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Abstract
Personal Voice Assistants (PVAs) are used to interact with

digital environments and computer systems using speech. A
wake word such as ’Alexa’ is spoken by the user to initiate
interaction with the PVA. We use the audio recording of the
wake word to determine the room in which user - PVA in-
teraction takes place. We collected data from 10 different
rooms in which a user speaks the wake word at different lo-
cations. This dataset is used to evaluate three different neural
network based algorithms for room identification. Our evalu-
ation shows that rooms can be identified with 90% accuracy.
The impact is twofold: (i) PVA audio recordings leak pri-
vate information about the user environment; (ii) Acoustic
room identification is an option for augmenting user - PVA
interaction.

1 Introduction
PVAs such as Amazon Alexa or Google Home are now

commonplace. We use these systems to interact with our en-
vironment and computer systems. A PVA records a user’s
voice and converts speech to text using Automated Speech
Recognition (ASR). The obtained transcript is then inter-
preted by the system and actions are carried out. The system
may then generate an audio response which is played back
to the user via the PVA’s integrated speakers.

The audio signals a PVAs records can be analysed to ex-
tract more information than speech. It is possible to identify
gender [9], emotional state [14] or health condition [2]. It has
also been shown that information about a user’s environment
can be extracted from the acoustic channel. Consequently,
users are increasingly concerned about their privacy when
using PVAs. In this work we describe how speech signals
recorded with a standard PVA can be analysed in order to
determine the specific room in which the user PVA interac-
tion took place. The audio channel can be used passively to

identify rooms. On the one hand, our research demonstrates
that room information may be retrieved from audio signals,
which may jeopardize users’ privacy. On the other side, the
capacity to recognize a room might be employed as a fea-
ture. The user’s engagement with the PVA can be adjusted
to the precise room in which the conversation takes place.
Room identification can also be utilized as an added security
feature to limit user interaction to specified rooms.

We assume in this work that either the PVA is mobile (a
mobile Phone) or that it is a smart speaker that can be easily
carried from room to room. We further assume that a wake
word such as ’Alexa’ is spoken by the user to initiate inter-
action with the PVA. We use recordings of the wake word as
reference signal which is used to determine the room. The
work presented in this paper builds on our previous work [1]
in which we investigated room identification based on the ex-
isting database of the ACE challenge [3], containing speech
samples (so called babble noise) collected in different rooms.
However, this work differs regarding dataset and used algo-
rithms used for room identification. For this work we col-
lected a dataset specifically tailored to the outlined PVA con-
text. A PVA was placed in 10 different rooms and a user
spoke the wake word ’Alexa’ multiple times at different lo-
cations.

The specific contributions of this work are:
• Room Identification: We describe three different meth-

ods for room identification based on a spoken wake
word.

• Wake Word Dataset: We collected a dataset providing
samples of the spoken wake word ’Alexa’ at different
positions in 10 rooms.

• Evaluation of Room Identification: We evaluate the
proposed methods using the collected dataset. Results
show that a total accuracy of up to 90 percent is achiev-
able under specific conditions.

In the next section we discuss related work. Section 3
describes on a system level how room identification is used
in a PVA context. In Section 4 we detail our dataset. Sec-
tion 5 describes our methods for room identification and in
Section 6 we present our evaluation results. The last Section
concludes the paper and includes the final remarks.
2 Related Work

In 2012, the first system for performing room identifi-
cation was proposed and introduced by Peters et al. [13].



The proposed system is based on a Gaussian Mixture Model
(GMM) system that employs Mel-Frequency Cepstral Co-
efficient (MFCC) features. To train the model, a dataset of
audio samples extracted from a video clip were collected and
offered. Both speech and non-speech (music) samples were
included. Our study differs as we employ neural network-
based models and use a wake word dataset collected in a
practical setting.

Moore et al. [5] proposed in 2014 to utilize a Gaussian
Naive Bayes Classifier (GNBC) with Frequency Dependent
Reverberation Time (FDRT) traits for room identification.
A database of 484 Room Impulse Responses (RIRs) for 22
rooms varying in capacity from 29 to 9500 cubic meters was
employed. The FDRTs served as the classifier’s input fea-
ture. An Equal Error Rate (EER) of 3.9 % is achievable. The
FDRTs features must be measured using specialized equip-
ment. In our work, we use an ordinary phone to capture
sound.

A novel method for identifying the place in which the
capturing device is located, is proposed by Moore et al. [6].
Regarding the used database, the authors artificially created
a dataset containing 400 samples from five different rooms.
The original samples used for creation are taken from the
evaluation dataset of the ACE challenge [4]. The main hand-
crafted features are sub-band negative-side variance features
that were extracted from the artificially created database. For
classification of the extracted features Naive Bayes classifier
were utilized. In our work we are using a real instead of
generated data set. Moreover, we use different analysis tech-
niques (i.e. neural network based techniques).

