
Sardino: Ultra-Fast Dynamic Ensemble for Secure Visual Sensing
at Mobile Edge

Qun Song1, Zhenyu Yan2*, Wenjie Luo1, and Rui Tan1

1Nanyang Technological University, Singapore
2Chinese University of Hong Kong, HKSAR, China

Abstract
Adversarial example attack endangers the mobile edge

systems such as vehicles and drones that adopt deep neu-
ral networks for visual sensing. This paper presents Sardino,
an active and dynamic defense approach that renews the in-
ference ensemble at run time to develop security against the
adaptive adversary who tries to exfiltrate the ensemble and
construct the corresponding effective adversarial examples.
By applying consistency check and data fusion on the en-
semble’s predictions, Sardino can detect and thwart adver-
sarial inputs. Compared with the training-based ensemble
renewal, we use HyperNet to achieve one million times ac-
celeration and per-frame ensemble renewal that presents the
highest level of difficulty to the prerequisite exfiltration at-
tacks. We design a run-time planner that maximizes the en-
semble size in favor of security while maintaining the pro-
cessing frame rate. Beyond adversarial examples, Sardino
can also address the issue of out-of-distribution inputs effec-
tively. This paper presents extensive evaluation of Sardino’s
performance in counteracting adversarial examples and ap-
plies it to build a real-time car-borne traffic sign recogni-
tion system. Live on-road tests show the built system’s ef-
fectiveness in maintaining frame rate and detecting out-of-
distribution inputs due to the false positives of a preceding
YOLO-based traffic sign detector.
Categories and Subject Descriptors

I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection
General Terms

Design, Experimentation, Measurement, Performance

* Part of this work was completed when Zhenyu Yan was with Nanyang
Technological University.

Keywords
Adversarial examples, moving target defense, neural net-

works, edge computing

1 Introduction
Deep neural network (DNN)-based visual sensing is an

important perception approach for mobile edge systems such
as vehicles and drones. In Apollo [3], which is an au-
tonomous vehicle driving agent, the tasks of recognizing
road signs, traffic lights, and lane markers are implemented
with DNN-based visual sensing. However, the adversar-
ial example attack introduces much concern. Recent re-
search shows that an external adversary can systematically
craft minute perturbations added to the inference samples
and mislead a DNN to yield absurd results [12]. Readily
deployable adversarial examples like paper stickers pasted
on the road [4] and traffic sign plate [11] are shown effective
against lane detection and traffic sign recognition systems.
Thus, the designs of DNN-based visual sensing for safety-
critical mobile edge systems should incorporate effective de-
fense against adversarial examples.

Various countermeasures have been proposed, e.g., ad-
versarial training [22, 33], input transformation [30], gradi-
ent masking [7], and provable defenses [20, 36]. These ap-
proaches build their security upon the assumption that the ad-
versary is ignorant of the defense mechanisms. Such static
defenses can be breached if the adaptive adversary obtains
the details of the defense mechanisms and designs the next-
generation attacks [7, 30]. Using an ensemble of multiple
distinct DNNs has also been considered as a defense [13].
Specifically, the ensemble uses some rule (e.g., majority
vote) to combine multiple DNNs’ inference results to gen-
erate a final result. Intuitively, it becomes harder for an ad-
versarial example to mislead multiple DNNs than a single
DNN. However, the adaptive adversary who has exfiltrated
the ensemble can subvert the ensemble-based defense with
substantial probabilities (e.g., 52% as shown in §4 of this pa-
per). The static ensemble can be exfiltrated from the mobile
edge device’s memory or by social engineering against the
system designer’s employees.

To strengthen mobile edge’s visual sensing security
against adaptive adversary, we propose using dynamic en-
semble for active defense under the strategy of moving target
defense (MTD) [18]. MTD improves system security and in-
creases the difficulties for effective attacks by dynamically

changing the system configurations at run time. In this pa-
per, the ensemble is renewed frequently at run time and un-
predictable by the adversary. This approach’s effectiveness
stems from an observation that the adversarial examples have
limited transferability to the DNNs different from those used
for attack construction. Its security strength is greatly af-
fected by two aspects. First, larger ensemble sizes and higher
renewal rates enhance security strength. Specifically, it is
harder for the adversary to construct adversarial examples
that can mislead all DNNs of a larger ensemble. Meanwhile,
if the ensemble is renewed more frequently, the adaptive ad-
versary has shorter time for exfiltrating the ensemble. Sec-
ond, higher diversity of an ensemble’s DNNs fosters attack
detection, because these DNNs tend to produce more diverse
classification results for an adversarial example input.

Our earlier work [32] uses dynamic ensembles to coun-
teract adaptive adversarial example attacks. It is based on
a simple approach of retraining DNNs using data stored on
the mobile edge device, which impedes achieving high-rate
ensemble renewal. As reported in [32], it takes 45 minutes
on NVIDIA Jetson AGX Xavier to retrain an ensemble of 20
DNNs for traffic sign classification. As the retraining pro-
cess is very compute-intensive, the ensemble renewal in [32]
is performed when the mobile system is idle (e.g., when the
car is parked). In the cases of fuel cars, it requires using
the car battery to power the lengthy retraining. If multiple
task ensembles are renewed, the retraining risks battery over-
discharge. In addition, the retraining requires a large training
dataset stored on the mobile edge, which is cumbersome.

In contrast to the off-time, infrequent ensemble renewal
achieved in [32], this work aims to achieve run-time and
high-rate ensemble renewal, which gives two advantages.
First, higher renewal rates mean better MTD security. Sec-
ond, in the context of cars and drones, run-time renewal
avoids lengthy battery discharge during parking. However,
the run-time renewal and the execution of large ensembles in
favor of security should be carefully managed to avoid jeop-
ardizing the visual sensing’s real-time performance. In this
paper, we design Sardino1 to achieve the goal. Specifically,
the design of Sardino consists of the following two aspects.

First, we follow the HyperNet concept [28] to design the
DNN generator for fast ensemble renewal. The generator is a
set of multilayer perceptrons (MLPs) that take random num-
bers as input and generate the weights of DNNs. A key ad-
vantage of Sardino is that the ensemble renewal becomes for-
warding the MLPs, which is much faster than DNN training
and does not require storing training data on the mobile. We
show that generating a DNN for the aforementioned traffic
sign classification task on Jetson AGX Xavier only takes 0.1
milliseconds, which is 0.66 and 1.35 million times faster than
the two DNN retraining approaches in [25,32]. Owing to the
accelerated DNN generation, Sardino achieves per-frame en-
semble renewal that renders the highest MTD security.

Second, we design a run-time ensemble size planner, such
that the total delay of renewing and executing the ensemble

1Sardino is the Esperanto word of sardine. When threatened, sardines
form a school that undertakes complicated maneuvers and startling shape
changes. The many moving targets of the school create a sensory overload
of the predator’s visual and electrosensory channels [23].

on a mobile edge device shared by other continuing inference
tasks meets a soft deadline determined by the sensing frame
rate. To this end, the ability to predict the delay is needed but
developing this ability is non-trivial. With extensive profil-
ing experiments, we identify that the latest GPU utilization
and power usage are two factors affecting the delay. With
a decision tree regressor that predicts the delay based on the
affecting factors, we maximize in real time the ensemble size
in favor of security, subject to the deadline. In other words,
Sardino uses the available compute time to increase security.

Adversarial examples can be viewed as a crafted type of
out-of-distribution (OOD) inputs that fall out of the training
data distribution. In practice, naturally occurring OOD in-
puts are common. Since Sardino can address adversarial ex-
amples under a highly adversarial setting, it can also address
the naturally occurring OOD inputs. To demonstrate this, we
implement a real-time car-borne traffic sign recognition sys-
tem based on Sardino. Extensive evaluation including live
on-road tests shows the effectiveness of Sardino in meeting
soft deadlines and detecting OOD inputs due to the preced-
ing YOLO’s [5] false positives in detecting traffic signs.

This paper’s main contributions are as follows:
• We propose Sardino for high-rate ensemble renewal to

defeat the external adversary’s DNN exfiltration as a
prerequisite for adversarial example construction. We
design a HyperNet to implement the high-rate renewal.

