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Abstract
Edge analytics is emerging as an important enabler for

novel digital services. Appliances in smart homes and build-
ings, programmable logic controllers in automation pro-
cesses or applications involving motors and pumps in pow-
ertrains are only a few amongst many examples that greatly
benefit from analytics performed at the edge. The core prin-
ciple of this new paradigm is to process data where it is
generated. For instance, machine learning (ML) algorithms
are directly running on typically small resource constrained
embedded systems. In comparison to cloud analytics, edge
analytics reduces data transmission burdens, improves data
security and enhances the responsiveness of in-field devices
when actions are needed based on local predictions.

The main challenge however is to fit an accurate process-
ing pipeline, including both sensing and machine learning,
into embedded systems. These systems often have strin-
gent resource constraints, which are in conflict with the re-
quirements of powerful machine learning models. Addition-
ally, manually configuring sensing, tuning models and op-
timizing their embedded implementations is inefficient and
labour intensive. To tackle those challenges, we propose
and implement an automatic end-to-end framework SMiLe
to co-design and optimize both sensing and machine learn-
ing. Our framework systematically examines trade-offs be-
tween sensing and model inference by navigating their joint
design space and incorporating hardware-in-the-loop feed-
back, i.e., latency and energy measurements, using a testbed.
The benefits of our proposed framework are validated with a
real-world industrial use case on motor health monitoring.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Data Analyt-

ics

General Terms
Design, Automation, Optimization

Keywords
Sensing, Machine Learning, AutoML, Design Automa-

tion

1 Introduction
The migration from cloud to edge analytics, where ma-

chine learning algorithms process the data locally on devices
where it is generated, has experienced significantly increas-
ing popularity [20]. Nowadays, there are already many im-
portant use cases in e.g. continuous environment/process
monitoring, predictive maintenance and speech recogni-
tion [1], which perform all actions and computations locally.
This often brings various benefits; (i) Cloud compute and
data storage costs are reduced as processing is done on edge
devices and data does not need to be constantly streamed
to the cloud. (ii) For cases where real-time constraints are
required, edge analytics is typically preferred as no commu-
nication latency to the cloud is incurred. (iii) If security is
a critical concern as customers may not allow data to leave
their premises, edge analytics becomes the only viable ap-
proach.

The benefits associated with edge analytics however also
come with some major challenges. Edge computing plat-
forms, in comparison to cloud computing infrastructures, are
often severely limited in terms of computing and memory
resources. While in the cloud one could easily deploy a big
machine learning model to achieve good accuracy, this might
simply not be feasible for edge devices as their resources
are not sufficient to host large models. Therefore, ML mod-
els for edge devices must be accurate and tiny at the same
time. By tiny, we mean their footprints in energy, latency
and memory must be kept as small as possible. Due to this
reason, this new paradigm of analytics is also referred to as
TinyML [11].

Achieving high accuracy with a small system footprint
is highly non-trivial. On the one hand, high accuracy of-
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Figure 1: Challenges for edge analytics - (i) enormous design
space covering sensing, machine learning and implementa-
tion, (ii) design constraints relating to latency, memory, en-
ergy consumption, and their complex trade-offs

ten implies complex ML models and heavy resource usage.
Although small and accurate ML models could also exist
for many practical problems, they are more difficult to iden-
tify [23]. On the other hand, the design space for edge ana-
lytics is complex and large. Prior works have mainly focused
on optimizing machine learning regarding both models and
their implementations, while neglecting the impact of sens-
ing. In real-world deployments, sensing is an integral part
of the processing pipeline; the amount of sensed data sam-
ples and the sensing frequency not only affects the energy
consumption and latency of the sensing phase but also of
the machine learning inference phase. For example, as we
identified for an industrial bearing fault prediction use case,
higher sensing frequency would actually help to reduce en-
ergy and latency required by machine learning models. To
the best of our knowledge, the trade-offs between sensing
and machine learning and their co-design have not yet been
explored in the literature.

When designing efficient edge analytics solutions with
the above outlined considerations, each of the three impor-
tant steps (sensing, model architecture and implementation)
requires specific decisions to be made. These decisions in
return induce system level trade-offs of accuracy, memory,
energy and latency, as illustrated in Figure 1. Navigating
such a large design space manually while jointly optimizing
multiple and often conflicting constraints (accuracy, mem-
ory, energy and latency) would not be feasible due to high
development costs and difficulty to guarantee final solution
quality.

Contributions. We propose and implement an end-to-end
framework for edge analytics, which performs efficient de-
sign space exploration while generating edge analytics that
jointly optimizes multiple system constraints. The contribu-
tions of this paper are as follows:

1. We design and implement an automatic firmware gen-
eration process based on Apache TVM [9] and Zephyr
RTOS [2], which takes as input sensing and machine
learning configurations and generates analytics executa-
bles in binary formats.

2. We introduce a hardware-in-the-loop (HIL) testbed for
edge analytics to automatically benchmark energy and
latency characteristics of both sensing and machine
learning phases.

3. We propose an optimization engine based on AutoML
with capabilities of parallel searching of edge analytics
configurations and multi-objective optimization of ac-
curacy, memory, latency and energy.

4. We integrate the above building blocks into a unified
framework named SMiLe (automated end-to-end Sens-
ing and Machine Learning co-design). The automatic
end-to-end process optimizes the entire edge analytics
processing pipeline covering both sensing and machine
learning phases, and also explores the trade-offs and op-
timizes all important design considerations using live
hardware-in-the-loop feedback.

5. We demonstrate with a real-world use case SMiLe’s ca-
pability in finding edge analytics with ∼5-10x better en-
ergy/latency characteristics while reducing search time
by ∼90%. We further reveal with SMiLe interesting
trade-offs between sensing and machine learning.

