
Dynamic Clock Reconfiguration for the Constrained IoT
and its Application to Energy-efficient Networking

Michel Rottleuthner
HAW Hamburg

michel.rottleuthner@haw-
hamburg.de

Thomas C. Schmidt
HAW Hamburg

t.schmidt@haw-hamburg.de

Matthias Wählisch
Freie Universität Berlin

m.waehlisch@fu-berlin.de

Abstract
Clock configuration takes a key role in tuning constrained

general-purpose microcontrollers for performance, timing
accuracy, and energy efficiency. Configuring the underlying
clock tree, however, involves a large parameter space with
complex dependencies and dynamic constraints. We argue
for clock configuration as a generic operating system module
that bridges the gap between highly configurable but com-
plex embedded hardware and easy application development.
In this paper, we propose a method and a runtime subsystem
for dynamic clock reconfiguration on constrained Internet
of Things (IoT) devices named ScaleClock. ScaleClock de-
rives measures to dynamically optimize clock configurations
by abstracting the hardware-specific clock trees. The Scale-
Clock system service grants portable access to the optimiza-
tion potential of dynamic clock scaling for applications. We
implement the approach on the popular IoT operating system
RIOT for two target platforms of different manufacturers and
evaluate its performance in static and dynamic scenarios on
real devices. We demonstrate the potential of ScaleClock by
designing a platform-independent dynamic voltage and fre-
quency scaling (DVFS) mechanism that enables RIOT to au-
tonomously adapt the hardware performance to requirements
of the software currently executed. In a use case study, we
manage to boost energy efficiency of constrained network
communication by reducing the MCU consumption by 40 %
at negligible performance impact.
Categories and Subject Descriptors

D.4.9 [Operating Systems]: Systems Programs and Util-
ities; B.8.2 [Performance and Reliability]: Performance
Analysis and Design Aids
General Terms

Design, Management
Keywords. Embedded Systems, Energy, DVFS

Task 1 Task 2 Task 3

Clock Tree 2Clock Network Clock Tree 1

ScaleClock

Monitoring
Adaptation

OS Scheduler

Figure 1: ScaleClock derives tasks characteristics at runtime
and adapts the system performance to application needs. Its
clock tree abstraction it is able to dynamically reconfigure
the hardware for more efficient operation and saving energy.

1 Introduction
Embedded systems based on microcontroller units

(MCUs) and diverse peripherals are omnipresent today, and
the rapidly evolving IoT deployment turns them into net-
worked devices. Hardware abstractions available from var-
ious (open source) IoT operating systems [1–3] facilitate to
assemble and maintain portable software on heterogeneous
embedded platforms. Nevertheless, key performance charac-
teristics (e.g., accuracy, energy, connectivity, lifetime) have
conflicting impacts, which calls for advanced optimization
and control of the interplay between hardware and software.

Energy availability is severely constrained on wireless
IoT devices and mandates for efficiency improvements on
each layer [4, 5]. The clock configuration of a system com-
prises a control knob for balancing between high perfor-
mance and low power as every switched signal inevitably af-
fects power consumption [6]. Adaptive software can exploit
this to save energy (e.g., via dynamic voltage and frequency
scaling (DVFS)), making the clock configuration fundamen-
tally important whenever energy efficiency is a concern [7].

Frequency scaling requires access to the clock configura-
tion of the underlying hardware. This should be supported
by the hardware abstraction layer (HAL) of the operating
system. Current operating systems for embedded devices,
though, lack abstractions for clock trees and hence are un-
able to manage the full system clock configuration space.

They cannot dynamically manage clock configurations for
optimized performance and energy efficiency [8–10]. This
wastes energy in particular on low-power, wireless IoT de-
vices, where peripheral buses are often one order of magni-
tude slower than the CPU and common radio interfaces have
even lower data rates (e.g., IEEE802.15.4 with 250 kbit/s and
LoRa with <1 kbit/s).

In this paper, we introduce ScaleClock, a lightweight
generic clock configuration solution for constrained IoT de-
vices. ScaleClock enables platform-independent control
of complex, MCU-internal clock settings during runtime.
ScaleClock configures the clock network of a device, the set
of clock sources, modifiers, and consumers, such that the ef-
fective clock tree reflects application needs (see Figure 1).

Dynamic power management with reconfiguration of
clock trees on IoT devices is challenging for two reasons.
First, constrained devices are restricted by processing power
and memory. This prevents transferring approaches from
prior work such as Linux. Second, most MCU manufactur-
ers provide a variety of internal and external clock sources.
These sources exhibit diverse properties supporting orthog-
onal objectives. We want to integrate those for the sake of a
versatile, platform-independent IoT.

ScaleClock overcomes these challenges by generic meth-
ods for assessing tasks and identifying their optimized clock
configuration. It utilizes a layered architecture consisting of
composable base types for clocks and unified configuration
interfaces that decouple from the underlying hardware. Ap-
plications do not need to interact with our framework be-
cause the ScaleClock transition manager autonomously in-
teracts with the OS scheduler and clock configuration. Scale-
Clock is implemented as part of the open-source operating
system RIOT and validated on two common IoT platforms
(STM32 and EFM32). Despite its flexibility, the overhead
remains small (e.g., 4% more memory than the platform-
specific clock tree). It optimizes energy during runtime and
explores all possible clock configurations when needed. This
operation is fast and results are cached. It provides DVFS as
a lean OS-centric service and saves more energy than the
race-to-idle strategy often used on constrained devices.

In summary, our main contributions are:
1. A system service for clock-tree exploration and dy-

namic reconfiguration, which uses a novel method to
proactively assess task characteristics for optimizing
DVFS control. (§ 3)

2. A flexible abstraction for a light-weight cross-platform
modeling of MCU clock-trees. (§ 4)

3. Comprehensive evaluations, including the validation of
ScaleClock on two independent target platforms. (§ 5)

4. A case study demonstrating how ScaleClock improves
energy efficiency of low-power communication. (§ 6)

5. A ScaleClock open source implementation on RIOT.
In the remainder of this paper, we introduce the problem

space and potentials of a reusable model of clock trees with
(re-)configurable clocks in § 2. We present our core contribu-
tions in § 3–§ 6, discuss related work in § 7, and summarize
our findings and present an outlook in § 8.

2 The Clock Tree and its Forest of Problems
Clock trees comprise the low-level clock networks within

MCUs. They are responsible for distributing and condition-
ing the clock ticks required for operating almost every inter-
nal component. They substantially differ in complexity and
implementation – not only between vendors but also between
MCU series and models of the same vendor. In addition,
clock trees often come with very complex dependencies that
are entangled with hardware configurations and constraints,
use of peripherals, environmental conditions, and application
demands. Modeling the clock tree configuration as generic
reusable component is therefore challenging.

Figure 2 illustrates a simplified example of an MCU clock
tree. Left are various clock sources of the tree. Sources
provide clock signals to intermediate nodes such as gates,
muxes, and scalers to eventually feed a consumer node
(e.g., a timer or the CPU). Intuitively it may seem appropri-
ate to just put configuration logic of each part to respective
peripheral drivers. Drivers, however, only control local parts
(i.e., leaf nodes) and cannot manage the overall coordination
of clocks that affect multiple devices. The latter requires a
global component on the kernel level.

