a paradigm shift away from wire-
less networks being accessed through the secure network gateway
[21] which has traditionally protected the Endpoint devices from
malicious actors. Protocols now allow IPv6 to extend all the way
to the resource constrained device, and with this the threats that
direct access to the internet can bring. Secondly, IoT applications
are becoming increasingly important to society [2], with the data
they generate now informing many real-world decisions. As the
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importance of the data increases, so does the number of parties
who might wish to disrupt, corrupt or eavesdrop on it.

The implementation of secure protocols is therefore one of the
bottlenecks that can hold back wider IoT technology adoption.
Building an understanding of the requirements that these protocols
have is therefore a crucial step in enabling this technology. Our
paper contributes to this by providing two novel insights:

(1) We perform a comparison between different key establish-
ment schemes, based both on hardware and software key
exchange implementations.

(2) We provide quantitative data on the energy and time require-
ments of implementing Diffie-Hellman-based key agreement
on previously unevaluated IoT hardware.

To improve the applicability of this research we do this analysis
using real devices connected to real wireless networks. Our findings
are therefore based on a whole-stack implementation, which might
not be the case if derived from simulated results.

2 RELATEDWORK
There have been a number of studies comparing the performance
and resource requirements of implementing cryptography on IoT-
style constrained devices. However, the range of available protocols,
algorithms, approaches and hardware means that there is still much
work to be done in this field.

Noseda et al. [18] presents a comparison between five different
secure IoT platforms, evaluating their resource consumption (en-
ergy usage and execution time) when undertaking a number of
secure channel initiation steps, termed cryptographic primitives.
They demonstrate the impact that appropriate hardware selection
can have on device battery life, however they put out of scope the
key-exchange element that is the subject of our study.

Kietzmann et al. [11] provide a similar bench-marking report,
comparing the cryptographic primitive execution of five different
pieces of IoT hardware, this time including memory requirement in
their list of performance matrices. In this analysis, however, they do
not include key exchange protocols integrated in a full networking
stack, relying instead on previously exchanged keys. Kietzmann et
al. [12] then present a further study, looking in greater detail at the
mechanism for pseudo-random number generation, and comparing
different approaches.

Ledwaba et al. [13] undertakes a thorough investigation into the
Cortex-M series processors, evaluating this hardware’s suitability
when it comes to supporting cryptography mechanisms.

Further hardware comparison is given by Pearsons et al. [20], this
time focusing on Espressif’s ESP32 and TI’s CC3220, demonstrating
the advantages of implementing a cryptographic co-processor (the
ATECC608A) alongside the main microprocessor unit.

Nofal et al. [16] employ the EMPIOT IoT energy evaluation
platform [6] to assess a number of commonly used cryptographic
algorithms. By annotating the source-code of these algorithms, and
running a number of empirical measurements, they are able to
generate resource consumption metrics for the different building
blocks that make up the handshake and record layer algorithms.

Mössinger et al. [15] demonstrate some of the resource require-
ments (in the form of run time, memory and energy consumption)

for performing Elliptic Curve Cryptography (ECC) signatures on
the TI CC2538 chipset.

3 EXPERIMENT OVERVIEW
Our results are derived from an empirical investigation that has
been organized in the following main tasks:

(1) Design of key exchange protocols, one based on key trans-
port and one based on key agreement.

(2) Selection of the IoT devices, executing the designed key
exchange protocols and their implementation.

(3) Preparation of the testbed, consisting of the measuring de-
vices and circuitry required.

(4) Data collection and preparation of tools for the analysis of
the information extracted from the experiments.

The experiment aims to derive a numerical comparison of key ex-
change protocols, using energy comparison, execution time and
memory usage as metrics. We want to measure system performance
of protocols when executed on a real environment. For our purpose,
this consists of hardware boards, executing typical IoT networking
applications. The network is made of a series of IoT resource con-
strained boards, communicating with a device acting as network
coordinator. We do not include other components, such as backend
or proxy servers, as this would add complexity to our setup, with-
out affecting the metrics we are interested in. We have deployed
those protocols on real IoT devices, executing a standard complete
network stack, from physical to application layer. A number of
different open source network stack implementations exist, in our
work we have chosen Contiki-ng [19].