Outline. In Section 2, we discuss related work regarding
AutoML, TinyML and some relevant use cases. We continue
to motivate the work in this paper in Section 3 and present
an overview of our solution in Section 4. Details about op-
timization for sensing and ML co-design are explained in
Section 5. Furthermore, a detailed evaluation of our frame-
work with a real-world use case is presented in Section 6.
We conclude this paper in Section 7.

2 Related Work
Our proposed edge analytics framework takes inspiration

from two major concepts, i.e., AutoML and TinyML. By
combining methods and technologies from both fields, we
build an end-to-end sensing and machine learning co-design
tool. Finally, we apply our approach to a real-world use case
of classifying motor health conditions. We summarize the
related work as follows.
AutoML. The rapid advancement of Deep Learning has led
to numerous remarkable achievements in recent years. Var-
ious algorithms and models, particularly deep neural net-
works, have been successfully applied to solve complex
problems in areas like natural language processing, computer
vision and signal processing. Building these models how-
ever often not only requires extensive machine learning and
subject-matter expertise but also resources for time intensive
tasks like iterative fine-tuning and model optimization. The
automated machine learning (AutoML) paradigm facilitates
these requirements and efforts [14]. AutoML automates typ-
ical machine learning pipelines and its individual steps like
data pre-processing, feature engineering, model architecture
search, training and hyperparameter optimization. One par-
ticular area where AutoML has seen increasing research ef-
forts is the automatic network architecture optimization to
minimize memory requirements or inference latency. This
can for instance be achieved by applying model compres-
sion [15]. Other approaches directly measure or approxi-
mate metrics like latency and integrate the measurements in
the AutoML optimization, e.g., by latency aware loss func-
tions [7, 30], multi-objective optimization techniques [22, 3]
or reinforcement learning [15, 28].
TinyML. The vision of Tiny Machine Learning (TinyML)



is to enable running machine learning models on embedded
systems. These systems are typically limited in available re-
sources like computing power, memory or energy [5] and,
thus, pose additional challenges. TinyML therefore facili-
tates to move model inference from cloud to edge platforms
and infrastructures like in typical IoT applications [10]. In
order to achieve this computing shift, TinyML focuses on
providing frameworks and methods to enable the implemen-
tation of machine learning models under various constraints
of embedded systems. On one hand, specific interpreters and
compilers for microcontrollers are required, like Tensorflow
Lite Micro [11] or TVM [9]. On the other hand, neural net-
works need to be optimized in terms of their memory foot-
print, energy consumption and computational complexity to
be fit for embedded systems. For instance, pruning [33] and
quantization [13] are popular methods to simplify networks
under different resource requirements.

AutoML + TinyML. Finally, due to the complex nature of
optimizing machine learning models that can be run on em-
bedded systems, there is strong research focus to combine
concepts from both AutoML and TinyML [6]. Different
works provide automated network architecture search meth-
ods, which not only optimize model accuracy but also differ-
ent metrics imposed by the target hardware, such as, mem-
ory [12, 29, 19, 18], latency [4, 19, 18] and energy consump-
tion [19] in a fully automated process.

Our work proposes an end-to-end sensing and machine
learning framework that uses an AutoML approach to im-
plement and optimize models for embedded systems. In con-
trast to the existing work, our framework makes the follow-
ing novel contributions.

1. Sensing: An optimal sensing set-up is an essential part
of edge systems. Thus, our approach not only optimizes
model parameters but also considers sensing, i.e., the
sampling frequency, as optimization target.

2. Hardware-in-the-loop (HIL): Different existing works
incorporate hardware-dependent metrics like latency or
energy consumption into the AutoML feedback loop.
However, these metrics are often not directly measured
on the target hardware but rather approximated, e.g.,
by look-up tables for different model operations [4, 7,
18, 30] or hardware simulations [28]. Our approach di-
rectly measures all optimization objectives, i.e., energy
consumption, inference latency, memory requirements
and model accuracy, using our testbed.

Motor Fault Prediction. Applying deep learning has be-
come a popular approach to solve complex problems in
the domain of smart manufacturing and especially machine
health monitoring [27, 35]. Different works show how Con-
volutional Neural Networks (CNN) can be used on acceler-
ation [34, 8] or current [16, 24] signals to accurately predict
different faults of a motor. We use SMiLe to develop a model
that predicts motor-bearing faults based on acceleration data.
Using our framework we are able to not only optimize pre-
diction accuracy like done in existing work but also target
hardware dependent metrics.

+

(a) Controlled bearing damages
by adding measured quantities of
hardened metallic dust into the
front motor bearing

(b) Accelerometer mounted on the
side of the motor and interfaced to
a Nordic nRF5340 development
board

Figure 2: Motor bearing fault prediction setup

3 Motivation for SMiLe
In this section we demonstrate and motivate the need for

automated sensing and machine learning co-design using a
real-world use-case, i.e., bearing fault analysis of motors.
For this purpose, we built a motor testbed featuring three
ABB M3AA asynchronous 3-phase motors. The bearings
of the motors were damaged to different degrees by adding
metallic dust into the bearing cases, i.e., 0 mg for a healthy,
250 mg for a lightly damaged and 1000 mg for a heavily
damaged bearing. Similar to related works [34, 8] we use
a 3-axis accelerometer attached to the motor terminal block,
see Figure 2. Our goal is to build a machine learning model
using the acceleration data to predict the degree of damage in
a motor by classifying it into 1 of the 3 metallic dust weight
categories mentioned above. Furthermore, we do not only
intend to optimize our model in terms of prediction accu-
racy but also in terms of energy consumption and inference
latency when we implement it on an embedded system inte-
grated into the motor. For this purpose, we ran the models
on a Nordic nRF5340 SoC and measured latency and energy
consumption using our testbed, see Sec. 4.4. For generating
ML models to classify between bearings of different dam-
age levels, we collected 40 minutes of data for each of the
aforementioned bearing with our testbed, and trained classi-
fication models with PyTorch on a GPU server with GeForce
RTX 2080 Ti. Note that for each specific sensing configura-
tion, a new dataset is collected.