Hand crafted feature extraction heavily depends on hu-
man expertise and experience, while Deep Neural Networks
(DNNs) seeks to circumvent these constraints by feature
learning for model training automatically. Papayiannis et
al. [12] proposed deep learning based techniques including
a Convolutional Recurrent Neural Network (CRNN) with an
attention-mechanism for performing room identification. In
their studies, the CRNN classifier’s accuracy of the classifi-
cation is 78% with 5 hours of training data and 90% percent
when using 10 hours. They have used an artificially con-
structed dataset to train the chosen models. In our work, a
newly collected database is used. We explore also the pos-
sibility of transfer learning techniques instead of training for
scratch.

In another research by Papayiannis et al. [11] a novel
method for data augmentation for the training of DNN based
room classifiers is proposed. The method relies on the
training of Generative Adversarial Networks (GANs), which
are used to generate artificially Acoustic Impulse Responses
(AIRs) that increase the training data available for the classi-
fiers. This is a novel idea, but still the database is artificially
created. In our paper, we have collected a real database by
the use of an ordinary phone. Also, this work is focused on
generating data and does not explore classification.

3 System Overview
Figure 1 shows the PVA system overview. A device such

as a mobile phone or dedicated Internet of Things (IoT) de-
vice is used to capture sound. When the device (front end)

Figure 1. Personal Voice Assistant (PVA) system
overview. The device (front end) is activated by recog-
nising a wake word (e.g. ’Alexa’). The sound recorded
after the wake word is transported to a back end for fur-
ther analysis (e.g. Automated Speech Recognition (ASR)

)

recognises a wake word (e.g. ’Alexa’) it records the subse-
quent sound and sends this recording to a cloud-based back
end for analysis. The back end uses powerful ASR to tran-
scribe speech to text. Thereafter the text is analysed to ex-
tract user commands and, if required, an action is carried out.
Sometimes user feedback is provided following a command,
for example, via an audio signal emitted via the front end.

In this work we assume that the recorded sound trans-
ported to the back end undergoes an additional analysis to
identify the room. Such analysis may be carried out by the
operator of the PVA infrastructure or by a third party that is
able to get hold of the recorded audio. In both cases a user
may not be aware that the sound is analysed in this particu-
lar way and a user may also not be aware of privacy issues
arising from such analysis.

As the PVA user always initiates communication with the
PVA by using the wake word (e.g. ’Alexa’ in case of an
Amazon PVA) it is possible to use this part of the communi-
cation as reference signal. Usually the same user is speaking
the same wake word in potentially different locations. Using
a reference signal simplifies the task of identifying a room
compared to a situation where different users and arbitrary
spoken words or sentences have to be used.

As a user is always starting the communication with the
wake word a large pool of wake word samples spoken in
different rooms can be acquired quickly. We assume it is
possible to collect wake word samples for which the room
is known. These samples are then used to train a system
which is then subsequently used to classify rooms based on
a recorded wake word.

4 Dataset
Our investigation aims to assess whether it is possible to

detect the room in which the device is placed using wake
word samples recorded via a PVA (i.e. by an ordinary smart-
phone).

We created a dataset using the following procedures. A
single user (male) speaks the wake word ’Alexa’ in a room
at 3 different positions multiple times (20 to 30 times). A
standard mobile phone (a Galaxy A5) is used to record the
spoken wake words. The phone is placed in the middle of
the room; the 3 speaker locations are approximately 1 meter
away from the phone and the three three different positions
are also approximately one meter apart. This setup is used
to record the wake word in 10 different rooms. 7 rooms are



Figure 2. Number of samples recorded in 10 different
rooms.

located in an office building and 3 in a residential building.
The whole procedure is repeated after a day. Data collected
at the first day is labeled Session1 and data collected the sec-
ond day is labeled Session2. It has to be noted that the phone
is placed approximately at the same position on the table and
the speaker is taking approximately the same position in the
second session. However, positions are not exactly replicated
between both sessions. The number of wake word samples
collected in the different rooms is shown in Figure 2. We
collected 1371 wake word samples in ten different rooms.

Using a single speaker is realistic as in a practical PVA
context the same user would usually interact with the device.

A standard phone is used for recording sound as this
would also be the case in a practical setting.

We use 10 rooms in two different locations. The office
environment creates a particular challenge as the rooms are
acoustically very similar. Some offices have the exact iden-
tical shape and furniture. In a real setting this would not be
the case; in a house it is to be expected that rooms are usually
different.