We surveyed the clock configuration features of eleven
popular embedded IoT operating systems. The majority
(i.e., Contiki, FreeRTOS, LiteOS, Mbed, Mynewt, NuttX,
RIOT, TinyOS) avoid this problem by implementing the
clock configuration in static code that is only configurable
before compilation. While being efficient w.r.t. code size
and execution time, this static pattern does not allow for
dynamic reconfiguration at runtime. It effectively neglects
optimization potentials, since a single static configuration
that operates in the energetic sweet-spot of every task and
hardware does not exist. Other OSs (i.e., ChibiOS, Tock,
Zephyr) only provide partial dynamic features. Specifically,
ChibiOS offers an application programming interface (API)
for switching between static platform specific presets by re-
initializing the entire clock subsystem, but lacks support for
exploration, topology control, and performance assessment.
Tock provides an API for clock gating (i.e., enable and dis-
able control), which can be used for automated peripheral
power management. Zephyr has an interface to access fre-
quency properties of specific clocks. However, none of them
considers an abstract model of the clock tree, topology con-
trol, exploration of possible configurations, nor dynamic per-
formance adaptation.

To the best of our knowledge, there is currently no viable
solution for handling advanced clock (re-)configuration fea-
tures even though many operating systems could profit from
dynamic optimizations.

2.1 Common Building Blocks for Clock Trees
Clock trees involve many properties that largely vary be-

tween devices. Still, most entities (i.e., clock nodes) that
compose a clock tree share common functionality to serve
specific high-level purposes. They either manipulate the
topology of clock signals (i.e., the routing to different des-
tinations) or change properties of a clock, such as its fre-
quency, calibration, or duty-cycle. The most primitive form
of a clock node is a gate. Its sole purpose is to enable or

LFXTAL

...

RTC

EXT

HFXTAL CPU

Flash/ P
USB

Timer

RC

PLL

X N ...

Mux { x, / }Y Scaler Gate

/ M

Figure 2: Example clock tree consisting of various clock
sources (left), muxes, scalers, gates, and consumers (right).

disable the forwarding of its input clock to its output. A
mux selectively passes one of its multiple input clocks to
its single output. Multipliers (e.g., based on phase-locked
loops (PLLs)) and dividers scale the frequency of the clock
signal. We therefore collectively refer to them as scalers.

The exact features and implementations of those clock
nodes differs between platforms but their high level objective
and semantics are shared. Respectively, the hardware inter-
faces admit many commonalities. For example, settings are
commonly programmed by writing values to specific mem-
ory mapped configuration registers, which also contain bit
flags to trigger and observe operations and state changes.
2.2 Configuration Space(s)

Management and encoding of configuration parameters
that describe the clock tree and its hardware properties face
challenges. Inherent features of hardware or its individual
composition with external components must be visible to the
configuration tools. We differentiate between static proper-
ties, static configuration and runtime configuration.
Static Properties. Static properties are immutable for a
specific target platform. Here target platform refers to a sys-
tem model consisting of a particular MCU and permanently
connected components such as sensors and crystal oscillators
(e.g., a particular smartwatch or evaluation board). Some
properties are inherent to the MCU model, e.g., the possi-
bility to connect an external crystal. This optional oscilla-
tor may then be present on a specific target platform or not.
Overall, these static properties relate to different levels of ab-
straction and should be defined on the topmost level of com-
monality. This can be MCUs with a specific instruction set,
an MCU family, an MCU model, or an actual user device.
Static Configurations. Static configurations concern pa-
rameters that are adjustable per se but their static implemen-
tation enforces a fixed value at runtime. Adjusting those pa-
rameters therefore requires recompilation. For example, a
device that reads data from an external pen drive could be
statically configured to enable a 48 MHz clock for driving
the MCU-internal Universal Serial Bus (USB) peripheral.
Runtime Configurations. Runtime configurations apply
new system parameters during operation. Data describing
valid configuration values and adaptation logic must be part
of the firmware. For the above USB example, runtime con-
figuration of the peripheral clock becomes highly preferable
in battery powered scenarios as it reduces power consump-
tion while the USB-port is unused.

These simple examples of different configuration types
illustrate that there is no universal solution that serves all

scenarios. Though, a self-adaptive system that shall adjust
to its current needs, requires runtime configuration.
2.3 Complex Clock Configuration Transitions

Procedures for changing the configuration of a clock
(i.e., its topology or frequency) can vary significantly in com-
plexity. This applies to the execution of the transition itself
but also to side effects when other parts of the clock tree
are affected by a change. In simple cases the clock may
for example be updated on-the-fly by just writing a new pre-
scaler value to the corresponding configuration register. The
change is immediately applied and a new frequency is in ef-
fect. Contrarily, we refer to a complex transition if it con-
sists of multiple phases. There are several reasons why com-
plex transitions are needed. A Transition may affect parts
further down in the clock tree, demanding for pre- or post-
operations to make the new configuration applicable. Exam-
ples are adjustments to voltage range or flash access parame-
ters. There are also changes which take time to complete and
temporarily produce unstable frequencies, e.g., on PLLs that
require some time to stabilize. Other clocks are simply not
adjustable on-the-fly. This is a particular problem when users
of that clock are at the same time uninterruptible. Complex
transitions solve this by a temporary switch to an alternative
source, performing the adjustment, and then switching back.

Determining transitions and target configurations online
foremost requires semantic encoding of what each involved
step does in order to detect if they can be applied or raise
conflicts. Since this kind of online exploration can impose
significant overhead, pre-calculating complex clock transi-
tions is considered beneficial for fast repeated execution.
2.4 Hard Resource Limits

It is worth highlighting the significant challenges associ-
ated with scaling down the overhead of a generic solution to
constrained IoT devices. In those small embedded systems
data structures to encode hardware properties and runtime
management of configurations can significantly impact the
memory footprint. Dynamic loading of hardware description
files is out of scope and even dynamic memory allocation is
preferably avoided for keeping a fixed memory budget [11].