To highlight the impact of sensing and machine learning
co-design and its automation, we compare three different set-
tings. (i) Baseline: We manually setup and fix the sensing
configuration, i.e., sampling frequency and number of sam-
ples per window; a corresponding model is then manually
constructed and trained on data collected with this particu-
lar sensing configuration. (ii) Manual Sensing and ML Co-
design: We manually fine-tune the ML model at a fixed sens-
ing frequency and a variable sensing window size to maxi-
mize accuracy and minimize number of model parameters.
The resulting ML model is then run on the testbed using dif-
ferent sensing frequencies to minimize energy requirements
and latency. (iii) SMiLe – Automated Sensing and ML Co-
Design: Both sensing parameters and the ML design space
and their trade-offs are automatically explored and the op-
timized edge analytics solution is generated with the use of
our SMiLe framework.

In detail, for our baseline, similar to other studies [35, 24,



Table 1: Comparison between baseline (no optimization), manual sensing and ML co-design and SMiLe (fully automated
approach) for an industrial bearing fault prediction use case

Optimizations
Search

time
(min)

Model # Parameters
Sensing

Frequency
(Hz)

Sensing
window Accuracy

Sensing
Energy

(mJ)

Inference
Energy

(mJ)

Sensing
Duration

(ms)

Inference
Duration

(ms)
Baseline 2400 CNN1D 25601 416 500 1 11.787 11.996 1189 647

Manual sensing
and ML co-design 5600 CNN1D 817 1660 150 0.998 1.41 0.165 80 9

SMiLe 480 CNN1D 65 1660 50 0.990 0.2978 0.0165 29.6 1.213

16], we use a CNN with 2 convolution layers with (128,64)
neurons and a kernel size of 3, while the sensing frequency
is pre-selected at 416 Hz. For manual sensing and ML co-
design, we fine-tuned the baseline model to maximize the ac-
curacy and minimize the number of parameters at a constant
sensing frequency of 416 Hz and varying window size in
{5,10,25,50,100}. We then exhaustively searched for sens-
ing frequencies in {416,833,1660} Hz to minimize the en-
ergy requirements and latency by using the same fine-tuned
model. By performing manual sensing and ML co-design,
we developed a final model with 2 convolution layers with
(15,10) kernel sizes, and (8,8) number of channels. Lastly,
for SMiLe, our automated sensing and ML co-design ap-
proach, we increased the search space in comparison to the
manual approach (see Table 3) and our framework automati-
cally navigates through this design space and found an opti-
mized edge analytics pipeline model with 4 convolution lay-
ers with (11,7,7,7) kernel sizes and (2,2,2,2) number of
channels.

We present the comparison of the above outlined ap-
proaches in Table 1. By comparing the baseline and the man-
ual sensing and ML co-design, the benefits of co-designing
both sensing and ML are shown: By increasing the sens-
ing frequency to 1.66 kHz, the model size (number of pa-
rameters) is reduced by 96.8%, the window size (number of
samples) required for each prediction is reduced by 70%, the
sensing energy is reduced by 88% and the inference energy
is reduced by 98.6%. This only incurs a drop of validation
accuracy by 0.2%. By automating the co-design process with
SMiLe, we can further improve the sensing and ML pipeline
with a reduction of the model size by 92.04%, window size
by 66.67%, sensing energy by 90% and inference energy by
63%. In comparison to the manual approach, SMiLe can find
better solutions with an automated and intelligent search ap-
proach within a larger design space.

Table 1 also presents the development time required for
different approaches. For manual exploration, we approx-
imated the training and edge analytics generation time for
each system configuration as 15 min based on trials for
this use case; the final search time can be calculated as
number of configurations tried multiplied by the time re-
quired for each configuration. For developing the base-
line model, we explored 2 configurations of each model
in {LSTM,CNN1D,CNN2D,MLP}, which are adopted by
state-of-the-art solutions [35, 24, 16, 17, 32]; additionally,
we choose a batch size from {256,512,1024}, epochs from
{5,10,15} and the learning rate from {0.01,0.001}. Thus,

the final search time is in total ∼ 2400 min (2×4×3×3×
2× 15). Similarly, for manual sensing and ML co-design,
we explored 25 configurations of the CNN1D model, with a
window size in {5,10,25,50,100} and the sensing frequency
in {416,833,1660} Hz, which resulted in a final search time
of ∼ 5600min (25×5×3×15). For SMiLe, we specify a to-
tal time budget of 480 min for automatic design space explo-
ration. Finally, our framework is able to find solutions with
better sensing and inference energy/latency while reducing
the search time by 91.5%.

Our results above highlight that co-designing sensing and
ML and automating this process with SMiLe enables to find
optimized edge analytics solutions, which improve various
constraints, e.g. energy, latency and model size. Further-
more, SMiLe automates the design process and delivers bet-
ter results with significantly less development time. We be-
lieve the benefits by SMiLe are essential for deploying edge
analytics on embedded systems, where both computing re-
sources and development time are severely constrained.
4 Sensing and ML Co-Design with SMiLe

In this section we present an overview of our automatic
end-to-end framework for edge analytics - SMiLe and ex-
plain its key features in detail.
4.1 Overview of SMiLe

A high-level overview of our framework is shown in Fig-
ure 3 and consists of three major building blocks: (i) a fron-
tend (Sec. 4.2), (ii) a backend (Sec. 4.3) and (iii) a testbed
(Sec. 4.4). Assuming a given edge analytics problem at hand,
we first need to collect a dataset that is used as input to the
frontend. Additionally, a configuration file specifies various
system and experiment options, e.g., regarding sensing, ma-
chine learning and the AutoML search routine. The frontend
then constructs multiple machine learning pipelines based on
the test configurations, trains the associated models and con-
verts them to the ONNX format (Open Neural Network Ex-
change).

