
Poster: Empirical Evaluation of AutoML Algorithms
for Motor Health Prediction

Tanmay Goyal
ABB Research Center

Switzerland

tanmay.goyal@ch.abb.com

Pengcheng Huang
ABB Research Center

Switzerland

pengcheng.huang@ch.abb.com

Felix Sutton
ABB Research Center

Switzerland

felix.sutton@ch.abb.com

Balz Maag
ABB Research Center

Switzerland

balz.maag@ch.abb.com

Philipp Sommer
ABB Research Center

Switzerland

philipp.sommer@ch.abb.com

Abstract
The past few years have witnessed a growing interest

in edge analytics across different industries. In this new
paradigm, data is processed at the edge close to where it
is generated. Therefore, in comparison to cloud analytics,
edge analytics bring benefits of reduced data transmissions,
enhanced data security, and improved responsiveness of in-
field devices. Due to limited resources available to edge de-
vices, one of the main challenges for edge analytics is to
reduce the footprints of machine learning models in terms
of timing, memory, and energy. This work evaluates and
compares several common AutoML algorithms in optimiz-
ing an industrial edge analytics use case for motor health
monitoring. We reveal the capabilities of existing algorithms
in getting both accurate and small machine learning models.
Based on our evaluations, future research directions are out-
lined.
1 Introduction

Bringing data analytics to industrial applications poses
a multitude of new challenges. Many industrial computing
systems on which new analytics enabled services will be in-
stalled, are severely limited in terms of their computing, and
memory resources, e.g., program logic controllers (PLCs),
sensors, real-time control platforms, and gateways. This new
paradigm is often termed as edge analytics; in contrast to the
cloud counterpart, edge analytics are deployed on “small”
computing platforms close to where data is generated.

To satisfy various constraints such as memory, energy,
and latency, as induced by resource-limited edge analytics,
users need to explore a huge search space which includes
model parameters such as kernel sizes, number of channels

etc., sensing parameters such as frequency and window, and
hyperparameters such as epochs, learning rate, etc. This can
be time-consuming if done manually. To tackle this, we need
to automatically navigate through the search space in an in-
telligent manner in order to optimize for various constraints.

Conventionally, AutoML [6] techniques have been pro-
posed, mainly focusing on optimizing analytics accuracy
alone. One main area where AutoML algorithms are pro-
posed is Neural Architecture Search (NAS). The NAS meth-
ods can be broadly divided into three categories. (i) Multi-
trial algorithms sample different configurations, train them
independently and then sample new configurations based on
previous results. Typical methods used for sampling include
Bayesian Optimization methods (TPE [1] and BOHB [4]),
Anneal [6], and reinforcement learning [10]. Such methods
also include SMAC [7], which uses Sequential Model-Based
Optimization (SMBO). (ii) One-shot algorithms train a sin-
gle supernet with weight sharing; results of different sam-
pled configurations from this supernet are used to guide the
selection of better models. Some well-known examples are
DARTS [8], ENAS [9], and ProxylessNAS [2]. (ii) Multi-
objective optimization algorithms such as the genetic algo-
rithm NSGA-II [3], which searches for the best model con-
figuration by optimizing several objectives simultaneously.
The latest addition here is the SMiLe [5] framework, which
uses hardware-in-the-loop feedback to perform optimization
of an entire processing chain, including both sensing and ma-
chine learning.

To compare the performance of different AutoML algo-
rithms for edge analytics, we benchmark in this work such
algorithms against an industrial motor health prediction use
case while making multi-objective optimization extensions
when needed. Our empirical results highlight the effective-
ness of the SMiLe framework and point out important future
research directions in this area.

2 System Overview
We use a real-world use case, i.e., motor health prediction

for this study. We built a motor testbed featuring three ABB
M3AA asynchronous 3-phase motors. The bearings of the
motors were damaged to different degrees by adding metallic
dust into the bearing cases, i.e., 0 mg for a healthy, 250 mg



Table 1: Comparison of different AutoML algorithms (with SMiLe having hardware-in-the-loop) - each algorithm is allowed to
run for 5 hours on NVIDIA GeForce RTX 2080 Ti GPU

Algorithm # Parameters Accuracy
Sensing

Frequency
(Hz)

Sensing
window

Sensing
Energy

(mJ)

Inference
Energy

(mJ)

Sensing
Duration

(ms)

Inference
Duration

(ms)
Anneal 573 1 104 700 6.229 0.054 6.594 0.0188

TPE 671 0.999 1660 200 0.227 0.038 0.118 0.0112
BOHB 1878 0.9999 1660 300 0.343 0.066 0.176 0.019
SMAC 391 0.999 1660 700 0.778 0.063 0.412 0.021

NSGA-II 432 0.9999 1660 200 0.228 0.018 0.117 0.0062

SMiLe 339 1 1660 100 0.113 0.0073 0.058 0.0027

Table 2: Comparison of different AutoML algorithms -
each algorithm runs for 5 hours on NVIDIA GeForce RTX
2080 Ti GPU with constant hyperparameters sensing win-
dow=200, sensing frequency=1660, batch=512, epochs=5,
lr=0.01

Algorithm # Parameters Accuracy
Anneal 483 0.9999

TPE 447 0.9996
BOHB 528 0.9999

SMAC 273 0.999

NSGA-II 135 0.994

SMiLe 113 0.9916

for a lightly damaged, and 1000 mg for a heavily damaged
bearing. The target of different AutoML algorithms is to
build a machine learning model for motor health prediction
with optimized accuracy and number of parameters. Fur-
thermore we also compare the energy and latency of the op-
timized models. For this purpose, we ran the optimized mod-
els on a Nordic nRF5340 SoC and measured latency and en-
ergy consumption using our testbed.
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Figure 1: System overview - motor testbed and AutoML
based design space exploration

3 Experiments and Results
Experiments. We benchmarked different types of AutoML
algorithms - Anneal, TPE, BOHB, SMAC, NSGA-II, and
SMiLe. We experimented with the algorithms to optimize (i)
model + sensing + hyper- parameters and (ii) model param-
eters only; multi-objective optimization is performed with a
linear combination of different objectives. We then compare
the energy and latency measurements for optimized machine
learning models generated by different algorithms (note that
SMiLe can optimize out-of-the-box energy and latency with
hardware-in-the-loop while other algorithms don’t).

Results. From Table 1 and Table 2, we can see that SMiLe is
able to find smaller models with equivalent accuracies while
outperforming other state-of-the-art AutoML algorithms in
terms of model parameters, latency, and energy. From this,
we conclude that SMiLe is a powerful tool for edge analyt-
ics optimization due to its built-in capabilities to optimize
final latency and energy characteristics of both sensing and
machine learning with the help of hardware-in-the-loop.
Outlook. Most existing AutoML algorithms focus only
on analytics accuracy and cannot yet cover a large generic
search space which includes sensing configurations, latency,
and energy as supported by SMiLe. This is especially the
case for one-shot algorithms, which have very fixed search
space and are not included in our evaluation in this work.
Furthermore, existing algorithms either don’t support multi-
objective optimization or support it in a minimal way. It is
important to make those extensions and continue with more
extensive studies here.
4 References
[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms
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