Overall, its complexity poses a severe challenge on the
design of run-time methods to (re-)configure clock trees.
3 ScaleClock Approach for Self-Optimization

This section introduces the core concepts of ScaleClock
and describes the mechanisms with which ScaleClock en-
ables the system to assess tasks and optimize their energy
level. Built on a generalized clock subsystem control, Scale-
Clock introduces the ability to dynamically adapt clock fre-
quencies to execution demands and thereby leverage poten-
tial energy savings without sacrificing application demands.
Dynamic Power Consumption. Essentially, power con-
sumption of Complementary Metal-Oxide-Semiconductor
(CMOS) circuits can be separated into a dynamic and a static
part. We focus on scenarios, in which an MCU performs
computations, and the dynamic share dominates the power
consumption—as we will also show in § 5. The dynamic
power consumption of a switched circuit is described by
P = α ·C ·V 2 · f , where C is the capacitance of the switched
circuit, V the voltage, and f its frequency. The transistor

switching activity (i.e., number of switched transistors) is re-
flected by α. C is a property of the specific device, and the
executing application mostly defines α. Hence we can only
influence the parameters V and f to reduce power consump-
tion of a given application on a device. Both are subject to
the following conceptual and practical limits. (i) The min-
imal voltage depends on the frequency; thus, voltage can-
not be reduced independently. (ii) The available range of
voltage adjustment is significantly confined. On modern mi-
crocontrollers, core voltage often ranges from 1.8 V down
to around 1 V, whereas frequencies can be scaled from hun-
dreds of MHz down to kHz. (iii) Time overhead can differ
significantly for scaling voltage vs. frequency. Voltage scal-
ing incurs a relatively static time overhead in the order of
several µs per 10 mV. Frequency scaling can be almost in-
stantaneous (e.g., when switching a mux or adapting a scale
value) to taking multiple ms (e.g., when cold-starting an os-
cillator). (iv) At very low frequencies the static power con-
sumption becomes more relevant, which reduces efficiency.
For a more comprehensive background reference, we refer
the reader to Castagnetti et al. [7] and Eyerman et al. [6].
3.1 Resource Demands are Dynamic

The potential for dynamic energy optimization (e.g., from
DVFS) is significant because applications rarely utilize the
full performance provided by the MCU. A mismatch be-
tween the performance configuration of the hardware and
the utilization by the software inevitably wastes energy. Full
computing performance is not required, for example, at ex-
ecution phases in which the MCU waits for an operation to
complete, such as reading an external sensor, erasing a flash
page, or transmitting data. This leaves potential to trade un-
derutilized performance for energy savings.

On resource constrained devices race-to-idle is commonly
employed because of its easy implementation, but it often
lowers energy efficiency compared to more adaptive meth-
ods [12]. With this in mind, the demand for dynamic perfor-
mance adaptation as a generic system service becomes ap-
parent. Its largest challenge is to define a generic mechanism
for dynamic clock configuration on constrained devices.
3.2 Assessment of Resource Utilization

A versatile feedback loop for dynamic runtime optimiza-
tion needs to acquire precise knowledge about the system
conditions via a simple, yet expressive metric. Consider a
time slice t, of which the scheduled task utilizes the CPU for
the fraction tbusy, then

Load =
tbusy

tbusy + tidle
(1)

defines a simple utilization metric often employed on MCUs.
We argue that this metric is not well suited for dynamic per-
formance control because it is insensitive to tasks which only
appear to utilize the CPU but in reality are limited by other
operations. Instead, we propose a utilization metric that
compares the actual utilization at two different frequencies
F1 and F2. For any scheduled time slice t, Equation 2 relates
the ratio between busy times at different frequencies to the
frequency change ratio.

PU =
tbusy(F1)

tbusy(F2)
· F1

F2
, F1 < F2 (2)

For perfectly scalable tasks the busy time reduces by the
same ratio as the frequency increases. On the converse, tasks
with low performance utilization (PU) values scale worse but
show high potential for energy savings. Notably, this defini-
tion drops the explicit use of the idle time, because the ability
of a task to (not) scale well with frequency is independent of
its idle time—in contrast to the global system load. Idle time
is considered implicitly as the time allocated to the idle task.
3.3 Dynamic Scaling

In ScaleClock, we devise an online PU assessment that
executes on the device itself. It instruments the operating
system to collect the context switching count together with
busy- and idle times for each task. The core frequency is
then opportunistically adapted while collecting measurement
points for the PU metric. Based on these measurements a
task-specific, energy-optimized frequency is selected. For a
given set of possible core frequencies corresponding clock
tree configurations are determined in an exploration phase,
which runs once on system init and on topology changes.

The dynamically assessed target frequency is set up be-
fore scheduling the next task. Core voltage and flash wait
state adaptation follow the frequency selection according to
static constraints which encode clock-node and frequency-
specific hardware limits. A policy setting governs whether
fast flash or low voltage is preferred in cases where they mu-
tually exclude each other. We evaluate this concept in § 5 for
the RIOT [3] operating system on real hardware.
3.4 Interfacing Functional Capabilities

Clock types implement different sets of capabilities,
which we reflect by an individual assignment. A clock can
for example be scalable, muxable, gateable. Each capability
provides its own interface functions such as accessing and
configuring a scaling factor for a scalable clock, configuring
the parent for a muxable clock, or simply enabling or dis-
abling a gateable clock. Drivers that only differ in details
can reuse most capability code by only replacing the selec-
tive parts of the interfaces that differs. Capability implemen-
tations are explicitly separated from the mapping functions
that translate register content to logical values in order to
reuse code sections wherever possible.

All properties described so far are provisioned as sepa-
rate static data structures to support static memory allocation
and selective inclusion. These static definitions also open
the door for a priori encoding tweaks towards our design
goals to minimize memory consumption and maximize exe-
cution speed. Combining these principles allows an easy to
understand modeling while still being expressive, memory
efficient, and flexible to adjust for optimizations.

4 ScaleClock Implementation
A suitable level of abstraction is essential for a reusable

design that hides hardware specifics but grants sufficient ac-
cess. In § 2.1, we identified a significant part of common
behavior at the level of individual base elements (i.e., gate,
mux, and scaler). The hardware facing part of the interface
sits at this level so that higher order clock trees can be flexi-
bly orchestrated from separate clock instances.

Albeit uncommon clock nodes exist (e.g., PLLs with mul-
tiple stages and outputs), even among devices with very com-

const gclk_t *clk = gclk_get(gclk_get_cnt() - 1);
bool enabled = gclk_is_enabled(clk);
unsigned factor = gclk_get_current_factor(clk);
uint32_t freq = gclk_get_current_freq(clk);
const gclk_t *parent = gclk_get_current_parent(clk);

Listing 1: Get clock properties.

gclk_disable(clk);
gclk_enable(clk);
gclk_set_factor(clk, 42);
gclk_set_freq(clk, 10000000);
gclk_set_parent(clk, other_clk);

Listing 2: Set clock properties.

uint32_t *freqs;
unsigned cnt = gclk_manager_get_dfs_freqs(&freqs);
// iterate available DFS frequencies
for (unsigned i = 0; i < cnt; i++) {
 gclk_manager_scale_core_freq(freqs[i]); }

Listing 3: Set different core frequencies.