• We conduct extensive evaluation to show Sardino’s su-
perior performance in counteracting both adversarial
examples and naturally occurring OOD inputs, com-
pared with the existing retraining approaches [25, 32]
and the HyperGAN approach [28].

• We design an ensemble size planner to meet a speci-
fied soft deadline for ensemble renewal and execution,
which is imperative to real-time visual sensing. The de-
sign is applicable to the execution on either graphics
processing unit (GPU) or central processing unit (CPU).

Paper organization: §2 presents background. §3
overviews Sardino. §4 studies effectiveness of dynamic en-
semble. §5 presents the ensemble size planner. §6 presents
the car-borne traffic sign recognition system. §7 discusses
several related issues. §8 concludes this paper.

2 Background
2.1 Adversarial Examples and OOD Data

Consider a classifier f (·;θ) with weights θ that classifies
an input x as y, i.e., f (x;θ) = y. An adversarial example
x′ = x+ δ, where δ is a perturbation, results in f (x′;θ) 6= y.
The magnitude of δ is often minimized to reduce perceptual
change. Fig. 1a and Fig. 1b illustrate the impacts of adver-
sarial examples on a convolutional neural network (CNN)
trained for traffic sign recognition. In Fig. 1a, the δ is com-
puted by the Carlini and Wagner (C&W) method [10] and
added to a clean speed limit sign, leading to a wrong clas-
sification of “no heavy vehicle.” When the adversary can-
not tamper with each pixel, they may construct adversarial
patches [9]. In Fig. 1b, an adversarial patch [9] is added to a
speed limit sign, leading to a wrong classification of “priority
road.” Such adversarial patches pasted on road can mislead

Outlier:
A pizza.

Traffic sign
classifier

Prediction:
99.1% "roundabout"

Traffic sign
classifier

Traffic sign
classifier

Adversarial
perturbation

Prediction:
"no heavy vehicle"

+

Speed limit
sign

(c) Outlier.(a) Adversarial example.

Adversarial
Patch

Prediction:
"priority road"

(b) Adversarial patch.

Figure 1. Illustration of the adversarial example and OOD input challenges for DNN-based visual sensing.

Tesla Autopilot to direct a car to the opposite lane [4].
Besides adversarial examples, OOD data or outliers can

naturally occur because a training dataset cannot include all
future unseen data [14]. A DNN may have high confidence
about its wrong classification for an OOD input. As illus-
trated in Fig. 1c, when the input is a pizza picture, the afore-
mentioned CNN yields a “roundabout” classification result
with a high confidence score of 99.1%. Tesla Autopilot has
made similar mistakes, e.g., recognize a Burger King sign as
a stop sign [27] and moon as yellow traffic light [17]. Al-
though the CNN in Fig. 1c can be retrained to recognize
pizzas by adding pizza pictures to the training dataset, this
approach cannot cover every possible non-traffic sign object.

This paper aims to improve the resilience of the mobile
edge’s visual sensing against the issues illustrated in Fig. 1.

2.2 Related Work
The existing countermeasures against adversarial exam-

ples are categorized as follows [30]. Adversarial training
[22,33] includes adversarial examples in the training dataset.
The enhanced DNN is secure against the adversarial exam-
ples considered during adversarial training. Transformations
on input such as random resizing/padding, image compres-
sion, and noisification are shown effective against the attack.
However, they can be defeated by attackers who know the
adopted transformation [30]. Gradient masking [7] manip-
ulates the victim DNN’s gradients to render gradient-based
attacks ineffective. However, an adversary aware of the de-
fense can recover the gradients by querying the victim DNN
or use other loss functions to construct attack [7]. Provable
defense [20,36] develops certifiable methods that give lower-
bounded defense effectiveness against a certain class of at-
tacks. The above defenses cannot address adaptive adver-
sary. Sardino addresses such adaptive adversary by updating
the ensemble at a speed faster than the adversary’s exfiltra-
tion for the ensemble.

A method to detect outliers is to train DNNs to make
highly uncertain predictions for outliers [15]. The work
in [31] trains a one-class neural network to detect outliers.
The study in [29] trains a generative model and evaluates
the likelihood of OOD inputs under that model at run time.
Static ensembles generated by HyperNet [28] or other meth-
ods [13] have been used to counteract outliers and adversar-
ial examples. Their focuses are on the trade-off between the
ensemble size and OOD/attack detection performance, un-
der the non-adaptive adversary setting. As shown in §4, the
adversary can construct effective adversarial examples once
they obtain the ensemble. The work [28] does not exploit
the key advantage of HyperNet, i.e., its ability to renew the
ensemble quickly for implementing MTD.

Recent studies aim to improve GPU utilization and pro-

cessing throughput under the multi-tasking setting. The
work [38] schedules multiple DNN tasks in the granularity of
GPU kernels for improved GPU utilization. The work [26]
achieves acceleration by performing operator fusion and I/O
sharing across multiple DNNs. In above studies, the GPU is
accessed by the kernels in a round-robin fashion. Alterna-
tively, multiple kernels can run simultaneously on their own
GPU cores to enable spatial sharing. The work [37] uses
this to improve GPU-accelerated network function virtual-
ization. The above studies [26,37,38] focus on task schedul-
ing to maximize processing throughput and do not enforce
deadlines. Differently, Sardino plans the ensemble size at
run time, aiming at meeting a soft deadline for using the en-
semble to process each frame.
3 Approach Overview
3.1 System Model and Objective

We consider a mobile edge computer equipped with a
GPU. It runs a general-purpose operating system that orches-
trates various sensing tasks. The GPU is shared by the tasks
for executing their DNNs. The tasks run simultaneously, take
inputs from sensors, and yield the inference results. Among
all the tasks, we focus on a resilient vision task that needs
to have resilience against adversarial examples and OOD in-
puts, and meet a soft deadline. We view the composite of the
remaining tasks as the background computation.

We apply dynamic ensemble for the resilient vision task.
The ensemble is dynamic in both the number of DNNs of the
ensemble (i.e., ensemble size) and the weights of each DNN.
• Dynamic ensemble size: We aim to maximize in real time
the ensemble size for every frame in favor of resilience sub-
ject to the soft deadline. But it is challenging to model the
ensemble execution time to enable ensemble size planning.
•Dynamic DNN weights: We also aim to renew the weights
of each DNN every frame for achieving the highest level of
MTD security. The short time of down to milliseconds for
completing the renewal presents a main challenge.

We use traffic sign recognition on an autonomous vehicle
driving agent to illustrate the system model. The agent re-
ceives image frames captured by camera and stores them in
a buffer. Each frame fetched from the buffer is processed
by an always-running traffic sign detector. When the de-
tector identifies k (k ≥ 1) traffic sign objects in the current
frame, a bounding box containing each of the detected traffic
signs is cropped from the frame and passed to the traffic sign
classifier. The classifier is executed on each detected sign
sequentially. The detected traffic sign may contain adver-
sarial perturbations [11]. Moreover, the traffic sign detector
may generate false positives and present outliers to the traf-
fic sign classifier. We view the classifier as resilient vision
task and all other tasks collectively as background computa-

Figure 2. Adversarial learning framework for Sardino.

tion. Suppose the system designer aims to maintain a pro-
cessing throughput of x frames per second (fps). Thus, the
soft deadline for processing each frame is 1

x seconds. If the
image preprocessing and detection take td seconds for the
current frame containing k signs, the soft deadline for clas-
sifying each sign is 1/x−td

k seconds. Although td and k vary
across the frames, they are measurable. Thus, the soft dead-
line for the classifier, i.e., 1/x−td

k , is variable and known for
each frame. The setting for x depends on the vision task’s
design requirement; it can be also updated at run time ac-
cording to the vehicle’s speed.

In §6, we will apply Sardino to implement the resilient
traffic sign recognition. In addition, §7 will discuss how to
apply Sardino to protect both the traffic sign detection and
recognition simultaneously as two resilient vision tasks.