The models generated by the frontend are then transferred
to the backend, which compiles them for a target system us-
ing Apache TVM [9]. The generated model code is then in-
tegrated with a corresponding sensing application, which is
automatically generated with the help of the Zephyr kernel
configuration system (Kconfig). Finally, the backend com-
piles multiple Zephyr applications for different sensing and
machine learning configurations into corresponding executa-
bles.

The automatically generated edge analytics executables
are pushed to our testbed via a REST API. During an exper-



Training Data Sets

AutoML
Engine

HDF5

Machine Learning 
Compiler

TinyML
Models

Zephyr
Application

Application-specific 
Configuration

Frontend
Edge Analytics Exploration

Testbed

Backend  
Edge Analytics Generation

Inference 
Energy & 
Latency

HEX
Final Optimized 
TinyML Model

Testbed Evaluation

Application 
Binaries

HEX

ML
Physical

Processes

Figure 3: Overview of SMiLe: automatic end-to-end sensing and ML co-design

iment run, key characteristics like energy and latency during
both sensing and inference phases are recorded and fed back
to the frontend. Based on this feedback, the frontend contin-
ues to generate improved pipelines until either a given time
budget is exhausted or an optimal solution is found.

In the following, we illustrate and present more details
about the key building blocks for our framework SMiLe.

4.2 SMiLe Frontend
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Figure 4: Overview of the SMiLe machine learning frontend

The main purpose of the frontend is to orchestrate the au-
tomated sensing and machine learning co-design, which is
done by an extended AutoML engine based on flaml [26]. In
the following section we describe the main components of
the frontend as illustrated in Figure 4. We walk through how
we utilize a training dataset and a configuration file to find
an optimized sensing and machine learning pipeline.
4.2.1 Initialization

A SMiLe experiment can be set up by defining specific
settings in the configuration file, according to which the sens-
ing and ML pipeline is searched for an optimized solution.
We divide the different settings into three categories based
on their purposes. (i) Sensing: The most important sens-
ing related settings are the choice of modalities, target sam-
pling frequencies of the sensors if applicable and number of
samples to collect for each prediction (ML inference). (ii)
Machine Learning: These settings are a major part of the

search space for the AutoML engine. In particular, we de-
sign pre-defined model templates allowing their own choices
of parameters to tune, e.g., neural network layer types, num-
ber of layers, channels and kernel sizes for convolutions,
etc. We support both conventional models like decision trees
and logistic regressions and neural networks like e.g., mul-
tilayer perceptron (MLP), long short-term memory (LSTM)
and convolutional neural networks (CNN). The framework
is then able to not only select the best ML model type but
also optimize the specific model architecture. Additionally,
ML training configurations such as batch-size, learning rate
and training epochs are supported by SMiLe as well. (iii)
AutoML: Finally, the SMiLe frontend includes different Au-
toML search routine related settings, such as the optimiza-
tion target, search methods and total time budget for search-
ing.

4.2.2 Pre-Processing
Before training a model, the SMiLe frontend can selec-

tively apply different pre-processing procedures (or none of
them) to the input data. For example, the data can be scaled,
e.g., by z-score normalization to improve training conver-
gence. Time-series related processing can be also applied
with a sliding window. Conventional signal processing is
also supported at this phase, e.g., Fourier transformation or
power spectral density analysis.

4.2.3 Training
During the training phase, the SMiLe frontend is con-

structing pipelines consisting of a sampling phase, a pre-
processing phase and a machine learning model with settings
sampled from the search space defined in the configuration
file. To train the pipeline we first split the available data into
training, validation and test datasets according to the defined
split ratio in the configuration file. The core ML training pro-
cess is carried out by Scikit-learn or PyTorch depending on
the model type initialized.

4.2.4 Evaluation
In order to evaluate a trained model we collect four met-

rics: (i) The model accuracy is calculated using the valida-
tion dataset after training has been completed. (ii) The size
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of a model is characterized by the number of model param-
eters and is directly linked to the memory requirements on
a target platform. (iii) Using our testbed we measure the en-
ergy consumption of a solution during its sensing and model
inference phase. (iv) Similar to the energy consumption, the
testbed is used to measure latency of sensing and model in-
ference phases. These metrics are used by the AutoML rou-
tine to find an optimized pipeline iteratively.
4.2.5 Frontend Output

After the frontend has successfully found a pipeline it will
generate (i) the trained model in ONNX and other formats
(e.g., PyTorch .pth) and (ii) the .yaml configuration file in-
cluding specific settings that led to this solution. These out-
puts are passed to the SMiLe backend, which we will de-
scribe in the next section.
4.3 SMiLe Backend

We continue to present the SMiLe backend, which takes
the high level model description from our frontend, compiles
it into C code and integrates it with a sensing application to
form a complete edge analytics pipeline, as shown in Fig-
ure 5.
4.3.1 Model Verification

Before compiling ML models to edge analytics binaries,
SMiLe backend allows to quickly visualize and validate mod-
els on an easy-to-deploy platform like a CPU or GPU. To this
end, we make use of the ONNX Runtime; in short, it parses
model information and data, builds an in-memory computa-
tion graph and then maps this graph to the underlying hard-
ware (CPU or GPU) to perform model inference. To verify
the correctness of an exported ONNX model, our backend
takes both ML models (PyTorch and ONNX) and their cor-
responding test data; the computed outputs on the test data
by the ONNX runtime are checked against ground truths to
validate models before we convert them to embedded imple-
mentations. Note during the automatic design space explo-
ration of SMiLe, model verification is optional and we man-
ually validate the best found models.
4.3.2 Model Compilation and Executable Generation

Machine learning compilers are emerging as a standard
software infrastructure to convert high level machine learn-
ing models into low level implementations for different pro-
cessor architectures, e.g., X86, CUDA, RISC-V and ARM.
We chose Apache TVM as our ML compiler as it has dedi-
cated support for microcontrollers in comparison to e.g., In-
tel PlainML, Google XLA and Facebook Glow; such support
is critical for many edge computing platforms.