We use one place for the PVA and multiple speaker loca-
tions. We believe that users tend to place a phone in a room
at a similar spot (e.g. place it on the table). Users may vary
their position when interacting with the device.

We use two session to ensure that the dataset represents
the fact that a user entering a room and interacting with the
PVA will not always place the device in the exact same spot
and also will not always be in the exact same position when
interacting with the PVA

The experiment was approved by the Social Research
Ethics Committee (SREC) at University College Cork (Log
2021-139).

5 Algorithms for Room Identification
We assume it is possible in our scenario to obtain la-

beled wake word samples in a set of rooms. For example,

Figure 3. Spectogram of the Wake Word ’Alexa’.

a database may be built over time, collecting the wake word
every time the user interacts with the PVA in a known con-
text. The obtained samples are then used to train a model
which is subsequently used to identify the room based on a
recorded wake word in a situation where the location is not
known.

We chose to design and explore three different algorith-
mic approaches to perform room classification. Our three
approaches are based on successful methods for sound clas-
sification reported in literature. Our three methods make use
of Convolutional Neural Network (CNN) as they have a track
record of producing good results in the context of sound clas-
sification and categorization [10].

In our first approach we split the sound signal into two
parts: Harmonic and Percussive parts. These features are
then used as input for a CNN based classifier. Mu et
al. [7] proposed this Harmonic Percussive Source Separa-
tion (HPSS) approach for environmental sound classification
tasks.

In our second approach we directly use the sound spec-
trogram (see Figure 3) as input instead of pre-processing the
acoustic signal to extract features such harmonic and percus-
sive components. The spectrograms are then used as input
for a CNN based classifier. Nanni et al. [8] have used such
approach successfully to identify sources of noise in envi-
ronments.

For the third approach we chose a transfer learning tech-
nique. The wake word spectrograms (similar to the afore-
mentioned approach) are used as input for a pretrained model
for sound classification (Imagenet pretrained VGG16). The
extracted feature vectors are then processed and classified by
adding new layers on the top of the existing pretrained mod-
els. This approach was used to deal with a situation where
less data (wake word samples) is available for training. Next
we discuss each approach in and chosen techniques in more
detail.

5.1 First Approach - HPSS
For this approach the Mel-Frequency Cepstral Coeffi-

cients (MFCCs) are extracted from the the obtained wake
words. Thereafter the HPSS technique is applied to split the
input signal into two sub signals. The mean values of the
MFCCs were then calculated. We chose to use 120 mels and,
thus, the output of this prepossessing stage is a two dimen-
sional array with size (120,2). The extracted feature vectors
are then used as input to a CNN. The architecture of our
chosen CNN is tabulated in Table 1; one dimensional convo-
lutional layers are stacked on top of each other.



Table 1. First Approach - HPSS: configuration of the
chosen CNN.

Layers Neurons Activation Func. Kernel Size
Conv1D 64 RELU 2

MaxPooling 64 N/A 2
Conv1D 64 RELU 2

MaxPooling 64 N/A 2
Conv1D 64 RELU 2

MaxPooling 64 N/A 2
Conv1D 64 RELU 2

MaxPooling 64 N/A 2
Dense 64 SIGMOID N/A
Output N/A SOFTMAX N/A

Figure 4. Architecture outline of approach 2 - CNN shal-
low.

It is worth mentioning that for performing our multi-class
classification task we have chosen a categorial crossentropy
loss function and an Adam optimizer. The learning rate is
5e-3 in this case. This approach is very cost-efficient and
this is the advantage of using this approach for performing
the room identification task.
5.2 Second Approach - Shallow CNN

For the second approach, instead of extracting MFCCs
from the samples and working with voice signals, we gener-
ated spectrograms (see Figure 3). The opencv function im-
read is used to process the spectrograms and images are re-
sized to an array of size (224,224,3). Figure 4 shows the cho-
sen CNN architecture processing the spectrograms. We have
used three blocks of convolutional layers with 32, 64 and
128 filters of size 3×3. For each block, one 2×2 Maxpooling
layer is added to obtain image features with lower learning
parameters. In order to connect the feature extraction stage
with the classification stage one flattening layer is used. In
the classification stage two dense layers with 64 neurons fol-
lowed by a soft-max layer for prediction of the classes are
used. The loss function is categorical crossentropy and the
chosen optimizer is Adam and the resulting learning rate is
5e-5. It is worth mentioning that all the CNNs are followed
by a rectified linear unit activation function. Only for the one
layer before the last layer, a sigmoid function is used to have
the output between 0 and 1.
5.3 Third Approach - Transfer Learning

Similar to the second approach we first resize the obtained
mel spectrogram images representing the wake word. There-
after we use Vgg16, one of the most powerful pretrained im-
age classification systems available in order to process the
obtained images. To tune the network from the task of object

classification to the task of room identification we eliminate
the classification block of the network (FC6, FC7 and the
softmax layer) then we add two convolutional layers (num-
ber of neurons = 1024), one dense layer (number of neurons
= 64) and one softmax layer on the top. Hence, we only
train the added layers and the existing convolutional layers
are frozen when training the system using the collected wake
word dataset.
6 Evaluation

We use the aforementioned three approaches together
with our collected wake word dataset to evaluate to which
degree it is possible to determine a room based on the wake
word spoken by a user.