We have designed a series of test cases and each test case has
been executed 20 times. The hardware infrastructure used to per-
form the measurements relies on an experimental setup where by
measurements are obtained by connecting the device under test to
an oscilloscope, via dedicated external circuitry. Finally, numerical
results have been analysed, allowing us to compare the cost of key
transport and key agreement protocols, and to derive a series of
conclusions that can be used as guidelines when starting to design
a secure IoT network. The rest of this paper is organised as follow:
in Section 4 we describe the design of the key exchange strategies.
In Section 5 we provide a high-level description of what we will use
as our IoT, resource constrained devices. In Section 6, we describe
the implementation of the designed protocols. In Section 7, the
hardware setup of the experiments is reported while in Section 8
we present the data that was collected, as well as providing analysis
of the results.

4 KEY EXCHANGE DESIGN
Key exchange protocols involve two entities trying to establish a
common shared secret over a channel exposed to eavesdropping,
such as a wireless network [4]. We consider two main families
of protocols, one based on key transport and one based on key
agreement. The two parties involved in the key establishment are
the Endpoint, a resource-constrained device requesting the security
key, and a second device acting as the authorising entity, that wewill
call the ’Edge’. Key exchange algorithms have been designed to run
on resource constrained devices (with more detail given in Section
5), and this puts requirements on the algorithm’s characteristics. In
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Edge

NOT AUTHORIZED
• Generate random token R_ep
• Prepare message
• Start timer waiting response 1: EP_id + R_ep

2: Encrypted_KM(message) +  IV + Mic 

• Verify EP_id
• Generate random token R_edge
• Generate session key K_s
• Set Session-life time random T
• Encrypt with Master Key:

• Session key
• EN_Id, R_ep, R_edge, T

• Start timer waiting responseREQUESTING
• Decrypt with MK
• Verify token R_ep 
• store session key

3: Encrypted_SK(message) + IV + Mic 
• Decrypt with session key
• Verify token
• Set as Authorized

REQUEST ACK
• Encrypt with session key:

R_en, Edge Id, T

Endpoint

EP_id = Endpoint identifier - 8 bytes
R_ep = Endpoint token - 4 bytes

EN_id = Edge identifier - 2 bytes
R_ep = Endpoint token - 4 bytes
R_en = Edge token - 4 bytes
T = Key session time - 4 byte
K_s = Session key - 16 bytes
IV = CCM initialisation vector - 13 bytes
Mic = Message integrity check - 16 bytes

R_en = Edge token - 4 bytes
EN_id = Edge identifier - 2 bytes
IV = CCM initialisation vector - 13 bytes
Mic = Message integrity check - 16 bytesAUTHORIZED

Figure 1: Key transport

NOT AUTHORIZED
• Select curve and generate key pair
• Generate random token R_ep
• Prepare message
• Start timer waiting response 1: EP_id + R_ep + curveId + publicKey

2: Encrypt_MK(message) +  IV + Mic + pubKey

• Verify EP_Id
• Calculate shared secret
• Generate private/public pair
• Generate random token R_en
• Set Session-life time random T
• Encrypt with Master Key: 

• EN_Id, R_ep, R_en, T
• Start timer waiting responseREQUESTING

• Decrypt with MK
• Verify token R_ep 
• Store edge publicKey

3: Encrypted_SK(message) + IV + Mic 
• Decrypt with session key
• Verify token
• Set as Authorised

REQUEST ACK
• Calculate shared secret
• Encrypt with session key:

R_en, EN_Id

Endpoint Edge

EP_id = Endpoint identifier - 8 bytes
R_ep = Endpoint token - 4 bytes
curveId = elliptic curve identifier - 1 byte
publicKey = publicKey - 48/64/96 bytes