With the help of TVM, our backend first builds up a graph
representation of the ML model and then performs graph

level optimization like common sub-expression elimination,
operator fusion, dead code elimination, etc. Next, operator
level optimization and code generation is performed. This is
done by lowering the tensor expressions of individual oper-
ators by taking into account the hardware characteristics to
form a feasible schedule. The outputs are low level tensor
intermediate representations (TIR), which then are lowered
to standard compiler immediate representations (IRs, e.g.,
LLVM IR); finally by connecting with an existing compiler
like LLVM (for lowered LLVM IR) final code generation is
performed.

To target microcontrollers, we adopt specifically Mi-
croTVM and its ahead-of-time (AoT) compilation mode to
generate a minimal machine learning runtime for a given
machine learning model. The generated embedded runtime
contains all necessary C code needed to perform inference,
e.g., parameters, model operators, graph level computation,
and memory management, etc.
4.3.3 Sensing Integration

The final executable also contains the sensing task/phase,
which is automatically modified by the SMiLe backend based
on system configurations (e.g., frequency and number of
sensed samples) and merged with the machine learning run-
time generated by TVM as well as Zephyr RTOS to form
the final firmware for the edge analytics pipeline. We lever-
age kernel configuration as provided by Zephyr to automate
sensing configuration and its integration with ML. While we
use Zephyr for our proof-of-concept, our approach generates
plain C code and is therefore agnostic of the specific operat-
ing system used on the embedded device.
4.4 Testbed Infrastructure

We employ an automated testbed infrastructure to ob-
tain measurements of energy and latency when executing
the resulting sensing and ML pipeline on the embedded de-
vice. The architecture of our testbed is depicted in Figure 6
and consists of three parts: (1) the infrastructure part con-
sists of a software-based testbed controller and a hardware-
based testbed observer, (2) the embedded device, and (3)
the application-specific instrumentation and control (e.g., the
control of an AC asynchronous motor using a variable speed
drive).

Infrastructure

Embedded Device

Application (Motor Health Monitoring)
ABB ACS355 Variable 
Speed Motor Controller

3-Phase
AC Supply

ABB M3AA-100LC-4
2.2kW, 400V, 1450rpm

Nordic nRF5340-DK

Testbed Observer

Acceleration Sensor

Testbed Controller

+

REST API

Figure 6: Architecture of a motor testbed used to evaluate
SMiLe for the purpose of motor bearing health analysis



4.4.1 Testbed Observer and Controller
The testbed observer controls the execution of a test on

the embedded device. It is a custom hardware and software
platform based on the Raspberry Pi4 single-board computer
running Linux, as shown in Figure 7. The embedded device
under test is supplied with power through the Nordic PPK2
power profiler, which is at the same time also measuring the
current drain of the embedded device at a sampling rate of
10 kSamples/sec. Furthermore, the PPK2 also monitors sev-
eral GPIO signals of the embedded device, which indicate
whether the embedded device is in idle, sensing or inference
state. The serial output of the embedded device under test is
also logged to record the results of the inference phase. At
the beginning of each test, the firmware image is written to
the flash memory of the nRF5340 microcontroller using the
NXP MCU-Link Pro debug probe.

Figure 7: Testbed observer based on a Raspberry Pi4 inter-
faced to commercial power profiler, JTAG programmer and
a Nordic nRF5340 development kit

The testbed controller is a collection of software services
running on a server machine connected to the same IP net-
work as the observers. The controller is responsible to sched-
ule the execution of a test on the observers. Furthermore,
measurement data collected by the observers are stored in a
time-series database at the controller. A REST-based API is
used to submit jobs to the testbed controller as well as for
fetching of measurement results (latency, engery consump-
tion).
4.4.2 Embedded Device: Nordic nRF5340-DK

We employ the Nordic nRF5340 development kit
(nRF5340-DK) as our target platform for sensing and infer-
ence. It is based on the nRF5340 dual-core microcontroller,
which combines an application and network processor into
a single package. For our use case, we make use of the ap-
plication core only, while the network core remains disabled
during our tests. We have built a custom sensor board, which
can be attached to the outside frame of the motor to measure
vibration. The sensor board features the ST ISM330DLC
3-axis digital accelerometer and gyroscope, which is con-
nected using the serial peripheral interface (SPI) bus to the
microcontroller. Note that the nRF5340-DK is operated in
the nRF only mode, which keeps the nRF5340 SoC discon-
nected from the on-board debugger and interface circuitry, in
order to provide accurate current measurements of the SoC

only. We use three dedicated GPIO output pins to indicate
the current operating mode (sensing, inference or idle).

4.4.3 Application (Motor Health Monitoring)
The third component of our testbed architecture is spe-

cific to the application scenario. In our case, we use a three-
phase asynchronous industrial motor (ABB M3AA-100LC-
4) controlled by a variable speed drive (ABB ACS355). The
controller of the drive is interfaced by Modbus/TCP to the
testbed observer, which allows us to start and stop the motor,
as well as control its direction and speed from the testbed
observer during a test.