We perform two different evaluations. In the first eval-
uation we use the data collected in Session1 and Session2
for training and evaluation. We use this first evaluation to
judge general performance of our three different classifica-
tion methods. In the second evaluation we only use data
from Session1 for training and then use data from Session2
for testing. This was done to assess if it is possible to deter-
mine the room if speaker and PVA are not placed at the exact
same position as during training of the system. In a practi-
cal setting, user and PVA may be at similar locations but not
necessarily the exact same position.

In our first evaluation we use all three of our classification
approaches. In the second evaluation we focus only on the
third approach (transfer learning) as it is the most suitable
approach for these conditions.
6.1 Evaluation 1

The test and training data are randomly picked form the
sample pool (Session1 and Session2). We use 80% of the
samples for training the networks and the rest for testing.

Figure 5, Figure 6 and Figure 7 show the classification
results obtained with our three approaches.

Using the first approach (HPSS) we can obtain a very
good result of 99% of accuracy for the chosen scenario. As it
is shown in the confusion matrix, the classifier can discrimi-
nate between the samples recorded in different rooms with a
very high accuracy.

Using the second approach and by training a shallow net-
work from scratch the overall accuracy of 100% is achieved.

With the third approach, using transfer learning, an over-
all accuracy of 96% is achieved.

All methods provide a useful high accuracy. However, the
second approach is here in this scenario the best choice.
6.2 Evaluation 2

We use Session1 as training data and Session2 as test data.
We use the third approach of transfer learning to classify
rooms. Figure 8 shows the results.

The overall accuracy drops substantially from 96% to
68% by changing the training-testing scenario. The major
reason for this is that throughout a session, successive sam-
ples can be considered as identical samples. Samples from
Session2 used for testing are not included in the training data
obtained from Session1. Furthermore, in terms of size, ge-
ometry, and decoration, the office rooms included in the eval-
uation are remarkably similar. Thus, any differentiation be-
tween these very similar rooms is challenging. Another as-



Figure 5. First Approach: HPSS, Ten Rooms.

Figure 6. Second Approach: Shallow CNN, Ten Rooms.

Figure 7. Third Approach: Transfer Learning, Ten
Rooms.

Figure 8. Cross-Session Comparison. Third Approach:
Transfer Learning, Ten Rooms. Results: Ten Rooms.

Figure 9. Cross-Session Comparison Results. Third Ap-
proach: Transfer Learning, Seven Rooms.

pect to consider is that in this evaluation scenario less data is
available for training (as only taken from Session1).

In most real-world scenarios a PVA would be used in en-
vironments (e.g. residential buildings) where rooms have
significant different acoustic properties. For example, a
kitchen is different to a living room which is different to a
bedroom.

To represent this situation we choose to remove three
rooms (the most similar office rooms) and run the classifi-
cation algorithm again. The results are shown in Figure 9.

The results improve under these conditions significantly
and an overall accuracy of 90% is achieved. This shows that
if rooms are sufficiently different an acoustic sample is suffi-
cient to determine the room in which the interaction between
PVA and user takes place.

7 Conclusion
We have shown that it is possible to build a system that

is capable to identify a room in which a user interacts with



a PVA based on recorded wake words. We created a dataset
specifically for the purpose of evaluating wake word based
room identification in a PVA context.

Our results show that it is possible to identify the room
with a high accuracy. It is necessary to collect training data
in the target environment. However, as the required training
data consists of the wake word that must be spoken whenever
the user interacts with the PVA we believe it is possible to
gather the required information over time. The evaluation
shows limitations; if rooms are very similar in shape, size
and materials it is difficult to clearly identify the room using
our proposed methods.

The results of our work can be interpreted in two ways.
First, PVA audio recordings leak private information about
the user environment. Clearly a user may not want to reveal
to a PVA provider any information about their environment.
Second, room identification is an option for augmenting user
- PVA interaction. It may be possible to use this approach to
tailor PVA interaction to the room in which it takes place.

It also has to be pointed out that the reported findings are
transferrable to other settings. For example, in video confer-
encing calls users obfuscate the background to conceal the
room they are in. This may be ineffective if the sound is
analysed to reveal which room it is.
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