EN_id = Edge identifier - 2 bytes
R_ep = Endpoint token - 4 bytes
R_en = Edge token - 4 bytes
T = Key session time - 4 byte
publicKey = publicKey - 48/64/96 bytes
IV = CCM initialisation vector - 13 bytes
Mic = Message integrity check - 16 bytes

R_en = Edge token - 4 bytes
EN_id = Edge identifier - 2 bytes
IV = CCM initialisation vector - 13 bytes
Mic = Message integrity check - 16 bytes

AUTHORIZED

Figure 2: Key agreement

a key transport scenario, the authorising entity, usually equip-ped
with a true random number generator [3], is able to generate a
random string, that will be sent to the endpoint in an encrypted
message. This random string is used as a symmetric key to encrypt
the channel. In the case of key agreement, we use a protocol based
on elliptic curve Diffie-Hellman [1], where both parties generate a
private-public key pair of values, exploiting the properties of elliptic
curves. The two parties exchange the public key and use it to derive
a common shared secret. Differently from the key transport case,
this approach does not require the session key to be sent across the
network, improving the link security. Although beneficial from a
security perspective, we will show how this form of key agreement
is more expensive in terms of energy consumption, execution time
and memory usage, but we also show how dedicated hardware
acceleration can improve the performance.

For both key transport and key agreement protocols the endpoint
is authenticated: the authentication relies on an identical master
key being pre-deployed on the Endpoint and the Edge. The Edge
is also provided with a list of Endpoints identifiers. The Endpoint
generates a random token and sends an initial unencrypted mes-
sage, specifying the Endpoint identifier and a generated token. The
Edge verifies the validity of the identifier and sends back a new
message, encrypted using the pre-deployed master key. The End-
point receives and decrypts the message, verifying the correctness
of the token received back and storing the new session key. The
diagrams in Fig. 1 and Fig. 2 illustrate in more detail the session
key generation in the case of transport and agreement.

5 RESOURCE CONSTRAINED DEVICES
The devices used for the performance evaluation are typically de-
fined as resource constrained, these are identified as the Endpoint
in Fig. 1 and Fig. 2. The main features that these devices have
in common are their limited flash/RAM memory and processing
capabilities. Some of these devices may be equipped with secu-
rity hardware acceleration, relieving the main processing unit of
computationally heavy tasks. Another common peculiarity is their
battery-sourced nature that usually restricts the average processing
time: low level sleep mode APIs are available and executed periodi-
cally, as soon as the device completes all the scheduled tasks. Finally,
because of these limitations the data rate available is restricted.

The IoT devices selected for these experiments are the nRF8240-
DK board and the TI LAUNCHXL-CC2650. The main reasons for
this choice is the rich availability of security software and hard-
ware backends and frontends. Both boards have a set of digital IO
pins (GPIO), and a 2.4GHz radio that can be used to deploy low-
power networking solutions, such as 802.15.4, Thread and Bluetooth
low-energy. Looking in more detail at the two devices used, the
nRF52840 board relies on a 64 MHz 32-bit processor, 1 MB flash and
256 kB RAM memory, and is equipped with hardware acceleration
for executing both AES encryption and ECC calculation. The TI
CC2650, is provided with a 48 MHz 32-bit processor, 128 kB flash
and 20 kB RAM memory. Its security hardware acceleration allows
us to execute AES encryption but does not provide ECC calculation.
Both the boards are equipped with a 2.4 GHz RF transceiver, used in
our case to implement the physical and MAC layers of the 802.15.4
standard. The achievable bandwidth is in the order or 250 kbps.