5 Edge Analytics Optimization with SMiLe
We dive deeper in this section into SMiLe to show how

optimization of edge analytics is performed. To this end, we
first give a brief overview of SMiLe and then present details
of the search routine used in SMiLe.

5.1 Optimization Overview
With the integration of SMiLe frontend, backend and our

testbed, we can generate for each input dataset and system
configuration a corresponding sensing and ML pipeline. To
search for optimized edge analytics co-optimizing accuracy,
energy, latency and memory, we use a search routine (Au-
toML engine in our case) to drive the entire end-to-end pro-
cess, see Figure 8a. This works as follows:

1. The system initiates and configures the search space
from YAML specifications (and dedicated ML tem-
plates if specified).

2. We sample one system configuration and try the config-
uration through our entire frontend and backend. Sens-
ing configuration includes modalities, number of sam-
ples and frequency while ML configuration includes
preprocessing options, feature selection, signal process-
ing, model type and corresponding hyperparameters.

3. We initialize a machine learning model from the sam-
ple space. After this the untrained model is directly fed
into our backend and testbed to get measurements like
latency and energy. This is because such metrics are ir-
relevant to training, which only affects the accuracy of
the model.

4. While our backend and testbed are experimenting with
the sampled model, our frontend trains the model in par-
allel to find suitable model parameters. The final model
accuracy and parameters are recorded.

5. Our search routine combines results from both frontend
and backend (e.g. accuracy, number of model parame-
ters, latency and energy) into a global metric to jointly
consider all those concerns. After this, if desired solu-
tion quality is achieved, the process is terminated; oth-
erwise, we select the next system configuration which
would improve the overall solution and go to step 3.

Note that the workflow we presented above is for SMiLe’s
design space exploration phase, during which ML training
and edge analytics generation (followed by testbed bench-
marking) run in parallel to improve efficiency. For final de-
ployment, edge analytics will be generated for trained and
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Figure 8: Optimization of SMiLe

optimized ML pipelines, as indicated by the bottom execu-
tion path in Figure 8a.

To further speedup the end-to-end process, we launch
multiple parallel learners (Figure 8b), each of which is per-
forming operations as shown in Figure 8a. Those learners
are independent in searching for good system configurations
(sensing and ML) and contribute together to find good qual-
ity solutions. To coordinate learning between different learn-
ers, we use a global coordinator, which is responsible for
monitoring the learning performance of individual learners.
It will prioritize better performing learners to be run on the
limited hardware resources and stop learners with poor per-
formance in order to launch new ones.

5.2 Search Routines in SMiLe
We proceed to present more details about search routines

used in SMiLe and how we perform multi-objective opti-
mization balancing and co-optimizing different design goals,
e.g., accuracy, model size, energy and latency.
5.2.1 AutoML

We adopt an AutoML engine to automatically search and
optimize the entire design process covering both sensing
and machine learning. Conventionally, AutoML has been
adopted to create machine learning pipelines alone, e.g. pre-
processing, feature engineering, model selection and hyper-
parameter optimization. In this paper, we extend AutoML in
two different manners. Firstly, we include searching of sens-
ing configurations into the AutoML engine, such that sens-
ing is optimized jointly with machine learning. Secondly, we
incorporate feedback from our IoT testbed, i.e., latency and
energy for both sensing and ML, into the AutoML process.
This allows the AutoML engine to iteratively find improved
edge analytics configurations.

Optimization in SMiLe is built based on flaml - a library
for automated machine learning & tuning developed by Mi-

crosoft [25]. SMiLe requires an optimization target while
searching for the best configurations. The optimization tar-
get is to maximize accuracy in the conventional sense; we
extend it to also include considerations of model size, dura-
tion/energy for both inference and sensing phases, etc. It
then searches across the entire design space (all possible
system configurations) to automatically optimize the spec-
ified target. During this process, SMiLe is able to leverage
the advantages of both local search routines like CFO [31]
(SMiLe workers) to fine tune a proposed system configura-
tion and a global search routine with Bayesian optimization
(SMiLe coordinator) to orchestrate local search routines (e.g.
starting configurations, prioritize/stop local search routines).
To speedup searching, SMiLe adopts a distributed execution
framework Ray [21] and parallelizes global and local search
routines. In detail, optimization in SMiLe works as follows:

1. At the start, SMiLe initializes one global search rou-
tine and the first local SMiLe worker with configura-
tions based on suggested low cost ones by the user.

2. SMiLe then uses a selector to find the best search routine
to run among available ones based on a priority metric.
This metric measures the projected performance (im-
provement on multi-objective loss) of a search routine
in a fixed amount of time based on its past trajectory.

3. SMiLe continues to execute the selected search routine,
which will propose a new system configuration, train
the edge analytics and evaluate it on our IoT testbed.
Time required and performance achieved by this search
routine are recorded. If the system configuration is pro-
posed by the global search routine, then SMiLe checks
if the performance is better than that of at least half of
the existing ones; in case this is true and there are hard-
ware resources available, SMiLe initializes a new SMiLe
worker with the latest configuration proposed by global
search routine.

4. Subsequently, SMiLe does bookkeeping and removes
converged routines and those with similar performance
and configurations to existing ones.

5. SMiLe updates the global search routine’s model based
on the configurations tried and performance achieved.

6. Steps 2-5 are repeated until a time budget is exhausted.

5.2.2 Multi-Objective
SMiLe requires a multi-objective target for optimization

in order to jointly optimize accuracy, energy, latency and
size of the generated edge analytics. This target is also
used for prioritizing different search routines as mentioned
in Sec. 5.2.1. To this end, we extended the AutoML en-
gine used in SMiLe to perform multi-objective optimiza-
tion by using a linear combination of different design con-
siderations, each of which is multiplied with its specific
weight. In this setting, one metric with larger value after
scaling/multiplication has more impact on the outcome of the
linear function; as a result, such a metric will be “favored”
more during optimization.