3.2 HyperNet Design & Adversarial Learning
3.2.1 Hypernet preliminaries

HyperNet [28] is a neural network (denoted by h(·;φ)
where φ denotes the weights) that generates the weights θ

of the target neural network denoted by f (·;θ). Fig. 2 shows
the designs of the HyperNet and target network, which is a
n-layer CNN, used in this paper. The input to the HyperNet,
denoted by zH , is a random vector sampled from a normal
distribution. The zH is mapped by an encoder E with weights
φE to n latent codes {ci|i = 1,2, . . . ,n}. Then, the HyperNet
uses n weight generators with weights φG to convert the la-
tent codes to the weights of the target CNN’s n layers. The
HyperNet’s weights are φ = {φE ,φG}.
3.2.2 Adversarial learning framework

In this paper, the goal for training the HyperNet is to
generate target networks that are: (1) accurate on clean in-
put samples; (2) diverse in parameter values; and (3) secure
against adversarial examples. This subsection presents the
designs of the loss functions and the training procedure to
meet the three objectives.

For objective (1), we define the classification loss (de-
noted by J1) by the average cross-entropy loss on the inputs:

J1 = L(f (x;G(E(zH ;φE);φG)),y),

where E(zH ;φE) represents latent code, G(E(zH ;φE);φG)
denotes target network’s weights generated by the HyperNet,
f (x;G(E(zH ;φE);φG)) is the target network’s classification

Camera input

HyperNet
generator

Real-time
requirement
(e.g., 33 ms)

Performance
indicators

Sardino
planner

N

Final
decision

N-model
dynamic ensemble

NoResults
consistent?

Majority
rule

Yes
Human
operator

Adversarial

Clean

Figure 3. Run-time workflow of Sardino.

result for input x, and L(·, ·) denotes cross-entropy. For ob-
jective (2), we design the diversity loss denoted by J2 as:

J2 = exp(−Var(G(E(zH ;φE);φG))),

where Var(·) is the average variance of the generated tar-
get network’s weights given a batch of zH . As Var(·) is not
bounded, we apply the exponential function to avoid diver-
gence. For objective (3), inspired by [8], we employ the ad-
versarial learning technique [16] to train the HyperNet. Ad-
versarial learning addresses a game between a defender that
trains a task model to thwart the attacker’s objective and an
attacker that trains an attack model to mislead the defender’s
task model. In [8], an attack network is designed to be the at-
tacker that tries to breach the privacy protection mechanism
provided by the HyperNet-based defender. In this work, we
design an attack network, as shown in Fig. 2, to be the at-
tacker that tries to generate adversarial examples to mislead
the HyperNet-generated target network. The attack network
fA(·;θA) takes random numbers zA sampled from a normal
distribution and outputs adversarial perturbation δ. The per-
turbation δ is added to the clean input x, forming the adver-
sarial example x′. The goal of training the attack network
is to generate minimized adversarial perturbations that mis-
lead the target network f (·;θ). Thus, the adversarial loss for
training the attack network, denoted by J3, is designed as:

J3 = F(x′)y−max
yi 6=y

F(x′)yi +‖δ‖2,

where F(·)yi denotes the target network’s logit value corre-
sponding to class yi. Logit value is the output of neural net-
work’s last layer before applying the softmax function. ‖ ·‖2
is the Euclidean norm. The attack network and HyperNet are
jointly trained, where the attack network is trained to mini-
mize the loss J3 and the HyperNet is trained to minimize the
following composite loss: EzH ,zA,(x,y)[J1] +EzH [J2]. Fig. 2
illustrates the training procedure of the adversarial learning.

During the adversarial learning, we do not employ spe-
cific methods for crafting adversarial examples (e.g., FGSM,
C&W), because doing so usually leads to security improve-
ment specific to the employed attack construction methods
only [30]. However, in reality, the attacker’s construction
method is unpredictable. Our design uses the attack network
to generate nondeterministic adversarial examples, which
improves Sardino’s security against a variety of adversarial
examples. This will be demonstrated in §4.2.2.
3.3 System Design of Sardino

Fig. 3 illustrates the run-time workflow of Sardino. Given
a new image frame, Sardino uses the HyperNet to generate
a new ensemble of N DNNs to process the input. Before

the generation, Sardino uses an ensemble size planner to
determine the largest possible N based on the mobile edge
device’s performance indicators (i.e., GPU utilization and
power usage) and the soft deadline described in §3.1. After
the execution of the N DNNs on the image frame, Sardino
computes the output consistency, which is the percentage
of the majority of the DNNs’ outputs. If the consistency is
larger than a pre-defined threshold Ts, the input is considered
clean and the majority of the DNNs’ outputs is yielded as
the final result. If the output consistency is smaller than Ts,
the input is considered adversarial or OOD, and will be clas-
sified by a human operator for final decision. In summary,
based on the mobile edge device’s run-time performance in-
dicators, Sardino adapts the ensemble size N to meet the soft
real-time requirement, then generates and executes the dy-
namic ensemble to process the incoming image frame.
3.4 Threat Model

The key objective of dynamic ensemble is to prevent the
external adversary from obtaining the ensemble in use. Our
test shows that, if the adversary obtains the ensemble in use,
the adversarial example constructed by the approach in [21]
can mislead the ensemble-based attack detection described
in §3.3 with probabilities of 52% and 37% when the false
positive rates are 1.1% and 5.2%, respectively. Thus, high-
rate ensemble renewal is key to MTD security. In this paper,
we consider the external adversary who obtains some critical
static information about the dynamic ensemble. We consider
two kinds of static information: (1) training dataset and (2)
the HyperNet itself.
• Adversary with training dataset: The training dataset
can be acquired by feeding massive unlabeled input samples
to the black-box target DNN (e.g., its binary executable) and
obtaining the corresponding labels. Then, the adversary can
train a surrogate DNN with the obtained training dataset and
construct adversarial examples against it.
• Adversary with HyperNet: Since the HyperNet is static
information, it can be obtained by the adversary under the
scenario of advanced persistent threat (APT), e.g., conduct-
ing social engineering against employees of the car factory.
Then, the adversary can generate surrogate ensemble using
the obtained HyperNet and follow the approach in [21] to
craft adversarial examples against it.

In this paper, we show that HyperNet can achieve per-
frame ensemble renewal capability. However, for a specific
application, the system designer can decide the ensemble re-
newal rate that affects the level of MTD security. For ex-
ample, if an external adversary with limited access to the
ensemble is considered, the system may adopt per-night en-
semble renewal to save computing resources. However, if
the system considers an insider adversary that can frequently
access the generated ensemble, per-frame ensemble renewal
may be adopted to achieve the highest level of MTD secu-
rity. Note that the internal adversary who has broken into
the system and can obtain each renewed ensemble regardless
of renewal rate is out of the scope of this paper, since the
internal adversary should directly subvert the whole system
rather than resort to adversarial examples. Besides adversar-
ial examples, we also consider the naturally occurring OOD
data. In this paper, the ensemble renewal rates are the same

0

20

40

60

80

100

95 96 97

HyperNet

Origin-
accuracyC

D
F

(%
)

Accuracy (%)

Figure 4. CDF of 100,000
HyperNet-generated
DNNs’ accuracy on GT-
SRB dataset.

95.4

95.8

96.2

96.6

97

3 20 40 60 80 100

Origin-accuracy

HyperNet

A
cc

ur
ac

y
(%

)

Number of models

Figure 5. Test accuracy vs.
size of HyperNet-generated
ensemble (Dataset: GT-
SRB).

for adversarial and OOD inputs, i.e., per-frame renewal. In
§7, we will discuss how to achieve more efficient ensemble
renewal by differentiating adversarial and OOD inputs.

4 Effectiveness of Dynamic Ensemble
4.1 Profiling Experiment Setup

We conduct experiments on NVIDIA Jetson AGX Xavier
with an octa-core 2.26GHz ARM CPU, a 512-core Volta
GPU, and 16GB RAM. It runs Linux4Tegra. We write code
in Python using PyTorch 1.4.0. Most experiments are based
on German Traffic Sign Recognition Benchmark (GTSRB)
dataset [34] with over 50,000 image samples in 43 classes.
To evaluate outlier detection, we use the MNIST [1] and
notMNIST [2] datasets. MNIST is a 10-class set of grayscale
images of handwritten digits from 0 to 9; notMNIST is a 10-
class set of grayscale images of letters A to J, which is often
used for studying outlier detection [28]. The target CNN
has two convolutional layers with 32 5x5 filters with recti-
fied linear unit activation, max pooling, and a dense layer
with width equal to the class number. HyperNet’s encoder
has two 64-neuron dense layers and a dense layer with 64x3
neurons. The encoder’s input is a 256x1 Gaussian random
vector. The encoder is followed by three weight generators,
each of which has two 64-neuron dense layers and one dense
layer with identical width as the output layer.