6 KEY EXCHANGE IMPLEMENTATION
Contiki-ng is an operating system designed for wireless low-power
constrained embedded devices. It provides an implementation of
an IEEE 802.15.4 [8] based network. In our experiments, for the
Medium Access Control (MAC) layer, TSCH protocol was used as it
has previously demonstrated high reliability and energy efficiency
[9], although there is a small price to pay in terms of required mem-
ory when compared to alternatives, such as CSMA. With regard
to the Network Layer, the 6LoWPAN protocol was implemented.
Fragmentation was enabled on the nRF52840 board, but disabled on
the CC2650 due to the smaller memory available. For the Transport
Layer UDP has been used, again because it has lower complexity
and a smaller memory requirements when compared to TCP. The
micro IP (uIP) buffer size was left at the default 1280 bytes for the
nRF52840, while it was reduced to 140 bytes for the CC2650. The
network configuration selected for the CC2650 introduced a lim-
itation in the maximum UDP payload size, set at 64 bytes. This
limitation required us to implement both message 1 and 3 in Fig. 2
in two separate messages.

The logic of the key exchange algorithms has been implemented
as a dedicated Contiki-ng proto-thread [5]. The implementation
is organized into two parts, one platform-independent part allow-
ing for straightforward operation across different hardware types,
and one platform-specific part calling on the security, networking
and digital IO services provided by the board. For the nRF52850,
platform-specific services are provided by nRF52-SDK 16.0.0. For
the CC2650 we used TI-RTOS 2.21.01.08. The key transport algo-
rithm requires a true random number generator (TRNG) service and
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Figure 3: Voltage measured and digital event

the AES encryption service. The key agreement algorithm requires
these, as well as the elliptic curve cryptography library. Hardware
acceleration for TRNG and AES is available for both nRF52840 and
CC2650, while ECDH is available only on nRF52840. We imple-
mented both hardware and software versions of ECDH, using the
backend CC3310 [10] and MBED-TLS [14] respectively.

The Edge device is deployed on a laptop running a Linux Ubuntu
OS. A nRF52840 dongle is attached to the laptop via USB, providing
802.15.4 radio capabilities. In this configuration, the dongle acts
as border-router and provides a network interface to the OS. The
protocols logic was implemented in Python using the tinyEC Python
package for the elliptic curves operations.

7 TESTBED DESCRIPTION
To capture the power consumption and execution time of the IoT
devices under test an oscilloscope based measurement setup was
deployed. Fig. 4 shows the experimental set up, including the IoT
hardware under test and the measurement circuitry. The oscil-
loscope used in the experiments is a Teledyne Lecroy HDO4104
series with the capability of capturing 2.5GS/s. To collect consistent
measurements, both nRF52840-DK and LAUNCHXL-CC2650 IoT
devices were supplied externally by the same AIM-TTI MX100TP
Multi-Range DC Power Supply. The shunt resistor in the setup is
used to measure a voltage drop, from which the current drawn from
the DC power supply can be calculated. A low value (10 Ω) was
selected for the shunt resistor to limit the voltage drop across this
component, making it small when compared with the voltage drop
across the device under test. The resistance of the component was
tested empirically to avoid inaccuracies in the calculated values.
To eliminate completely the effects of the shunt resistor from our
results we used only the voltage across the device under test (𝑉 )
to calculate the energy consumed by the constrained device, and
subtract the voltage drop on the shunt resistor (𝑉𝑠ℎ𝑢𝑛𝑡 ).

A voltage of 3.3V DC was applied to the testbed circuit, as this
is within the rated supply voltage range of both the nRF52840-DK
[17] and LAUNCHXL-CC2650 [22] boards. The current through the
shunt resistor (𝐼𝑠ℎ𝑢𝑛𝑡 ), and therefore through the device under test
(𝐼 ), was calculated by dividing the instantaneous voltage across that

Figure 4: Measurement Setup with Oscilloscope
Table 1: Energy consumption and Execution time