Abstract Clock

Clock Configurator

Transition Manager

Core Voltage
Module

OS / Scheduler

Static Model
&

Configuration

Utilization
Monitor

Application

Properties, Constraints, Flags

Hardware

...Gate ScalerMux

Unified Interface

Generic Module

Voltage & Frequency
Range Constraints

Callback
Interaction Query

 & Notify

Monitor

Figure 3: The ScaleClock architecure incorporates a unified
configuration interface to individual clocks. The transition
manager uses OS statistics to self-adapt the system for low
energy or high performance operation.

plex clock trees we never encountered any that could not be
modeled by combining the aforementioned base elements.
Moreover, custom clock types can still be added, and the
design is widely applicable to MCUs with memory mapped
configuration registers. We thus argue that these clock types
form a reasonably reduced but expressive set to model all
typical MCU clock trees. We will demonstrate its utility later
in § 5. Key design decisions are presented next, for further
details we refer to our publicly available code (see § 8).
4.1 Layered Architecture for Flexibility

Our layered architecture puts common functionality and
patterns to a higher utility layer and strictly separates data
and code. We observe that clock configuration can be done
by adapting frequency or changing topology. Topology op-
erations may affect the frequency whereas frequency opera-
tions shall never affect the topology, as this may have signif-
icant impact (e.g., on clock availability and accuracy). We
explicitly separate this functionality to retain direct control.

Figure 3 gives an overview of the ScaleClock architec-
ture. An application never has to interact with the clock
framework directly, unless it aims for manual control. Op-
erations on the Abstract Clock interface are decoupled from
the underlying hardware. Platform specific configuration op-
tions and hardware access description are provided as static
data, separated from the base clock functions, which are de-
fined as independent driver functions. Individual mapping
functions convert between semantic values (i.e., multiplier,
enable state, clock instance, etc.) and configuration register
values. Clock base types (Gate, Mux, and Scaler) are pro-
vided for reuse by platform specific implementations. Cus-
tom clocks can be modeled by separately orchestrating and
decorating primitive operations, value descriptors, and map-
ping functions. Tree variants are constructed from a list of
parent choices of each clock. Pointers to unique static de-
scriptors of clock instances serve as identifiers. For easy
traversal, getting the current parent of a clock returns a
pointer to its static descriptor (see Listing 1). A topology en-

try datatype stores the logical configuration state of a clock
instance for virtual representation of topology settings.

The clock configurator can query and reconfigure hard-
ware state, e.g., to get the current frequency or set a new
scaling factor (see Listing 1 and Listing 2). The transition
manager handles high-level tasks such as core frequency
updates (Listing 3), complex transitions as introduced in
§ 2.3 (Listing 4), and triggering notifications on configu-
ration changes. The utilization monitor gathers scheduler
statistics (idle-, execution-time, context switches) to meter
the performance of running threads and provides feedback to
identify bottle-necked operations for dynamic optimization.
Energy is then saved by aligning the system performance to
the task demand. Listing 5 shows a manual invocation of the
PU-assessment mechanism in a multi-threaded application.
const gclk_t *clk = gclk_manager_get_core_clock_handle();
uint32_t max_len = gclk_get_clk_subtree_max_depth(clk, 0);
clk_topology_entry_t topology[max_len]; topology[0].clk = clk;
for (unsigned ti = 0; ti < gclk_get_topology_config_cnt(clk); ti++) {
 size_t size = gclk_get_nth_topology(topology, max_len, ti);
 gclk_cmp_func_t cmp = closest_leaf_freq; // match to closest frequency
 uint32_t f_match = gclk_manager_switch_topology(clk, ti, f_target, cmp);
 printf("switched to topology %u, running at %u Hz\n", ti, f_match); }

Listing 4: Code excerpt to switch between core topologies.

for (unsigned i = 0; i < thread_cnt; i++) {//request assessment per thread
 gclk_manager_enable_pu_stat_request_for_thread(thread_ids[i]); }

gclk_manager_enable_pu_assessment(true);//enable assessment
gclk_manager_start_freq_cycler(MIN_DURATION, MIN_SCHEDULES);//sweep freq.

for (unsigned t = 0; t < thread_cnt; t++) {
 int pu = gclk_manager_calculate_pu_factor(thread_ids[t]);
 printf("PU of thread %u: %d\n", thread_ids[t], pu); }

gclk_manager_enable_dynamic_frequency_scaling(true);//enable PU-based DFS

Listing 5: Code excerpt to assess performance utilization.

Porting ScaleClock to new platforms only requires provi-
sioning of hardware-specific static data (register mappings,
constraints etc.), i.e., layers below the abstract clock inter-
face in Figure 3. Generic low-level drivers can be reused
directly in most cases and manual effort to extend capabil-
ity drivers of specific clocks (as described in § 3.4) is rarely
needed. Higher layers of ScaleClock require no porting.
4.2 Property Encoding

Clock nodes can have many (configurable or immutable)
properties, such as valid input sources or divider values.
Those must be accessible to upper layers, whereas respective
register values and their addresses must be available to the
hardware facing layer. Reconfiguration constraints (e.g., on-
the-fly adaptability of scaling factors) must be stored too.

Numerical values are encoded using an extendable set of
mapping types to ease modeling of sets of distinct values or
ranges with associated semantics. Memory overhead is fur-
ther reduced by using indicators for common implicit value
encoding patterns and modifiers. In many cases this halves
the storage for mappings between logical and register values.

Instead of saving configuration registers and masks sep-
arately for every clock node we leverage that only a subset

of registers are typically responsible for clock configuration
and combine them into a lookup table. A register is then
identified with only a few bits and a single integer can be
shared for storing the register id, masking information and
bit indexes for common flags (e.g., enable or ready states).
Respectively, a frequency multiplier descriptor that accepts
factors between 1 and 8 by writing values from 0 to 7 into
a specific register field can be encoded by the bounds (1,8)
and a zero-based implicit register value modifier. Using the
condensed configuration register descriptor, only two 32-bit
integer values are needed to encode how to access the hard-
ware register and which values it may attain.
4.3 Notification & Transaction Mechanism

Interaction between ScaleClock and other modules re-
quires methods to request, indicate or block changes. While
ScaleClock itself can handle dependencies and constraints
internal to the clock tree, this does not cover dependencies
on internal state of peripheral drivers or application logic. A
clock, for instance, can be safely turned off if no other com-
ponent is using it. If it is used, e.g., by a peripheral driver, it
can block or allow transitions depending on its operation.

External modules can prepare for clock transitions or trig-
ger reconfiguration procedures afterwards via pre- and post-
hooks, which can be registered for any existing clock in-
stance. Shared peripherals can lock access for the duration of
the transition via the pre-call. During the post hook, the re-
spective module must be put back to normal operation mode.
5 Evaluation of ScaleClock

We are now ready to evaluate key performance metrics of
ScaleClock regarding functionality, performance, and over-
head. First, we describe the core features enabled by Scale-
Clock and compare them to alternative mechanisms. Second,
we benchmark the effect of configuration parameters in static
scenarios (i.e., running different tasks at preset frequencies).
Third, we evaluate the performance of dynamically applying
ScaleClock (i.e., changing frequency at varying application
needs). We measure the energy savings and the temporal
overhead. Later in § 6 we will assess the energy savings in a
realistic case study of low-power wireless networking.