4.2 Profiling Experiments and Results
4.2.1 HyperNet ensemble’s classification accuracy

The curve in Fig. 4 is the cumulative distribution function
(CDF) of the test accuracies of 100,000 HyperNet-generated
DNNs. The vertical line labeled origin-accuracy is the
test accuracy of the original DNN trained from the GTSRB
dataset following the design in [34], which is 96.6%. The ac-
curacies of HyperNet-generated DNNs are within 94.6% to
96.9%, showing that HyperNet can generate quality DNNs.
We also investigate the accuracy improvements of fusing
the outputs of multiple HyperNet-generated DNNs using the
majority rule (called HyperNet ensemble). As shown in
Fig. 5, the HyperNet ensemble’s accuracy increases with en-
semble size N. In particular, compared with the accuracy
when no fusion is applied, the accuracy improvement is up
to 1% when N is 3. When N is 100, the improvement is up
to 2.5% and the ensemble’s accuracy is 0.5% higher than the
origin-accuracy.

4.2.2 Performance in thwarting adversarial examples
We evaluate the attack thwarting performance against the

two types of adversary described in §3.4. We consider the

75

80

85

90

95

100

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12Su
cc

es
s

de
fe

ns
e

ra
te

(%
)

False positive rate (%)
(a) FGSM.

N=10
N=100
W/ adv

W/o adv
Retraining

Few-shot
HyperGAN

False positive rate (%)
(b) C&W.

False positive rate (%)
(c) UAP.

False positive rate (%)
(d) Patch.

False positive rate (%)
(e) Surrogate.

Figure 6. SDR vs. FPR in thwarting various types of adversarial examples, i.e., FGSM [12] in (a), C&W [10] in (b),
UAP [24] in (c), Patch [9] in (d), and that against surrogate ensemble [21] in (e). The lines labeled with “W/ adv” and
“W/o adv” are for HyperNet-ensemble with and without adversarial learning. Legends for (b)-(e) are same as (a).

evaluation for five variants of the ensemble-based detec-
tor, namely, retraining-ensemble [32], few-shot retraining-
ensemble [25], HyperGAN-ensemble [28], and HyperNet-
ensemble proposed in this paper with and without adversarial
learning. In retraining-ensemble, each DNN is trained from
scratch with random initialization. Each DNN of the few-
shot retraining-ensemble is obtained by the few-shot domain
adaptation approach in [25] that adapts a base model trained
with a big source-domain data subset to the target domain us-
ing a small data subset containing 7 samples for each class.
HyperGAN-ensemble is generated by HyperGAN [28] that
trains a generator to transform random numbers into target
network’s weights together with the help of a discriminator
to promote the diversity of the generated weights.

We follow the workflow in Fig. 3 with N fixed to imple-
ment the defense. We assume that the detected adversarial
examples are classified by the human operator without er-
rors, since adversarial perturbations are crafted to be visu-
ally imperceptible. We measure the successful defense rate
(SDR), which is the percentage of the adversarial examples
failing to mislead the system. We use the false positive rate
(FPR) to characterize the unnecessary overhead incurred to
the human operator.

� Adversary with training dataset: There are two types
of adversarial examples [30]: input-specific perturbation is
crafted against a specific clean sample, while ideally, univer-
sal perturbation is effective against any clean sample. We
consider two input-specific attacks, which are FGSM [12]
and C&W [10], and two universal attacks, which are univer-
sal adversarial perturbation (UAP) [24] and adversarial patch
(Patch) [9]. From our measurements, the FGSM, C&W, UAP
and Patch attacks can mislead the surrogate DNN on 97.4%,
100%, 45% and 33.1% of clean test samples.

Fig. 6 shows SDR versus FPR in thwarting adversarial ex-
amples. From Figs. 6a-d, HyperNet-ensemble with adversar-
ial learning produces the highest curves, i.e., the best trade-
off between the security and the overhead incurred to hu-
man. An intuitive explanation for the better attack thwarting
performance of the HyperNet-ensemble over the HyperGAN-
ensemble is that HyperGAN only increases the diversity of
the generated weights and does not consider adversarial ex-
amples during training. When FPR is around 2%, SDRs of
the HyperNet-ensemble with adversarial learning are 96.3%,
97.5%, 91.5%, and 88.2% against the four attacks, respec-

tively. For a certain attack, when N increases, the curve be-
comes higher. This indicates that larger N settings are bene-
ficial to the effectiveness of defense.

We also compare our approach with an adversarial train-
ing approach [22] in terms of defense performance. Ad-
versarial training is considered the state-of-the-art defense
[30]. The top-ranked defenses in the latest adversarial de-
fense leaderboards [6] are based on adversarial training. The
adversarial training approach includes adversarial examples
constructed using the project gradient descent method [19]
into the training dataset. It achieves SDRs of 35.7%, 25%,
85%, and 68% against the four attacks. Its poor defense is
due to that adversarial training’s effectiveness is specific to
the considered type of adversarial examples [30]. Differ-
ently, the HyperNet hardened by adversarial learning with
nondeterministic adversarial examples shows better general-
izable security against various types of adversarial examples.

� Adversary with HyperNet: We evaluate the SDRs of
the dynamic ensembles generated by the same HyperNet.
Fig. 6e shows that the SDRs are much higher than those
without MTD in which the adversary obtains the ensemble
in use as mentioned in §3.4 (i.e., 100% - 52% = 48% and
100% - 37% = 63% when the FPR is 1.1% and 5.2%, respec-
tively). The SDR for the HyperNet with adversarial learning
is higher than that without adversarial learning.

The above results suggest that the MTD of preventing the
adversary from obtaining the ensemble in use is effective in
counteracting adversarial example attacks. HyperNet-based
MTD security is further enhanced with adversarial learning
when the adversary constructs adversarial examples against
the surrogates based on static information of the defense.

4.2.3 Outlier detection performance
We evaluate the outlier detection performance of the

ensemble-based detectors and a baseline outlier detector de-
scribed in [14], which uses a single DNN and declares an
outlier if the maximum of the softmax probabilities of all
classes is below a threshold. We perform training using
MNIST. During testing, we use notMNIST to assess the true
positive rate of outlier detection and use MNIST to assess
the false positive rate. Fig. 7 shows the receiver operating
characteristic (ROC) of various outlier detectors. By de-
fault, N = 20. To generate ROCs, we vary the consistency
threshold Ts from 50% to 100% for ensemble-based detec-
tors and vary the softmax probability threshold from 90% to

0

20

40

60

80

100

0 2 4 6 8 10

Tr
ue

po
si

tiv
e

ra
te

(%
)

False positive rate (%)

Baseline
Retraining

Few-shot
HyperGAN

HyperNet
HyperNet (N=100)

Figure 7. Outlier detection
(Dataset: MNIST & notM-
NIST; N = 20).

0

2

4

6

98 99

M
od

el
va

ria
nc

e

Accuracy on clean data (%)

W div loss
W/o div loss

Figure 8. Weights’ vari-
ance of the ensemble DNNs
(Dataset: MNIST).

60
62
64
66
68
70

0 20 40 60 80100
95
96
97
98
99

100

0 20 40 60 80100
95
96
97
98
99

100

0 20 40 60 80100

G
PU

ut
il.

(%
)

Sample index
(a) Layer size = 100.

Sample index
(b) Layer size = 4000.

Sample index
(c) Layer size = 5000.

Figure 9. GPU utilization of background computation.

