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Abstract
This demo presents TRAFFICBENCH, a new tool suite for

the experimental exploration of concurrent transmissions in
low-power wireless networks. TRAFFICBENCH integrates
RSSISPY—a software module that enables continuous RSSI
measurements with bit-level time resolution on standard
nRF52840 devices—with a scheduling framework that pro-
vides a specialized, easy-to-use language to implement com-
munication test patterns. The latter offloads the user from
demanding implementation tasks like time-critical interrupt
service routines, network bootstrapping, synchronization, and
efficient data logging. Thus, TRAFFICBENCH greatly sim-
plifies experimentation and allows the user to focus on the
interesting questions.

1 Introduction
In the last decade, many communication protocols for low-

power wireless mesh networks have been proposed that make
use of concurrent transmissions (CT) to improve, e.g., de-
pendability, latency, and robustness to topology dynamics [4].
While the benefits of exploiting CT are clearly visible at the
application level, their foundation—the physical-layer effects
caused by CT—are still not fully understood. A compre-
hensive, precise, and tractable analytical model that enables
reliable end-to-end performance predictions seems not in
reach today. To make progress, the variety of impact factors
(modulation scheme, radio hardware architecture, wireless
channel) necessitates experiments that enable deep inspection
on actual (i.e., commercial off-the-shelf) target devices.

In this demo, we present TRAFFICBENCH,1 a new tool
suite that greatly simplifies such (and other) experiments on
nRF52840 devices running in Bluetooth Low Energy (BLE)
mode by integrating the following components:

1The source code of TRAFFICBENCH is available at https://gitlab.
com/nes- lab/trafficbench .

(1) a communication scheduling framework that enables the
user to formulate test traffic (i.e., timed transmit and re-
ceive operations of all nodes) in an easy-to-use schedule
description language, which offloads all demanding and
error-prone implementation tasks from the user

(2) RSSISPY [3], a new software module that enables deep
inspection by adding high-rate (1 Msps) receive signal
strength indicator (RSSI) sampling to packet reception

(3) optimized post-processing and logging routines to effi-
ciently handle the high data volume emitted by RSSISPY

(4) a skeleton program that performs basic tasks like net-
work bootstrapping (synchronize schedule execution at
all nodes), clock synchronization, and packet logging
fully automatically in the background.

These components, which are integrated into a ready-to-use
device firmware, are complemented by Python scripts that
(5) extract packet records from log files

(6) analyze recorded packets and add derived information
(probable transmitter of each received packet, SNR /
SINR estimations, user-configurable markers, etc.)

(7) enable direct evaluation and visualization with Glue [1],
a GUI program for linked-data exploration.

2 TRAFFICBENCH Highlights
There is not enough space to go through all parts here,2 so

we briefly summarize only two key components: the commu-
nication scheduling framework and the RSSI data compres-
sion stage. RSSISPY is discussed in [3]. While its integration
into TRAFFICBENCH enables an unprecedented level of detail,
it entails the challenge of handling large data sets resulting
from the high sampling rate.
Communication scheduling. A toy example schedule is shown
in Fig. 1. Schedules are formulated as sequential programs.
Currently, the instruction set contains three possible opera-
tions: SLEEP , BRANCH , and TRX (transmit/receive). TRX in-
structions are written as blocks, where the body of each block
defines the corresponding packet’s content.

During the firmware build process, the schedule program is
translated to an internal representation and then stored in each
node. Behind the scenes, the translation step is performed by
the standard GNU assembler, i.e., the schedule from Fig. 1

2All parts can be inspected at our demo.



Figure 1: Exemplary communication schedule.

indeed is an assembly program that emits machine code for
an internal virtual machine (VM). The schedule instructions
represent machine instructions of this VM. They are realized
as macros that hide all arduous details from the user. The
benefit of this concept is twofold: (i) There is no need to write
a specialized parser. (ii) It is possible to use other existing
language features like labels, macros, and constants.

After power-up, a user-defined root node starts executing
the schedule and transmitting packets when requested. Other
nodes enter continuous listen mode until they receive a packet
that includes a checkpoint. The latter contains state infor-
mation (e.g., timestamps, VM program counter) that allows
the receiver to synchronize its clock and its VM and, conse-
quently, to join schedule execution. So, over time all nodes
wake up, and finally all nodes have synchronized clocks and
VMs, i.e., they perform the same operations at the same time.
RSSI data post-processing and compression. We use 128 kB
of nRF52840’s RAM as RSSI data space. It is organized as a
ring of rings, and each inner ring belongs to one TRX operation.
After a packet reception, a fine-tuned post-processing thread
cuts superfluous samples, unrolls the inner ring to a linear
buffer, and defragments the outer ring. This frees unused
space as fast as possible to maximize RAM availability.

Later on, the recorded data is output using a UART connec-
tion. Although we optimize the UART routines to parallelize
peripheral and CPU activity as much as possible, the UART
link is a bottleneck due to its limited baud rate. To mitigate
this problem, we add a data compression module between
the post-processing and logging stages. This module exploits
typical properties of RSSI data streams to implement a very
efficient compressor. Its output is binary compatible with
deflate [2], so standard tools can be used for decompression.

The key ideas behind this module are as follows. Deflate
combines duplicate substring elimination and Huffman cod-
ing [2]. Accordingly, the expensive operations are string
search and code construction. Considering RSSI streams, we

Figure 2: Evaluating recorded data with Glue.

recognize that they are often slowly varying, i.e., except for
ramp-up/down phases they are relatively stable or change with
limited slope (Fig. 2). Hence, if we encode a sample stream
using differences instead of absolute values, the majority of
entries is 0 or ±1. Since this is known a priori, we can con-
struct efficient codes offline and implement the coding stage
without dynamic code construction. The string search is sig-
nificantly accelerated by focusing on strings whose first three
bytes stem from {−1,0,+1}, which is the majority of strings.
Doing so reduces the number of possible beginnings from
224 to 27 and allows bookkeeping on found start sequences,
which greatly improves search speed.
3 Demonstration

To showcase the exploration of CT with TRAFFICBENCH,
we set up a demo with four off-the-shelf nRF52840 DK
boards connected to a laptop via USB. The boards form a
small wireless network. The USB connections are used for
power supply, programming, and logging. Each node runs
our firmware with a simple schedule similar to the one shown
in Fig. 1. The laptop records each node’s UART output and
uses our scripts to analyze and visualize the received packets
together with the RSSI data streams in Glue (Fig. 2). A single
test run takes about one minute, so the interested visitor can
have a look at multiple runs and play around, e.g., by chang-
ing the nodes’ positions or trying different schedules. The
demo also illustrates TRAFFICBENCH’s utility as a general-
purpose traffic generator and hopefully provokes interesting
discussions regarding potential extensions.
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