Experiments are conducted on the Nucleo-L476RG by
STMicroelectronics and the SLSTK3402A EFM32 Pearl
Gecko PG12 board by Silicon Labs. Both boards are unmod-
ified and our experimentation firmware sources are publicly
available (see § 8) to ease reproducibility. All stated current
values relate to a static supply of 3.3 V. We use a highly ac-
curate Keithley DMM7510 digital sampling multimeter [13],
connected to the power headers (IDD and BAT respectively).
5.1 ScaleClock Core Functions

ScaleClock supports active exploration of the clock sub-
system and increases visibility and usability of hardware ca-
pabilities. Developers can use the same unified API on all
target devices to explore available clock configurations and
how they can be operated—instead of studying data sheets
for each target platform. The system itself exploits this
knowledge to dynamically optimize the hardware configu-
ration in concordance with the changing application needs.
Reducing Power Consumption. Applications facing (tem-
porary) constraints on peak power consumption can instruct

1
0

2
0

3
0

4
0

5
0

2

4

6

8

10

12

C
u
rr

e
n
t

[m
A

]

add

nucleo-l476rg

slstk3402a

1
0

2
0

3
0

4
0

5
0

Core Frequency [MHz]

divide

1
0

2
0

3
0

4
0

5
0

multiply

Figure 4: MCU current draw behavior for tasks that execute
loops of different integer instructions (add, divide, multiply)
at varied clock frequencies on two devices. IQR: 25th-75th
percentile, whiskers: Q1-1.5*IQR and Q3+1.5*IQR.

flash ram reg

Memory Access

a
d
d

m
u
l

d
iv

In
st

ru
c
ti

o
n

8.71
(0.04)

10.22
(0.09)

10.15
(0.05)

9.32
(0.04)

9.17
(0.06)

11.07
(0.11)

8.12
(0.04)

7.34
(0.06)

6.28
(0.06)

nucleo-l476rg

flash ram reg

Memory Access

4.59
(0.23)

4.61
(0.23)

4.39
(0.24)

4.79
(0.23)

4.11
(0.24)

3.94
(0.24)

4.39
(0.23)

3.66
(0.24)

3.30
(0.25)

slstk3402a

7

8

9

10

11

3.5

4.0

4.5

C
u
rr

e
n
t

[m
A

]
(σ

[m
A

])

Figure 5: MCU current draw behavior of two devices when
executing tasks which loop different integer instructions (di-
vide, add, multiply), using data from distinct memory loca-
tions (flash, RAM, registers); left: 48 MHz, right: 40 MHz.

ScaleClock to throttle clock speed. For example, systems
facing critical supply voltage may thereby limit power con-
sumption to reliably maintain operation of the voltage regu-
lator. Energy harvesting systems with varying power sup-
ply [14, 15] can use this to significantly extend the run-
time [9]. Power consumption can be reduced further by gat-
ing (i.e., disabling) unused clock sources, sub-topologies of
the clock tree, or input clocks of inactive peripherals. Active
power management can apply this dynamically [16].

We determine the magnitude of enabled power reductions
by executing several micro-benchmarks on our test systems.
Figure 4 shows the current drawn at different CPU frequen-
cies set up by ScaleClock. We use the most compatible
topologies in this experiment, in which the system is clocked
by a scalable resistor-capacitor (RC) oscillator. Three as-
pects stand out. (i) a roughly linear relationship between
frequency and power consumption in all configurations; (ii)
both platforms show significantly lower consumption for di-
vision. This can be traced back to divisions requiring more
cycles, which reduces the proportion of other CPU activities
(i.e., fetch, decode, memory access), lowering the switch-
ing activity; (iii) the ratio between current and frequency
(i.e., the slope) is significantly different on both targets.

Beyond instruction execution, the consumption is also af-
fected by the memory access required to fetch data. Fig-
ure 5 shows this variation of power consumption when the
same instructions use data from different memory locations.
This effect cannot be generalized into simple rules, as it has

Table 1: Time overhead for transitioning from a static low
power mode to executing a function.

Board LPM Exit Transition Time Current

nucleo-l476rg PM0 9.3 ms (to main) 410.3 nA
nucleo-l476rg PM0 2.4 ms (to system init) 410.3 nA
nucleo-l476rg PM1 9.6 µs (to callback) 8.4 µA
slstk3402a PM0 18.9 µs (to callback) 7.4 µA
slstk3402a PM1 18.8 µs (to callback) 7.8 µA

diverse impact, e.g., for the nucleo-l476rg using data from
registers reduces consumption for division while increasing
it for multiplication. Both devices show a notable differ-
ence in how flash access affects the consumption. The gener-
ally more efficient slstk3402a exposes a much higher relative
consumption when flash access is involved. Overall, these
results highlight two relevant insights. First, operations of
the executed task change the total consumption in a consider-
able magnitude. Second, precise knowledge of task behavior
and device characteristics provide valuable runtime informa-
tion for deciding whether a specific frequency configuration
is energetically more efficient for that task.

MCU power consumption is commonly reduced with
duty cycling via low-power modes (LPMs) in which any ex-
ecution is stopped completely. This binary on-off operation
mode lacks gradual control over performance and consump-
tion during active operation. The ScaleClock dynamic fre-
quency adaptation can be used in complement to achieve ad-
ditional energy savings during the active periods, in which
duty cycling has no effect, and it does not interfere with duty
cycling applicability. Table 1 puts our previous consump-
tion statistics of a slowed down (but still actively processing)
MCU into perspective with the static consumption of low
power modes, which completely stop ongoing execution. It
also lists the time overhead incurred when transitioning from
the sleeping LPM state back to operation mode as measured
via general-purpose input/output (GPIO) instrumentation.
Improving Energy Efficiency. Applications that want to
maximize energy efficiency can use ScaleClock to adaptively
optimize the clock frequency at runtime. There is potential
to dynamically save energy during execution as long as the
CPU capacity is not fully utilized as noted in § 3.2. Tasks
dominated by instructions that require access to CPU regis-
ters or random-access memory (RAM) scale well with fre-
quency and are often most efficiently executed at the highest
applicable frequency because minimizing execution time re-
duces static loss related to the active MCU [9]. Contrary,
tasks slowed by I/O access or other asynchronous interac-
tions execute more efficiently at a lower core frequency [10].
Losses due to dynamic switching of instructions without pro-
gressing a task are avoided in those cases, which quickly out-
weighs static losses. In practice, taking advantage of this un-
used potential requires either a priori knowledge about tasks
or some assessment at runtime. ScaleClock follows the latter
variant, the benefit of which we quantify in the following.
Impact of Dynamic Performance and Topology Control.
Our analysis up to this point indicates that the energy saving

1 10 20 30 40 50

Core Frequency [MHz]

0

50

100

150

E
n
e
rg

y
E

ffi
c
ie

n
c
y

[%
]

Clock Topology Settings
nucleo: RC scale @src.

slstk: RC scale @scaler

slstk: RC scale @CPU

slstk: RC scale @src.

slstk: XTAL scale @scaler

slstk: XTAL scale @CPU

Figure 6: Energy efficiency while executing the same task
at different topology and frequency configurations. Names
refer to the clock source and the point in the topology where
the frequency is scaled down. The 100 % baseline marks the
highest frequency of the default topology.

potential depends on task characteristics. To capture other
conditions which affect dynamic optimizations we measure
how the energy efficiency of a given workload is affected by
different topologies, core frequencies, and scaling methods.