100% for the baseline detector. The HyperNet-ensemble’s
ROC curves for N = 20 and N = 100 are the highest in the
plot, suggesting that HyperNet-ensemble outperforms other
detectors. The ROC curve for N = 100 is higher than that for
N = 20, suggesting that larger ensemble size is beneficial to
outlier detection.
4.2.4 Diversity of HyperNet-generated DNNs

Fig. 8 compares the HyperNets trained with or without
the diversity loss J2. Each point corresponds to a HyperNet-
ensemble with N = 32. The x-axis is the ensemble’s accu-
racy on the MNIST clean samples. We calculate the vari-
ance for each weight parameter across all DNNs of an en-
semble. The y-axis is the average of all weights’ variances.
We can see that the diversity loss J2 diversifies the generated
DNNs. Besides, the superior outlier detection performance
of HyperNet in Fig. 7 demonstrates that HyperNet-generated
ensemble is more diverse than the ensembles generated by
other baselines. The intuition is that, given an outlier as in-
put, a more diverse ensemble generates a more diverse set of
predictions. Thus, evaluating ensemble diversity via outlier
detection performance is common in the literature [28].
4.3 Summary of Profiling Results

From §4.2, we can draw the following observations. First,
HyperNet generates diverse DNNs that achieve high accu-
racy on clean examples. Second, HyperNet-ensemble out-
performs adversarial training [22], retraining-ensembles [25,
32], and HyperGAN-ensemble [28] in counteracting adap-
tive adversarial example attacks based on certain static in-
formation of the defense. Third, HyperNet-ensemble outper-
forms the OOD detection approaches based on softmax prob-
ability [14], retraining-ensembles [25, 32], and HyperGAN-
ensemble [28]. Lastly, HyperNet-ensemble’s accuracy on
clean examples and security/resilience against adversarial
examples/outliers increase with N.
5 Run-Time Planning of Ensemble Size

From §4, it is desirable to maximize N subject to the soft
deadline of the resilient vision task. The key is the ability to
predict the ensemble generation and execution time for any

0

20

40

60

80

100

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

A
vg

.G
PU

ut
il.

(%
)

G
PU

du
ty

cy
cl

e

Layer size (103)

Avg. GPU util.
GPU duty cycle

(a) Without ensemble

0
5

10
15
20
25
30

0 1 2 3 4 5

Increase

G
PU

po
w

er
(W

)

Layer size (103)

W/o ensemble
W/ ensemble

(b) Without/with ensemble

Figure 10. Background GPU utilization and power usage
vs. the layer size of the background DNN. “W/o ensem-
ble” means only the background computation is running.
“W/ ensemble” means the background computation and
the ensemble generation and execution are running si-
multaneously.

N in the presence of time-varying background computation.
The prediction should have low compute overhead. With this
ability, we can find the maximum N meeting the deadline.

The general problem of scheduling GPU computing tasks
to meet deadlines is challenging due to the non-preemptive
nature of GPU kernels. Recent studies [37, 38] enable con-
current executions of multiple kernels and schedule the ker-
nels to maximize processing throughput. Although solutions
to the general problem are still lacking, our reduced problem
of predicting the ensemble generation and execution time in
the presence of uncoordinated background computation may
have an effective solution if we can identify the major fac-
tors correlated with the ensemble generation/execution time
and then apply supervised learning to characterize the corre-
lations. Following this method, we conduct measurements to
identify the correlated factors in §5.1; we design and evaluate
the ensemble latency predictor in §5.2 and §5.3, respectively.

5.1 Identifying Latency-Correlated Factors
We set up a continuous DNN inference process as the

background computation. As convolution is compute-
intensive, we adjust the number of neurons of the back-
ground DNN’s every convolutional layer (referred to as layer
size) to affect the intensity of the background computation.
Fig. 9 shows the instantaneous GPU utilization traces on
AGX Xavier when the layer size is 100, 4,000, and 5,000.
Note that we use the tegrastats utility to measure the GPU
utilization and power usage. When the layer size is 100, the
GPU utilization fluctuates at 65%. When the layer size is
4,000 and 5,000, the GPU utilization mostly remains at 99%.
To understand the impact of the layer size on GPU utilization
and power usage, we use the average value and duty cycle to
characterize a GPU utilization trace obtained under a certain
layer size. The duty cycle is the percentage of time at which
the GPU utilization is higher than 99%. Fig. 10 shows the
GPU utilization and power when the layer size varies from
10 to 5,000. From Fig. 10(a), GPU utilization’s average and
duty cycle increase smoothly with the layer size. The curve
labeled “Without ensemble” in Fig. 10(b) shows a step in-
crease of the GPU power when the layer size increases to
4,000. It can be caused by the increase of active stream pro-
cessors to compute more neurons. The results in Fig. 10 im-
ply that GPU utilization and power depict different aspects
of remaining GPU computing capability.

6
8

10
12
14
16

0 1 2 3 4 5

G
en

er
at

io
n

tim
e

(m
s)

Background layer size (103)

(a)

6
8

10
12
14
16

0 1 2 3 4 5

Dip

E
xe

cu
tio

n
tim

e
(m

s)

Background layer size (103)

(b)

Figure 11. 100-DNN ensemble generation/execution time
vs. background computation layer size. (Grey line
represents median; dot represents mean; box repre-
sents 20%/80% percentiles; whiskers represent max/min.
Same style is applied for all error bars in this paper.)

0

5

10

15

10 20 30 40 50 60 70 80 90 100

E
ns

em
bl

e
la

te
nc

y
(m

s)

N

layer size = 100
layer size = 4000
layer size = 5000

Figure 12. Ensemble latency vs. ensemble size.

Fig. 11 shows how the background computation affects
the delays for ensemble generation and execution. Both de-
lays are relatively stable when the background layer size is
up to 4,800. Both increase saliently when the background
layer size increases from 4,800 to 5,000, which can be caused
by the contention between background computation and en-
semble generation/execution. In Fig. 11, the ensemble ex-
ecution time has a dip when the background layer size is
4,000. A potential reason is that, at this point, the GPU in-
creases active stream processors as indicated by the sudden
increase of GPU power in Fig. 10(b). From Fig. 11, it takes
about 10ms to generate 100 DNNs using HyperNet. In con-
trast, the retraining approach in [32] and the few-shot retrain-
ing approach in [25] require 45 and 22 minutes to generate
20 DNNs on AGX Xavier. Thus, HyperNet achieves 0.66 to
1.35 million times acceleration in per-DNN generation.

Fig. 12 shows the impact of N on the ensemble execu-
tion time in the presence of background computation. Un-
der a certain background layer size, the ensemble latency
increases linearly with N in general. When the layer size
varies, the line of ensemble latency versus N changes.

The above results show that the background GPU utiliza-
tion and power, and N are three factors correlated with the
ensemble latency. From the near-linear relationships shown
in Fig. 12, simple models may effectively characterize the
impact of these three factors on the ensemble latency.
5.2 Design of Ensemble Latency Predictor

We choose the background GPU utilization and power
usage traces sampled by tegrastats at 100Hz in the past
100ms before the start of the ensemble generation and N as
the three inputs to the machine learning model. The output
is the predicted ensemble latency. We consider three can-
didate machine learning models and the evaluation in §5.3
and §6 will recommend a good choice. (1) Decision tree
(DT) predicts the ensemble latency using a set of if-then-

Y N
N <= 25.0 N <= 75.0

N <= 55.0
Y N

N <= 45.0N <= 15.0 U[3]<=96.5 N <= 95.0

Y N

The whole decision tree (...)

Y N

(...) (...)

Y N

(...) (...)

Y N

(...) (...)

Y N

(...)

Figure 13. Visualization of the decision tree for ensemble
latency prediction on Jetson AGX Xavier. “U[3]” means
the background GPU utilization collected at 30 ms before
the start of the ensemble generation.

else decision rules. The tree structure and the decision rules
associated with the tree nodes are learned from the training
data. Fig. 13 shows a DT and its top three layers learned
from data collected from AGX Xavier. The root is the entry.
Each node compares an element of the input with a threshold
to decide which branch to proceed with. The tree leaves are
the output nodes associated with predicted ensemble latency.
(2) Linear regression (LR) predicts ensemble latency by a
weighted sum of all inputs, where the weights are learned
from the training data. (3) DNN uses two 200-neuron hid-
den layers with ReLU to predict the ensemble latency.

A trained predictor is specific to the mobile edge device’s
hardware and software configurations. The training needs a
profiling process to collect training data. This overhead is ac-
ceptable since the profiling can be automated. Moreover, the
profiling and training are only performed by expert designers
during system design and software updates.