Scenario Board Energy (mJ) Exec time (ms)
Transport nRF52840 HW 0.023±0.001 0.953±0.016
secp192r1 nRF52840 HW 0.709±0.001 21.86±0.070
secp256r1 nRF52840 HW 1.348±0.001 40.57±0.068
secp384r1 nRF52840 HW 3.870±0.035 111.7±0.519
secp192r1 nRF52840 SW 16.54±0.163 535.6±4.060
secp256r1 nRF52840 SW 32.82±0.264 1070.5±9.309
secp384r1 nRF52840 SW 58.70±0.652 1876.3±26.28
Transport cc2650 HW 0.051±0.002 1.131±0.021
secp192r1 cc2650 SW 48.55±1.239 696.5±20.58
secp256r1 cc2650 SW 87.93±0.366 1280.5±5.66
secp384r1 cc2650 SW 140.8±1.012 1964.5±18.40

component (𝑉𝑠ℎ𝑢𝑛𝑡 ) by the shunt resistance (𝑅𝑠ℎ𝑢𝑛𝑡 ) value (eq. (1)).

𝐼𝑠ℎ𝑢𝑛𝑡 =
𝑉𝑠ℎ𝑢𝑛𝑡

𝑅𝑠ℎ𝑢𝑛𝑡
= 𝐼 (1)

The instantaneous power consumed by the device under test can
then be calculated by multiplying 𝑉 and 𝐼 .

A number of the device under tests digital "GPIO" pins were also
connected to the oscilloscope. These GPIO pins were configured in
software to be set highwhen the key transport/agreement operation
started, and then low again when the operation was completed.
Thus, the oscilloscope recording was triggered to co-inside with the
key transport and key agreement messages being exchanged. The
recorded set of instantaneous power measurements were multiplied
by the oscilloscope sample period, and summed to give the total
energy consumed during the experiment (𝐸). In eq. (2) 𝜔 denotes
the oscilloscope sample frequency. The GPIO output is set high at
sample 𝑛 = 0, denoting the start of the sampling window, and then
set low at sample 𝑛 = 𝑁 denoting the end.

𝐸 =
1
𝜔

𝑁∑︁
𝑛=0

𝑉𝑛𝐼𝑛 (2)

Where a scenario requires multiple distinct windows, such as
the sending of multiple messages, then only those samples that
co-inside with a window are summed, and those samples between
windows are not included.
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Figure 5: Box plots for the Execution Time (top, values in ms) and Energy consumption (bottom, values in mJ)

8 RESULTS AND ANALYSIS
In this section, we present and compare the results gathered during
the experiments described above. We provide analysis of the execu-
tion time, energy consumption and memory usage for each of the
protocols running on the two devices under test. Each experiment
was repeated 20 times, and in Table 1 the mean value for energy
consumption and execution time is presented. Every mean value
is reported with the related confidence interval, calculated using
a confidence level of 95% and a number of samples equal to 20. A
visual representation of the statistical content of each experiment
is shown with box plots in Fig. 5.

8.1 Execution time
To calculate key exchange protocol execution times, digital GPIO
output signals were employed, as they operate quickly compared to
the execution time of the algorithm. A digital event, captured with
the oscilloscope, is shown in Fig. 3, where we can see the digital
output signal in yellow and the recorded shunt resistor voltage
in pink. Referring to Fig. 1 and Fig. 2, three events are considered
to sum up the total execution time. The software sets high the
board digital output signal before starting to execute the algorithm
related instructions, and low when the message is delivered to the
UDP service of the operating system. Similarly, when receiving a
message, the digital output is set high only when data are available
at the Application Layer and the algorithm starts to be executed. In
this way we do not include in the time window of interest all the
lower level networking activity. Results are illustrated in Table 1.We
observe how the hardware acceleration can reduce the execution

time compared to the software implementation and how the size of
the key seems to affect significantly the computation time. In real-
time systems, time allocation can be critical, and executing tasks
requiring several hundreds of milliseconds may not be feasible.