The results in Figure 6 relate the converged average en-
ergy efficiency and core frequency for different topology
and scaling variants. Displayed variants differ in type of
clock source (RC vs XTAL) and the point within the topol-
ogy path where the frequency adaptation happens (i.e., as
close as possible to either the source or CPU, or at an
intermediate scaler). The workload includes all permuta-
tions of instructions and memory access variants used before
({add, mul, div}×{reg, ram, flash}, see § 5.1). These oper-
ations are generally efficient at high frequencies as they are
executed without busy waiting or asynchronous I/O. There-
fore, the optimization potential for DVFS is low—aside from
internal flash access that cannot keep up with the CPU speed.

We chose the 100 % baseline as the energy consumed at
the highest frequency operation of (i) the RC@src. topol-
ogy for the nucleo-l476rg or (ii) the XTAL@scaler topology
for the slstk3402a. All configurations exhibit low efficiency
at very low frequencies. The largest efficiency impact (more
than 40 %) is obtained by selecting an RC source over a crys-
tal oscillator (XTAL vs. RC). The noticeable drop at 20 MHz
(RC@src on slstk3402a) follows from constraints of this par-
ticular system configuration which lead to an unfavorable ra-
tio between flash speed and core frequency. Another notable
effect shows the nucleo-l476rg device, at which the benefits
of voltage scaling outweigh the efficiency penalty of lower
frequencies between 8 and 24 MHz giving more than 15 %
better energy efficiency. Comparing configurations with the
same source and frequency (e.g., XTAL@x or RC@x) shows
that energy efficiency improves with scaling a node that is
closer to the clock source. We can conclude that already
without dynamic optimizations ScaleClock can improve en-
ergy efficiency by about 15 % with scaling down voltage and
frequency and over 40 % by switching the source topology.

Recalling the linear relation between frequency and cur-
rent (see § 5.1), we now question how the potential to reduce
power consumption can be translated into further energy sav-
ings for applications that do not require full CPU perfor-

5 10 15 20 25 30 35 40

Frequency [MHz]

0.4

0.6

0.8

1.0

R
e
l.

E
n
e
rg

y
C

o
n
s.

nucleo-l476rg

slstk3402a

Figure 7: Energy distributions for task sets executed at their
energy-optimal core frequency, relative to consumption at
highest freq. (40 MHz). Ticks: extrema and mean values.

mance. We create a synthetic benchmark to explore the space
of achievable energy savings. It consists of 100 tasks with
varying portions of computational and time-dependent oper-
ations. We parameterize the task set from fully scalable com-
putational workloads to purely time-dependent operations in
order to cover the full range of possible workload character-
istics between the extremes of scalability. We measure the
energy consumption for each task at each frequency and the
energy-optimal setting is identified per task. Regarding the
use of synthetic benchmarks we note that the energy-related
characteristics of a task are its execution time and its switch-
ing activity (i.e., α as given in § 3). Varying those synthet-
ically in a micro-benchmark reveals characteristics, but also
transfers to other tasks as their timing is known (measured
via PU assessment), α is task-specific, and the PU values
are established per task. An exception is that flash wait-state
adaptation may slightly affect α towards lower frequencies
(by reducing the wasted cycles for bottle-necked flash ac-
cess). Yet, this effect can be fully isolated by performing the
PU-assessment without flash adaptation.

Figure 7 displays the distribution of energy consumptions
for all task subsets at their energy-optimal frequencies. En-
ergy savings of more than 60 % can be achieved if a task
is most efficiently executed at a low core frequency (here
8 MHz). It is worth noting that only dynamic frequency scal-
ing (DFS) is applied in this case, of which we previously
saw a reduced efficiency if applied to computation-intensive
tasks. Voltage scaling is expected to improve these further.
Assessing Performance Utilization. We now evaluate the
ScaleClock mechanism for dynamically identifying the op-
timal frequency, i.e., the PU metric for assessing the scaling
potential of a task (see Equation 2). Figure 8 shows the dis-
tributions of PU values for the same task sets as a function of
their optimal frequencies. Per platform we observe a strictly
monotonic relation between the optimal frequency and the
PU values. This leads us to the conclusion that it is viable to
deduce energy-optimal frequencies for the tasks from their
respective PU values. Hence, the metric justified its effec-
tiveness for dynamically identifying the optimal frequency.

Stirring the DVFS functions from online assessments en-
ables the system to automatically align performance with
task demands. Figure 9 shows the current profile of the
nucleo-l476rg MCU while executing two threads that per-
form workloads of different kind. Both threads start back-
to-back and are triggered in an alternating pattern—a typi-

5 10 15 20 25 30 35 40

Frequency [MHz]

0.6

0.8

P
e
rf

o
rm

a
n
c
e

U
ti

l.

nucleo-l476rg

slstk3402a

Figure 8: PU value distributions for the task sets executed
at their energy-optimal core frequency. Ticks mark extrema
and mean values.

1.0 1.5 2.0
Time [s]

0

5

10

15

Cu
rre

nt
 [m

A
]

DFS ON DFS OFFPU
Assessment

Task Start

Frequency Cycle Start

PU Calculation
and Output

High PU Thread

Low PU Thread

Figure 9: MCU current draw when performing online per-
formance utilization assessment, comparing automatic DFS
with static high frequency operation.

cal producer-consumer scenario. One benefits from a higher
core frequency (i.e., high PU, processing), while the other is
most efficiently executed at a lower frequency (i.e., low PU,
acquisition). After the task is started, a stair pattern is visi-
ble related to the execution of the automatic PU-assessment
that cycles through multiple available frequencies while both
threads still execute. It is worth noting that the method in-
troduced in § 3.2 is used with more than two frequencies
here and the collected data of each frequency pair is used
for the calculation of the PU value. Then the respective PU
factors are derived for both threads and written out together
with debug information via a serial connection. The duration
of this step is governed by the serial communication while
the overhead of the calculation is negligible. Thereafter, the
DFS mechanism is enabled and reduces power consumption
of the low PU thread by more than 70 %. Even though the
lower frequency of the low PU thread also reduces the per-
formance, the overall energy consumed for the same work is
reduced by almost 40 %.

5.2 ScaleClock overhead
The overhead induced by ScaleClock is important for its

utility. We measure overhead in terms of memory and run-
time of the base operations. Base operations refer to ini-
tialization steps such as configuration exploration, as well as
adaptation steps to change frequency and topology.
Memory. We differentiate between platform-agnostic parts
and (static) data that encodes the platform-specific clock tree
model. Memory of the generic parts such as the clock con-
figurator or transition manager is dominated by instructions
whereas the clock tree model mainly consists of static data.
Table 2 lists the memory overhead of the different Scale-

Table 2: Memory used by the ScaleClock building blocks.