Multi-core CPU shares some similarities with the many-
core GPU in terms of parallelism. Our design is also appli-
cable to the CPU-only devices. Although CPU-only device
is not suitable for real-time visual sensing and thus not our
focus, we will briefly evaluate our design on CPU in §6.

Lastly, we present how a trained predictor is used at run
time. For each image input, Sardino queries the latest GPU
utilization and power usage traces, predicts the ensemble la-
tency for every candidate N setting, and chooses the max-
imum setting meeting the deadline. DT and LR predictors
can be executed by CPU due to their low compute overheads.
5.3 Evaluation of Latency Predictor

We evaluate the prediction models described in §5.2. We
collect 500 data points on AGX Xavier by varying the layer
size of the background process from 100 to 5,000 with a step
size of 100 and the ensemble size N from 10 to 100 with a
step size of 10. We set the background process always run-
ning and start the ensemble generation and execution at ran-
dom time instants. We shuffle and split the collected data into
training and testing data with a ratio of 4:1. The performance
of the machine learning models is evaluated on the test data
using two assessment metrics: (1) accuracy, defined as the
ratio between the predicted and true values of ensemble la-
tency, i.e., Tpred

Ttrue
, and (2) root mean squared error (RMSE).

The accuracies are shown in Fig. 14(a). The box plots la-
beled with “W/ power” are the results of the machine learn-
ing models with N, GPU utilization trace, and GPU power
usage trace as input; those labeled with “W/o power” are the
results of the models designed with N and GPU utilization
trace as input. Table 1 shows the three models’ RMSEs. The

0.6

0.8

1

1.2

1.4

DT LR DNN

A
cc

ur
ac

y

Machine learning models

W/ power
W/o power

(a) Jetson AGX Xavier

0.8
1

1.2
1.4
1.6

DT LR DNN

A
cc

ur
ac

y

Machine learning models

W/ power
W/o power

(b) Jetson Nano

Figure 14. Ensemble latency prediction accuracy of the
three models designed with or without GPU power usage
trace as part of input. Accuracy is defined as the ratio
between predicted value and true value.

Table 1. RMSE (ms) of ensemble latency prediction.
Jetson AGX Xavier Jetson Nano

W/ power W/o power W/ power W/o power
DT 1.59 1.61 2.60e-6 16.70
LR 1.09 1.18 14.60 23.31
DNN 1.41 1.36 15.58 16.19

inclusion of GPU power improves the prediction accuracy
for DT and LR.

Then, we evaluate whether the machine learning approach
works for NVIDIA Jetson Nano, which is a less power-
ful platform with a quad-core Cortex-A57 CPU, a 128-core
Maxwell GPU, and 4GB RAM. The results are shown in
Fig. 14(b) and Table 1. The inclusion of GPU power into in-
put also improves prediction accuracy. DT outperforms the
other two models.

From Fig. 14 and Table 1, the three prediction models
achieve similar accuracy on AGX Xavier; the DT outper-
forms significantly on Nano. In terms of compute overhead,
DT’s time complexity is linear to its depth, which is sub-
linear to the number of decision variables. Compared with
LR and DNN that have linear and super-linear time com-
plexities, DT is more efficient and preferred. On both Jet-
son boards, DT achieves sub-2ms RMSEs. This accuracy is
acceptable for meeting the soft deadlines of tens of millisec-
onds. The prediction errors will cause jitters, which will be
evaluated in §6.

DT’s superior performance is because the hierarchical
structure of DT better captures the priority hierarchy of the
affecting factors in determining the ensemble latency. For
instance, in Fig. 13, the top layers of the tree make decisions
based on N. The conditions for the latest GPU utilization
appear at lower layers. These match with the observations
from Fig. 12 that (1) N determines the range of the ensemble
latency value and (2) the background computation intensity
determines which line to follow and the exact value. In con-
trast, LR is short of capturing such non-linear priority hier-
archy. Although DNN can capture sophisticated patterns, it
needs a rich training dataset. A possible reason for DNN’s
degraded accuracy on Nano than AGX Xavier is that the
more GPU contention on the less powerful Nano increases
the pattern complexity and thus requires more training data.

Note that other factors such as environment temperature
and processor cache hit rate may also generate impact on
the ensemble latency. Including these factors to the machine

"Bump"

Video frame Cropped area

YOLO-based
traffic sign detector

Sardino-based
traffic sign classifier
(resilient vision task)

Figure 15. The pipeline of the traffic sign recognition.

learning model’s input may further improve prediction accu-
racy. We leave this further improvement to future study.

6 Real-Time On-Car Traffic Sign Recognition
6.1 System Implementation

We apply Sardino to build a real-time car-borne traf-
fic sign recognition system. A traffic sign recognition sys-
tem usually consists of the sign detection and classification
phases [39]. The detector identifies and locates traffic signs
in an incoming frame captured by a car-mounted camera.
The detected traffic sign is then interpreted by the classi-
fier. We implement a Belgian traffic sign recognition sys-
tem based on the publicly available KUL Belgium Traffic
Signs Dataset [35], which has two datasets for traffic sign de-
tection (BelgiumTSD) and classification (BelgiumTSC) and
four recorded videos.

Fig. 15 illustrates the processing pipeline of our imple-
mentation. We extend YOLO and YOLO-tiny [5] as the traf-
fic sign detector. YOLO is a DNN-based object detection
system that achieves good accuracy and latency performance
among various systems and YOLO-tiny is a simplified ver-
sion with fewer layers and same class number. We use Bel-
giumTSD to augment the original training set for YOLO and
YOLO-tiny and retrain them to achieve mAP@0.5 of 58.9
and 33.7, respectively. Note that mAP@0.5 is the mean Av-
erage Precision when a prediction is considered positive if
intersection over union (IoU) is no smaller than 0.5. The
mAP@0.5 scores for the original YOLO and YOLO-tiny are
57.9 and 33.1 [5]. The extended YOLO and YOLO-tiny
can detect the Belgian traffic signs as the class “traffic sign”
and use a bounding box to contain each detected sign. The
bounding box area is cropped from the original frame, re-
sized, and passed to the Sardino-based traffic sign classifier.
Other objects detected are not processed. We train Sardino’s
HyperNet using the 62-class BelgiumTSC training set. The
HyperNet-generated DNNs achieve an average accuracy of
96.1% on the BelgiumTSC testing set, which is comparable
to the accuracy of 97.0% reported in [35]. We deploy the
extended YOLO and YOLO-tiny on Jetson AGX Xavier and
Jetson Nano, respectively. On AGX Xavier, YOLO’s pro-
cessing throughputs are 82, 55, and 42 fps when the input
frame sizes are 320x320, 416x416, and 512x512, respec-
tively. On Nano, YOLO-tiny’s processing throughputs are
37, 26, and 22 fps for the three input frame sizes.

6.2 Performance Evaluation
6.2.1 Ensemble latency prediction

The YOLO on the AGX Xavier and YOLO-tiny on Nano
are viewed as the background computation. We set the frame
sizes to be 320x320, 416x416, and 512x512 to obtain dif-
ferent background computation intensities. For each frame
size, we vary N from 10 to 100 with a step size of 10. We re-
peat each setting for 20 times and collect 600 data points for

0.8
1

1.2
1.4
1.6
1.8
2

DT LR DNN

A
cc

ur
ac

y

Machine learning models

(A,B)
(B,B)

(B1,B2)
CPU

(a) AGX Xavier, YOLO

−0.5

0

0.5

1

1.5

DT LR DNN

A
cc

ur
ac

y

Machine learning models

(A,B)
(B,B)

(B1,B2)

(b) Nano, YOLO-tiny

Figure 16. Ensemble latency prediction on car-borne
traffic sign recognition.