In detail, assume that we have a list of metrics M to op-
timize. To derive the weight wm of one metric m ∈ M, we



Table 2: Metric weights for bearing fault prediction

Metric Range Normalizing
Factor

Priority
Factor Weight

Validation
Accuracy [0, 1] 1 106 106

#Parameters [30, 24109] 10−5 105 1

Sensing
Energy

[1401,
470994] 10−6 105 10−1

Sensing
Latency

[0.028294,
11] 10−2 105 103

Inference
Energy [43, 9813] 10−4 104 1

Inference
Latency

[0.000742,
0.100] 101 104 105

first normalize the values of each metric by conducting a test
run of SMiLe. Scales of considered metrics like accuracy, la-
tency and energy are returned by SMiLe and we subsequently
normalize them to the same scale by multiplying each met-
ric value m with a corresponding normalizing factor nm. We
then decide the relative importance of each metric based on
trade-offs we want to achieve for the specific use case; to
reflect this in the final optimization, we assign a priority fac-
tor pm to each metric m. The final weight of each metric
m, wm, is then calculated as the product of the correspond-
ing normalizing factor and priority factor: wm = nm × pm.
Consequently, the optimization target (global metric) used
by SMiLe is ∑m∈M wm ×m.

For the real-world use case explained in Sec. 3, we sum-
marize both normalization and priority factors used for 6
considered metrics in Table 2. To first derive normalizing
factors, we scale the metrics such that their maximums are
mapped to the range [0,1]. We then assign a priority factor
to each group of metrics with priority factors reduced by 10
for each subsequent metric group. Note that one can choose
different priority factors based on the concrete use case.
6 Experimental Evaluation

In this section we analyze and evaluate various aspects of
SMiLe using the previously described bearing fault analysis
as our real-world test case. In Sec. 6.1 we present how SMiLe
searches for an optimal edge analytics pipeline among a large
design space. Finally, in Sec. 6.2 we discuss different system
level related trade-offs, e.g. energy consumption and latency.
6.1 Design Space Exploration with SMiLe

We start with describing our experimental setup in
Sec. 6.1.1 and proceed with showing how SMiLe explores
the search space during an experiment run in Sec. 6.1.2.
6.1.1 Setup
Data. To evaluate SMiLe we use the bearing fault analy-
sis problem as explained in Sec. 3 and Sec. 4.4. We first
collected a dataset using our motor testbed featuring three
motors with differently damaged bearings. These motors
were run at different RPM’s and directions. Thus, we col-
lected accelerometer data for each of the 3 motors run-
ning at {4,19,37,55,94,148,250,535,994,1500} RPM and
in {Forward,Reverse} direction. For each motor, speed
and direction combination we collected 2 minutes of data

sampled at 1660 Hz. Thus, the final dataset consists of
3×10×2×120×1660 ≈ 12 ·109 samples. We solely used
samples from the y-axis of the accelerometer, which cap-
tures the highest variance in movement when the motor is
running. The sensor data streams were then split into indi-
vidual windows using a sliding window approach, where the
size of the window is optimized. We then used 80% of the
data for training, 10% for validation and 10% for testing the
final models.
Experiment. We analyze two different bearing fault analy-
sis problems, i.e., (i) 3-class classification to distinguish be-
tween a healthy (0 mg dust), lightly (250 mg) and heavily
(1000 mg) damaged motor and (ii) binary classification to
distinguish between a healthy and a heavily damaged motor.
For each of the two problems we ran a SMiLe experiment for
12 hours. In the remainder of this section we summarize the
results of these experiments for both problems.

Table 3: Design space for bearing fault prediction

Hyperparameters Range Category
Window size [25, 700] Sensing

Sampling
Frequency

[12.5, 26, 52, 104, 208, 416, 833,
1660] Sensing

Batch size [2, 4096] ML
Epochs [1, 20] ML

Learning Rate [0.0001, 0.1] ML
Model

Architecture MLP, CNN1D, LSTM, CNN2D ML

# of Layers [1, 10] ML
Hidden Size [2, 512] ML

# of Channels [1, 20] ML
Kernel Size [1, 50] ML

Design Space Configuration. To find the best model config-
uration, SMiLe needs to search a large design space by opti-
mizing various parameters. Table 3 lists all parameters, their
ranges as well as categories, i.e., sensing or machine learn-
ing (ML). Machine learning parameters include training-
related hyper-parameters and model architecture configura-
tions. These have a direct impact on model accuracy and
model size and, thus, also on inference latency and energy
consumption, which we show in Sec. 6.2. Sensing param-
eters include configurations that affect the data collection
process. Their optimization naturally impacts the sensing
latency and energy consumption as highlighted in Sec. 6.2.
Note that we downsample the data by skipping samples if a
sensing frequency below 1660 Hz is utilized.
6.1.2 Exploration

In order to understand how SMiLe operates and searches
the large design space, we examine the evolution of differ-
ent metrics over time during an experiment. Figure 9 shows
the number of model parameters, validation accuracy, batch
size, sensing energy, inference energy and the global met-
ric at different times during an experiment run. Each box-
plot summarizes the statistics of the metric over the 10 latest
models after a certain amount of models have been trained
overall. Within 12 hours SMiLe trained and benchmarked
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Figure 9: Evolution of various metrics during SMiLe design space exploration (indicated by the number of fully trained models)

Pareto
fronts

Figure 10: Validation accuracy vs. number of model param-
eters with Pareto front in the top-left corner