8.2 Energy consumption
As can be observed in Table 1, the energy consumption increases
as the protocol bit length is increased, and this is true across all
devices, and hardware or software implementations. Comparing
the software implementations on the two devices we see that the
energy consumption on the two devices is of the same order of
magnitude. However, comparing the performance of the hardware
and software implementations on the nRF device shows a much
starker difference. As can be observed in the Table 1, energy con-
sumption is significantly reduced for the hardware implementation.
When using the hardware support, the nRF device performs ap-
proximately 23 times better at ECDH with 192-bit and 256-bit key
sizes, and 15 times better at ECDH with 384-bit key size.

Avoiding the key agreement process altogether, however, pro-
vides even greater efficiency. Key transport algorithms deployed
on nRF52840 outperformed the hardware key agreement process
by approximately 31 times for ECC secp192r1, 59 times for ECC
secp256r1 and 167 times for ECC secp384r1. The key transport
protocol surpasses the software implementation of ECC curve by
719, 1426 and 2545 times respectively when the numerical results
in Table 1 are taken into account.

The CC2650 board performs similarly to the nRF52840 board on
the software implementation of ECC curve when it is compared to
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Table 2: Memory report from static analysis (values in bytes)

Scenario Board text data bss
Transport nRF52840 HW 80880 1012 14852
secp192r1 nRF52840 HW 101720 1012 17468
secp256r1 nRF52840 HW 101720 1012 17468
secp384r1 nRF52840 HW 101720 1012 17468
secp192r1 nRF52840 SW 115416 1016 46976
secp256r1 nRF52840 SW 116056 1016 46976
secp384r1 nRF52840 SW 116448 1016 46976
Transport cc2650 HW 74540 1331 12052
secp192r1 cc2650 SW 93276 3455 12344
secp256r1 cc2650 SW 94116 3455 12344
secp384r1 cc2650 SW 97096 3455 12344
All curves nRF52840 SW 125080 1040 46976

the transport protocol. The CC2650 board consumes less energy
with the transport protocol by 951, 1723 and 2747 times compared
to ECC secp192r1, ECC secp256r1 and ECC secp384r1 software
deployments respectively. It should be highlighted that the CC2650
and nRF52840 boards have quite different specifications, and this
should be considered when making comparisons between the two
devices.
8.3 Memory
A static memory analysis has been conducted using the GNU size
utility [7]. Results are reported in Table 2. The first column indi-
cates the test scenario, the other columns report the size of the
segments in which the memory is organized. Segment ‘text’ in-
cludes executable instructions and constant variables, and is placed
in the Flash memory. Segment ’data’ includes initialized global and
static variables and is placed in RAM. Segment ‘bss’ includes non
initialized variables and is also placed in RAM.

Considering the Flash and RAM memory information presented
in Section 5, Transport protocol is an affordable solution for both
nRF52840 and CC2650. When implementing key agreement, we
enabled only one elliptic curve at compile time. This is true for
all scenarios in table except the last, named ‘nrf SW All curves’,
where all curves are included, although this was not possible on the
CC2650 due to memory limitations. We observe also in the software
implementation case, the text segment increases when increasing
the curve size. The same does not happen for the hardware im-
plementation, as the curves static definition is placed in dedicated
hardware, without using Flash or RAMmemory. Finally, comparing
nRF52840 and CC2650 text segments, we observe smaller values in
the second board. This is due to a lighter version of the networking
stack, as described in Section 6.

9 CONCLUSION AND FUTUREWORK
Efficient key exchange protocols allow for the frequent regeneration
of a secure shared secret. We have conducted an empirical study,
considering protocols based on Key Transport and Key Agreement
approach. The details of the protocols has been described, as well as
implementation on two IoT boards. We have illustrated the testbed
used to measure the performance and the methodology applied to
process the acquired data. Numerical results have been presented
and analyzed. Future activity will consist of evaluating a wider
range of security key size, validation of our results using alternative

test beds, and deployment on different IoT boards using alternative
real-time operating systems.
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