Table 2. RMSE (ms) of ensemble latency prediction.
Board Jetson AGX Xavier Jetson Nano

(train,test) (A,B) (B,B) (B1,B2) (A,B) (B,B) (B1,B2)
DT 1.73 1.18 1.25 1.49 11.01 11.64
LR 1.77 0.69 0.88 14.08 8.09 12.75

DNN 2.91 1.96 2.82 4.52 8.47 20.23
*The minimum RMSE among the three models is underlined.

evaluation on each platform. Fig. 16 shows the ensemble la-
tency prediction accuracy and Table 2 shows RMSEs. In par-
ticular, we evaluate the transferability of the trained predic-
tion models across different background computations. La-
bel (A,B) means the model is trained with the customized
background computation described in §5.1 and tested using
the YOLO background computation with all frame size set-
tings; label (B,B) means the model is trained and tested using
the YOLO background computation; label (B1,B2) means
the model is trained using the YOLO background computa-
tion with 320x320 and 512x512 frame sizes and tested with
416x416 frame size. From Table 2, DT and LR achieve sim-
ilar RMSEs. However, on Nano with setting (A,B), LR per-
forms poorly. The results also show that DT exhibits good
transferability across different background computations. In
the rest of this paper, we use DT.

To evaluate whether DT is applicable to CPU-only de-
vices, we run YOLO background computation and ensemble
generation/execution on the CPU of AGX Xavier. The inputs
to DT are N, background CPU utilization, and CPU power
usage. The DT is trained using data traces when the system
operates on 320x320 and 512x512 frame sizes and tested on
416x416 frame size. The prediction accuracy, as shown in
Fig. 16(a) by the box labeled “CPU”, is comparable to those
on GPU. However, YOLO (without Sardino) only achieves a
throughput of 0.05fps on CPU. Thus, CPU-only devices are
ill-suited for real-time visual sensing although the DT is still
applicable.
6.2.2 Real-time performance of Sardino

The total processing time for each frame consists of: (1)
YOLO detection time, which depends on the frame size; (2)
ensemble generation time; and (3) ensemble execution time.
YOLO’s detection time is measured at run time. Then, we
follow the method presented in §3.1 to determine the soft
deadline and pass it to the ensemble size planner. Fig. 17
shows the planned N and per-frame processing time traces,
where the target per-frame processing time is 40ms. We re-
peatedly play a video to introduce disturbances during the
experiments. We can see that Sardino frequently adjusts N.

38

40

42
60

80

100

N
T

o
ta

l
ti

m
e

(m
s)

Frame index

0 100 200 300 400 500

Figure 17. Traces of planned N and per-frame total pro-
cessing time. Frame rate: 25 fps; deadline: 40ms.

0
20
40
60
80

100

20 30 40 50

C
D

F
(%

)

Processing time (ms)

320
416
512

(a) Deadline: 50ms

0
20
40
60
80

100

30 35 40 45 50
Processing time (ms)

(b) Deadline: 40ms

0
20
40
60
80

100

25 30 35 40 45 50
Processing time (ms)

(c) Deadline: 33ms

Figure 18. CDF of per-frame processing time under three
deadline settings (represented by vertical lines) and three
frame size settings of 320×320, 416×416, and 512×512
(different CDFs for different frame sizes).

The per-frame processing time fluctuates at 40ms. The av-
erage per-frame processing time is 40.43ms; the maximum
deviation is about 2ms, consistent with the error level of the
DT predictor.

Fig. 18 shows the CDFs of the per-frame processing
time on AGX Xavier under various settings of deadline and
YOLO frame size. When the specified deadline is 50ms
for processing a 20fps frame stream, from Fig. 18(a), the
deadline can be always met for frame sizes of 320x320 and
416x416, and mostly met for frame size of 512x512. For the
former two cases, the allowed time of 50ms is not fully uti-
lized, because we set an upper bound of 100 for N. Larger
settings for N often lead to memory exhaustion. When the
specified deadline is 40ms, the system with 320x320 and
416x416 frame sizes can still largely meet the deadline.
When the frame size is 512x512, YOLO’s detection time is
very close to the 40ms deadline. The deadline may be ex-
ceeded even if the minimum setting N = 3 is chosen. When
the specified deadline is 33ms, the system with 512x512
frame size completely misses the deadline because the un-
controllable YOLO detection time already exceeds the dead-
line. The system with the other two frame sizes can still
largely meet the deadline. Thus, by properly choosing set-
tings that will not overwhelm the system, Sardino can maxi-
mize N while meeting required frame rate.

6.2.3 Resilience against OOD data
The false positives of the YOLO-based traffic sign detec-

tor are naturally occurring OOD data for traffic sign classi-
fier. Fig. 19 shows six examples of such false positives. We
measure Sardino’s true positive rate in detecting OOD data
using 500 YOLO’s false positives in processing the four test
videos of the KUL dataset. Fig. 20 shows the ROCs of the
Sardino and the baseline detector described in §4.2.3. The
baseline detector is ineffective. This is because YOLO’s in-
ternal detector only yields objects (including false positives)
detected with high confidence. Fig. 20 shows that Sardino

(a) (b)

(c)

(d)

(e)

(f)

Figure 19. Some OOD samples (highlighted by red
frames) caused by YOLO’s false positives in detecting
traffic sign. (a) pattern on a car; (b) mailbox; (c) plant
& mailbox; (d) shop signboard; (e) street light; (f) ban-
ner.

0
20
40
60
80

100

0 2 4 6 8 1012

Tr
ue

po
si

tiv
e

ra
te

(%
)

False positive rate (%)

Baseline
Sardino

Figure 20. Outlier detec-
tion performance.

AGX

Xavier
Power bank

Camera

AGX Xavier

Figure 21. Setup installed
under a car’s front wind-
shield.

advances the resilience of traffic sign classification against
YOLO’s false positives.

We do not measure Sardino’s performance in thwarting
adversarial examples in this application. This is because,
the numeric experiment results in §4.2.2 based on real traffic
sign data and ideal attack settings (e.g., pixel-level pertur-
bation capability) characterize the lower bound of Sardino’s
attack thwarting performance. The results in §4.2.2 have al-
ready shown the superior performance of Sardino. Differ-
ently, the numeric experiments in §4.2.3 on OOD detection
are based on the simplistic handwritten digit recognition task
for illustration only. Thus, in this section, we focus on eval-
uating Sardino’s OOD detection performance for this real-
world application of traffic sign recognition.

6.2.4 Stress tests on live roads
The test videos in the KUL dataset have a limited num-

ber of objects in the camera’s field of view. To evaluate the
performance of Sardino under more challenging settings, we
conduct live tests on the busy roads of Singapore. To stress-
test Sardino’s real-time performance, we let Sardino process
each object detected by YOLO, not limited to traffic sign ob-
jects. As shown in Fig. 21, we install our system under a
car’s front windshield. The AGX Xavier is connected with a
Logitech C525 camera via USB and powered by a portable
battery. We drove the car for multiple runs, each lasting
for about 30 minutes. Each run covers various road types,
including campus, locals, and expressways. We test three
video settings in terms of frame size and rate: ¶ 320x320 at
30fps; · 416x416 at 24fps; ¸ 512x512 at 20fps.

Fig. 22 shows the number of detected objects k, the
planned N, and the per-frame total processing time in about
17 seconds during a run. The number of detected objects
in a frame can be up to 9. Sardino frequently adjusts N to
maintain the per-frame processing time at 33ms. The aver-
age per-frame processing times under the three video settings
are 33.0ms, 40.4ms, and 50.5ms, respectively. Although

0

10

5

0

38

33

28

100

50

0

100 200 300 400 500

T
o
ta

l
ti

m
e

(m
s)

Frame index

k
N

Figure 22. Number of detected objects (k), planned N,
and per-frame total processing time under setting ¶.

the system has jitters, the average processing times are very
close to the setpoints of 33ms, 41.7ms, and 50ms.

7 Discussions
Currently, Sardino uses HyperNet to generate target net-

works with homogeneous architecture. It is interesting for
future research to study how to further improve Sardino’s
performance by generating neural networks with heteroge-
neous model architectures. One possible approach is to em-
ploy multiple HyperNets that generate target networks with
heterogeneous architectures. In addition, the target networks
generated by Sardino have relatively small sizes. To support
the sensing tasks addressed by larger-scale neural networks,
Sardino may first apply model compression techniques, e.g.,
knowledge distillation, to represent the model more effi-
ciently and alleviate the costs of execution on resource-
constrained edge devices. Beyond the HyperNet technique
employed in this paper, Sardino may also apply techniques
such as the Monte Carlo Dropout and Bayesian neural net-
works that sample different neural networks directly.