110 different pipelines. Figure 9a shows how in the early
stages of the experiment SMiLe evaluates large ML models
and gradually reduces the number of parameters in order to
end-up with notably smaller models. Additionally Figure 9b
and Figure 9c highlight how the accuracy increases and the
batch-size decreases over the course of an experiment. These
observations show how SMiLe initially explores the design
space in a broad manner, then continues to fine-tune the mod-
els with just sufficient amount of data. These results are also
reflected in Figure 10, which shows validations accuracy ver-
sus number of model parameters for various trained mod-
els. Compared to manually fine-tuning the models, which
we describe in Sec. 3, SMiLe is able to improve the Pareto
front and explore more accurate and smaller models. Addi-
tionally, these results were achieved with an experiment in
12 hours, which is considerably faster than manually fine-

tuning. Finally, both the sensing (Figure 9d) and inference
energy consumption (Figure 9e) as well as the final global
metric (Figure 9f) are optimized, i.e., decreased, over time.
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Figure 11: Counts of how many times specific settings are
explored by SMiLe during an experiment

Figure 11 shows how SMiLe explored different design
space configurations over the course of the experiment. We
present here several representative design parameters from
Table 3, and observe that SMiLe will quickly disregard set-
tings, which will not lead to an optimized solution, e.g.,
lower sensing frequencies. Settings that finally lead to the
best performing solution are however more frequently tested
and explored.

At the end of the experiment, SMiLe provides us with the
configurations and results of the optimized edge analytics
pipeline. For both the binary and 3-class classification prob-



lems, the test accuracy was around 99.8% for a CNN model
with a size of 256 and 627 parameters respectively. The op-
timal sensing frequency is 1660 Hz and the window size 50
samples for the binary classification and 300 samples for the
3-class classification.
6.2 System Level Trade-Offs

We continue to present system level trade-offs between
sensing and machine learning as identified by SMiLe.
6.2.1 Energy

The energy consumption of an edge analytics pipeline is
greatly influenced by various design choices. In the follow-
ing we analyze how particularly the window size and sensing
frequency affect the overall energy consumption.
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Figure 12: Impact of window size on inference and sensing
energy consumption at different sensing frequencies

Window Size. Figure 12a and Figure 12b show the im-
pact of the window size on the inference and sensing energy
consumption resp at difference sampling frequency. As ex-
pected, the required energy for sensing increases with the
size of the window at a fixed sampling frequency. The
inference energy however typically depends on the model
size. We observe that the inference energy is minimized at
small window sizes and high sampling frequencies. Thus,
SMiLe was able to find well performing models that solely
require samples in short time windows, that contain suffi-
cient and relevant information, to determine the health of
a motor while minimizing the overall energy consumption.
This shows that it is of high importance to search for the ap-
propriate window size during optimization.
Sensing frequency. Similar results can be observed when
inspecting the impact of the sampling frequency on the en-
ergy consumption. Figure 13 shows this relationship for both
the inference and sensing phases. As expected and also de-
scribed before, the sensing energy consumption purely de-
pends on the window size and sampling frequency and, thus,
decreases with an increasing sampling frequency at a fixed
window size as shown in Figure 13b. An interesting obser-
vation is shown in Figure 13a, where the inference energy is
the smallest at a sampling frequency of 833 Hz. We hypoth-
esis this frequency allows to capture most relevant informa-
tion for bearing fault prediction; consequently, it will also be
easier to find smaller ML models to classify correct bearing
fault classes. Note that although not shown, the same be-
haviour also appears at different window sizes. This again
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Figure 13: Impact of sensing frequency on inference and
sensing energy at a fixed window size of 300 samples

shows that sensing related parameters have a clear impact
on the overall energy consumption and, therefore, it is im-
portant to also include them in the search space to find right
trade-offs between sensing and machine learning.

6.2.2 Latency
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Figure 14: Window size vs. inference latency and number of
model parameters

Another important aspect of edge analytics is latency, i.e.,
the sensing latency on one hand, which is the time it takes to
collect a window of samples, and the inference latency on the
other hand, which is the time it takes for a model to produce
a prediction after we provide input samples. The sensing
latency is directly affected by the window size and the sam-
pling frequency, which can be calculated as window size

sampling f requency .
The inference latency however is greatly impacted by two
factors: (i) The size of the machine learning model, meaning
the larger a model the more time it requires to calculate a pre-
diction and (ii) the window size, i.e., the input to the model.
This relationship is also shown in Figure 14. Especially for
complex problems that require both a large model for ac-
curate predictions and short inference latencies due to time
critical decisions it is essential to find an optimized pipeline,
which can be achieved by our SMiLe framework. Note that
naturally the inference latency also correlates to the infer-
ence energy consumption, hence, the model size also impacts
the inference energy.



7 Conclusion
We present in this paper SMiLe - an automatic frame-

work for edge analytics which optimizes and co-designs
both sensing and machine learning. The proposed frame-
work consists of three critical components. First, our fron-
tend covers a conventional ML pipeline from the data sci-
ence point of view, which takes a dataset as input and gener-
ates trained ML models. Second, our backend takes gen-
erated analytics from the frontend, automatically converts
them into embedded implementations together with desired
sensing configurations. Finally, the entire frontend and back-
end are integrated together and we adopt an effective search
routine to automatically find efficient embedded analytics,
which are balancing accuracy, latency, energy and memory
requirements. This multi-objective optimization is made fea-
sible due to integration of our framework with our proposed
testbed, which automatically benchmarks embedded applica-
tions in terms of their latency and energy characteristics with
hardware-in-the-loop. SMiLe is demonstrated with a real-
world use case, while showing the capability to guarantee
great accuracy and to reduce system footprints significantly
in terms of energy, latency and memory.
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