Component ROM Size RAM Size
Generic clock 24 bytes -
Config register descriptor 32 bits -
Shared register LUT entry 32 bits (single pointer) -
Zero based mux option 32 bits (single pointer) -
LUT mux option 64 bits (pointer + reg. value) -

Clock configurator 5 kB -
Clock manager 7.5 kB 172 bytes
Static clock tree model 2.5 kB -
Task PU data (per thread) - 32 bytes

10 20 30 40 50

Core Frequency [MHz]

101

102

103

104

T
im

e
[µ

s]

nucleo-l476rg

re-init periph.

update freq.

save freq.

slstk3402a

re-init periph.

update freq.

save freq.

Figure 10: Timing overhead for simple frequency transitions
performed at different clock frequencies.

Clock components. Overall, the generic part of the Scale-
Clock module uses ≈ 5 % of the total memory required by
the test firmware used for this paper, whereas the platform
specific clock tree model requires below 1 % of the memory.
Clock Tree Exploration. Proper clock tree configura-
tion usually forces developers to carefully study hardware
data sheets [17]. ScaleClock substantially eases this duty
by providing a unified interface for exploring, configur-
ing, and testing clock configurations interactively. On the
slstk3402a platform all possible configurations for driving
the core clock can be evaluated in less than three seconds.
The faster nucleo-l476rg finishes this exploration in less
than 500 ms. Nevertheless, the overhead of exploring config-
urations is considered non-critical because this rarely needs
execution (e.g., at initial boot) and the results can easily be
cached. Albeit a priori exploration is preferable, ScaleClock
is fully capable of performing this step on demand.
Time to Change Frequency. Switching between different
frequencies is more critical because it is expected to run fre-
quently, e.g., when employing PU-based DVFS. Figure 10
shows the time overhead for clock transition steps as a func-
tion of the active frequency. The execution order matters as
save and update are first run at the initial frequency while for
re-init the target frequency is already in effect.

In detail, we find that the actual frequency change incurs
significantly less overhead than post-processing (i.e., re-init).
This suggests that most impactful performance optimizations
should focus on code for peripheral re-initialization. Driver
init-code is also not likely to be optimized for execution time,
since with static clock configuration it is only executed at
boot. In many cases re-init steps can be avoided by using
independent clock domains for peripherals or by ensuring

that the same frequency is maintained for peripherals. It is
worth noting that the save step is only needed for the current
implementation to copy the previous state of configuration
registers into the memory.

6 Case Study: Energy-Efficient Networking
Communication is central for IoT nodes. Whenever bulk

data (e.g., firmware updates) or live data (e.g., health parame-
ters) are transmitted, a significant share of the system energy
is spent for communication, even if advanced network archi-
tectures such as edge processing are deployed. Systems with
static clock configuration introduce a major mismatch be-
tween available CPU processing speed and (relatively low)
throughput needed during transmissions. We now analyze
performance benefits for senders and receivers while Scale-
Clock optimizes clock speeds for networking tasks.
Basic setup. We implement a plain UDP sender-receiver
scenario between two nodes. The sender transmits 64 pack-
ets of preconfigured payload to the receiver via a single
link. We disable link-layer retransmissions (i.e., ACK re-
quests) and back-off mechanisms (i.e., CSMA/CA) at the
sender side to prevent blocking by the lower layer and iso-
late non-deterministic effects of the environment. This ef-
fectively maximizes the throughput towards the bandwidth-
limited radio (i.e., minimizes dynamic optimization poten-
tial) and therefore represents a pessimistic scenario. When
measuring the impact at the receiver, we enable both mech-
anisms to maximize the incoming channel throughput at the
receiver side. We conduct 64 runs of each of the following
experiment settings and present (converged) averages.

We evaluate CPU power consumption and performance
impact while applying DVFS via ScaleClock. As in our prior
evaluations (see § 5), we conduct our experiments on the
nucleo-l476rg evaluation board, extended by an AT86RF233
IEEE802.15.4 radio module that is connected via Serial Pe-
ripheral Interface (SPI). The RIOT firmware includes the de-
fault network stack gnrc on top of the at86rf2xx radio driver
in its default configuration with an SPI target frequency of
5 MHz. Since lower CPU frequencies allow for the reduc-
tion of flash wait states and core voltage but both settings
sometimes mutually exclude each other, we also investigate
the impact of two policies that favor either fast flash access
(FF) or low voltage (LV).
Impact of core clock frequency. In this experiment,
we vary the core clock frequency. Figure 11(a) depicts
a strong correlation between current and frequency but a
weak correlation between frequency and transmission time
(i.e., throughput). This indicates significant energy savings
at very low (temporal) performance penalty. When reduc-
ing the frequency from 80 MHz to 40 MHz, the consumed
energy reduces by up to 42 % – whereas the time only in-
creases by 1 %. At 1/10th of the frequency (8 MHz), en-
ergy is reduced by ≈ 82 % at a moderate timing penalty of
≈ 14 %. This result is line with our expectation because the
radio imposes a bottleneck where the packet processing be-
comes negligible in relation to the time required for transmis-
sion. The LV and FF policies have no significant impact on
transmission times, but the low voltage variant is able to fur-
ther reduce energy consumption. The fact that network op-

1020304050607080
Core Frequency [MHz]

0

30

60

90

120

150

180

210

E
n
e
rg

y
[µ

W
s]

Energy (FF)
Energy (LV)

Time (FF)
Time (LV)

Current (FF)
Current (LV)

0

3

6

9

12

15

C
u
rr

e
n
t

[m
A

]

0

2

4

6

8

10

T
im

e
[m

s]

(a) Sending: Reducing core clock frequency significantly improves energy
consumption at minor increase of transmission time.

1020304050607080
Core Frequency [MHz]

0

30

60

90

120

150

180

210

E
n
e
rg

y
[µ

W
s]

Energy (FF)
Energy (LV)

Time (FF)
Time (LV)

Current (FF)
Current (LV)

0

3

6

9

12

15

C
u
rr

e
n
t

[m
A

]

0

2

4

6

8

10

T
im

e
[m

s]

(b) Receiving: Reducing core clock frequency saves less energy and exposes
higher performance penalty at low core frequencies.

Figure 11: Using different clock frequencies for sending and receiving 64 bytes payload based on UDP/6LoWPAN.

0 50 100 150 200 250
Payload Size [Byte]

0

.2

.5

.8

1

E
n
e
rg

y
[N

o
rm

a
li

z
e
d
]

Energy (default)
Energy (optimized)
Time (default)
Time (optimized)
Current (default)
Current (optimized)

0

3

6

9

12

15

C
u
rr

e
n
t

[m
A

]

0

3

6

9

12

15

18

T
im

e
[m

s]

(a) Sending

0 50 100 150 200 250
Payload Size [Byte]

0

.2

.5

.8

1

E
n
e
rg

y
[N

o
rm

a
li

z
e
d
]

Energy (default)
Energy (optimized)
Time (default)
Time (optimized)
Current (default)
Current (optimized)

0

3

6

9

12

15

C
u
rr

e
n
t

[m
A

]

0

4

8

12

16

20

24

28

T
im

e
[m

s]

(b) Receiving

Figure 12: Impact of different payload sizes on energy consumption and timing, comparing the default (high frequency) con-
figuration and the most energy efficient configuration. Energy is normalized to highest consumption.

erations do not incur much flash access explains why lower
voltage excels faster flash.