A possible concern is that the ensemble’s mutability may
impede post-incident faulty analysis in the context of au-
tonomous driving, because storing each renewed ensemble
incurs high storage overhead. In fact, we only need to store
the random seeds fed to HyperNet, which introduces only
5.5MB/hour storage overhead. With the seeds, we can trace
back to the ensembles in fault analysis. Another related con-
cern is that the inference accuracy of the renewed ensem-
bles is not validated. To mitigate this concern, a validation
dataset can be used to test the inference accuracy of each re-
newed ensemble at run time. Only the ensembles passing the
test will be commissioned. On Jetson AGX Xavier, it takes
about 7.2 seconds to complete the validation of a 100-DNN
ensemble using 4,410 samples. Therefore, with this valida-
tion process, Sardino cannot achieve the per-frame ensemble
renewal. However, compared with the off-time retraining-
based approaches [25, 32], the run-time ensemble renewal at
a rate of every 7.2 seconds provides much stronger MTD se-
curity and avoids battery over-discharge as discussed in §1.

In the traffic sign recognition application, the traffic sign
detector can be also vulnerable to adversarial example at-
tacks. Sardino can be easily extended to support multiple
pipelined resilient vision tasks (e.g., traffic sign detector and
classifier). Specifically, for each image frame, we can allo-
cate the remaining processing time of 1/x−td

k calculated using

the approach described in §3.1 to the multiple resilient vision
tasks by following a pre-defined policy (e.g., equal split) and
use the respective ensemble size planner for each resilient
vision task. This paper aims to fully utilize the remaining
computing resources to improve the security of a resilient
task. How to schedule the computing resources to balance
the security of the resilient task and the performance of other
tasks is an interesting problem for future study.

In this paper, we do not discriminate the adversarial ex-
amples and OOD data for the ensemble renewal of Sardino.
This is because the detection of whether an input belongs to
adversarial example or OOD data is still an open question.
Future research can develop detection mechanism to differ-
entiate between adversarial examples and OOD data as the
first step, such that the frequencies of the subsequent ensem-
ble renewal can be adjusted adaptively. For example, the
ensemble may be updated more frequently if the input is de-
tected as an adversarial example and less frequently if the
input is detected as OOD data.
8 Conclusion

This paper presented Sardino, a HyperNet-based ultra-
fast MTD approach for visual sensing at edge. Sardino
generates quality ensembles that provide good classifica-
tion accuracy on clean data and improved resilience against
adversarial examples and naturally occurring OOD inputs.
With the ultra-fast ensemble renewal and ensemble genera-
tion/execution time prediction, Sardino continuously updates
the ensemble size such that each video frame can be pro-
cessed with a new ensemble within a soft deadline, rendering
the highest level of MTD security against adaptive adversar-
ial example attacks. We use Sardino to build a real-time car-
borne traffic sign recognition system and extensively evalu-
ate its performance.
Acknowledgments

The authors wish to thank the anonymous reviewers and
shepherd Dr. Olga Saukh for providing valuable feedback
on this work. This research is supported by the National
Research Foundation, Singapore and National University of
Singapore through its National Satellite of Excellence in
Trustworthy Software Systems (NSOE-TSS) office under the
Trustworthy Computing for Secure Smart Nation Grant (TC-
SSNG) award no. NSOE-TSS2020-01.
9 References

[1] http://yann.lecun.com/exdb/mnist.
[2] http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html.
[3] Apollo. https://github.com/ApolloAuto/apollo.
[4] Security research of tesla autopilot. https://youtu.be/6QSsKy0I9LE.
[5] Yolo: Real-time object detection. https://pjreddie.com/darknet/yolo/.
[6] Adversarial defense, 2022. https://paperswithcode.com/task/adversarial-

defense/latest.
[7] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients give a

false sense of security: Circumventing defenses to adversarial exam-
ples. In ICML, 2018.

[8] Author(s) omitted. PriMask: Cascadable and collusion-resilient data
masking for mobile cloud inference. Unpublished.

[9] T. B. Brown, D. Mane, A. Roy, M. Abadi, and J. Gilmer. Adversarial
patch. arXiv preprint arXiv:1712.09665, 2017.

[10] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. In S&P (Oakland), 2017.

[11] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song. Robust physical-world attacks on
deep learning visual classification. In CVPR, 2018.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. In ICLR, 2015.

[13] W. He, J. Wei, X. Chen, N. Carlini, and D. Song. Adversarial example
defense: Ensembles of weak defenses are not strong. In WOOT, 2017.

[14] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified
and out-of-distribution examples in neural networks. In ICLR, 2017.

[15] D. Hendrycks, M. Mazeika, and T. Dietterich. Deep anomaly detec-
tion with outlier exposure. In ICLR, 2018.

[16] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar.
Adversarial machine learning. In AISec, 2011.

[17] S. Jain. Watch: Tesla autopilot feature mistakes moon for yellow traf-
fic light, 2021. https://www.ndtv.com/offbeat/watch-tesla-autopilot-
feature-mistakes-moon-for-yellow-traffic-light-2495804.

[18] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang. Mov-
ing target defense: creating asymmetric uncertainty for cyber threats,
volume 54. Springer Science and Business Media, 2011.

[19] A. Kurakin, I. Goodfellow, S. Bengio, et al. Adversarial examples in
the physical world. In ICLR Workshops, 2017.

[20] S. Lee, W. Lee, J. Park, and J. Lee. Towards better understand-
ing of training certifiably robust models against adversarial examples.
NeurIPS, 2021.

[21] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable ad-
versarial examples and black-box attacks. In ICLR, 2017.

[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards
deep learning models resistant to adversarial attacks. In ICLR, 2018.

[23] M. Milinski and R. Heller. Influence of a predator on the optimal
foraging behaviour of sticklebacks (gasterosteus aculeatus l.). Nature,
275(5681):642–644, 1978.

[24] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Uni-
versal adversarial perturbations. In CVPR, 2017.

[25] S. Motiian, Q. Jones, S. M. Iranmanesh, and G. Doretto. Few-shot
adversarial domain adaptation. In NeurIPS, 2017.

[26] D. Narayanan, K. Santhanam, A. Phanishayee, and M. Zaharia. Ac-
celerating deep learning workloads through efficient multi-model ex-
ecution. In NeurIPS Workshops, 2018.

[27] G. Rapier. Tesla’s autopilot confused a burger king sign
for a stop sign. the fast-food chain turned it into an ad.,
2020. https://www.businessinsider.com/tesla-autopilot-mistakes-
burger-king-stop-sign-new-ad-2020-6.

[28] N. Ratzlaff and L. Fuxin. Hypergan: A generative model for diverse,
performant neural networks. In ICML, 2019.

[29] J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. Depristo, et al.
Likelihood ratios for out-of-distribution detection. In NeurIPS, 2019.

[30] K. Ren, T. Zheng, Z. Qin, and X. Liu. Adversarial attacks and defenses
in deep learning. Engineering, 6(3):346–360, 2020.

[31] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui,
A. Binder, et al. Deep one-class classification. In ICML, 2018.

[32] Q. Song, Z. Yan, and R. Tan. Moving target defense for embedded
deep visual sensing against adversarial examples. In SenSys, 2019.

[33] G. Sriramanan, S. Addepalli, A. Baburaj, et al. Towards efficient and
effective adversarial training. NeurIPS, 2021.

[34] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The german traffic
sign recognition benchmark. In IJCNN, 2011.

[35] R. Timofte, K. Zimmermann, and L. Van Gool. Multi-view traffic
sign detection, recognition, and 3d localisation. Machine Vision and
Applications, 25(3):633–647, 2014.

[36] E. Wong and Z. Kolter. Provable defenses against adversarial exam-
ples via the convex outer adversarial polytope. In ICML, 2018.

[37] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang. G-net
effective gpu sharing in nfv systems. In NSDI, 2018.

[38] H. Zhou, S. Bateni, and C. Liu. S3dnn: Supervised streaming and
scheduling for gpu-accelerated real-time dnn workloads. In RTAS,
2018.

[39] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu. Traffic-sign
detection and classification in the wild. In CVPR, 2016.