In contrast to the sender side, the receiver (Figure 11(b))
exhibits an overall lower consumption as it effectively re-
quires fewer interactions with the radio. The CPU gets noti-
fied asynchronously by the radio once data is available, and
can then read and process the packet. Setting the CPU fre-
quency to half reduces the consumed energy by ≈ 40 % –
again at a very small temporal performance penalty of 2 %.
The relative energy savings for slowing down to 1/10th are
slightly smaller (≈ 69 %), which is partially related to the
significantly bigger performance impact of ≈ 44 % increase
in time. Packet processing only starts after a complete recep-
tion, which—if decelerated—stretches the time to become
ready for the next reception by freeing the frame buffer. This
effectively causes more retransmissions. The sender runs at
its default high core frequency and hence does not reduce
stress towards the receiver. Coordinating clock management
across nodes could potentially improve this further. In this
paper we focus on the case of an unaltered environment, as
in practice node performance is not assumed to be uniform
and protocols must be able to cope with that.

These results clearly show that with ScaleClock both
communication directions can leverage unused optimization
potentials without sacrificing performance.
Impact of payload size. The potential for energy savings
also depends on the packet size. Figure 12(a) shows the re-
lation between energy consumption, transmission time, and
average current for different payload sizes. All metrics of
the default case are compared to the energy optimized con-

figuration. Energy values are normalized to the highest en-
ergy value (i.e., the unoptimized transmission of the biggest
payload of 256 B). Notably across all packet sizes, the trans-
mission times increase far less than the energy consumptions
reduce. One reason for this is that even the smallest packet
still induces a relevant amount of communication towards
the radio module, which is also throughput limited because
of the SPI bus. Additionally, even a single byte of payload
comes with several bytes for involved communication pro-
tocols. The average current is flat for the default and the
optimized variant, uncorrelated with the packet size. In the
optimized case the relative time penalty grows towards the
smallest payload (1 Byte) compared to higher payloads as
the processing time (limited by the slower CPU speed) be-
comes a more dominant factor.

Three significant differences become apparent at the
receiver-side (see Figure 12(b)): (i) the smaller average cur-
rent consumption across the full set of measurements; (ii)
the average current now noticeably increases for very small
packets, which declines slower for bigger payloads; (iii) the
temporal performance is overall more affected by the energy
optimization. This is directly reflected by the level of energy
savings in the optimized case, clearly visible when compar-
ing the values of bigger payloads to the sender case.
Impact of clock topology. Last, we investigate the effect of
adapting clock topology, i.e., the different clock paths used
to derive a specific frequency. Figure 13(a) compares the
energy for transmission with different core clock topologies
using either LV or FF policy. Here, all energy values are nor-
malized to the energy consumption of transmitting the same

0 50 100 150 200 250
Payload Size [Byte]

0.1

0.2

0.3

0.4

E
n
e
rg

y
[N

o
rm

a
li

z
e
d
] Core Clock Topology (Policy)

MSI (FF)
MSI (LV)

HSI16 (FF)
HSI16 (LV)

HSI16-PLL (FF)
HSI16-PLL (LV)

MSI-PLL (FF)
MSI-PLL (LV)

(a) Sending

0 50 100 150 200 250
Payload Size [Byte]

0.1

0.2

0.3

0.4

E
n
e
rg

y
[N

o
rm

a
li

z
e
d
]

Core Clock Topology (Policy)
MSI (FF)
MSI (LV)

HSI16 (FF)
HSI16 (LV)

HSI16-PLL (FF)
HSI16-PLL (LV)

MSI-PLL (FF)
MSI-PLL (LV)

(b) Receiving

Figure 13: Energy impact of payload sizes, comparing the default (high frequency) and different topology configurations.

payload while operating at the default core clock topology
(in this case MSI-PLL at static frequency of 80 MHz). In all
cases, the energy efficiency improvements are slightly lower
or very small payloads. It is possible to achieve significant
energy savings of up to 70 % with FF and more than 77 %
with LV policy for any topology setting. Yet, being able to
switch the topology improves energy efficiency by at least
another 6 % and up to 14 % when comparing to only adapt-
ing frequency via the top-most topology.

Figure 13(b) shows the equivalent results for the receiver
side. The relative energy savings are slightly lower due to
the generally lower current, as we already observed in Fig-
ure 11(b). This partially derives from a reduced bus commu-
nication with the radio module because of asynchronous trig-
gering of processing steps. In contrast, the sender requires
several steps that poll the radio for register state changes
via the SPI bus. Different from the sender, there are also
cases where different topology configurations outperform
others. This can be seen for payloads below 50 B (HSI16
vs MSI-PLL) and hints at certain dynamic application condi-
tions that may change which topology is most preferable.

Overall, these results bolster our assumption that versatile
dynamic clock reconfiguration is valuable for leveraging the
full energy optimization potential of low-power hardware.
7 Related Work

Even after more than a decade of research on advanced
dynamic energy management for constrained devices [4], the
limit on power consumption keeps getting pushed lower [18].
More devices leave batteries behind and adopt intermittent
power sources [19, 20]. Adaptability becomes a key feature
for optimizing energy consumption under dynamic condi-
tions [21] and development paradigms shift towards systems
with more sophisticated abstractions [2]. Following this per-
spective, we briefly highlight related work that guides future
directions which are not yet applicable to our domain. IoT
related solutions are then discussed in more detail for the re-
lated areas of DVFS and energy efficient networking.

Simonović et al. [17] propose to encode clock trees using
a template based formal language, which eventually could
be provided by manufacturers. Such common representation
of clock trees would mitigate the error-prone manual trans-
lation from data sheets. In a case study, they model a rather
complex multiprocessor system-on-a-chip but do not share
details on the application or quantitative performance results.

The Common Clock Framework (CCF) [22] of Linux

handles clock configuration via its device tree [23]. CCF
uses dynamic memory allocation, recursive operations, and
large data structures, all of which are avoided on constrained
MCUs. Furthermore, it can not explore configurations.

Liu et al. [24] propose EA-DVFS, an energy aware DVFS
approach designed for energy harvesting systems that run
tasks at an appropriate clock speed depending on energy
availability. The authors evaluate their approach on a rather
powerful embedded system with a processor running up to
1 GHz. They focus on real-time systems where the energy
savings reduced deadline misses by more than 50 %.

DVFS continues to trickle down from data centers [25],
personal computers and smartphones to more constrained
target devices like wireless sensors [8, 26, 27]. Chiang et
al. [10] propose a dynamic clock management system that
aims for power reduction of tasks limited by IO operations
and switches between distinct clocks for that purpose. Dif-
ferent to our work, they use an implicit mechanism that man-
ages the active clock. We employ a proactive online as-
sessment to provide fine-grained, energy-aware processing
adaptations for tasks. Further, we consider an abstract clock
model, advanced topology control via complex transitions,
and voltage scaling in addition to frequency scaling.

Ahmed et al. [9] propose D2VFS, a discrete DVFS vari-
ant for the intermittent device class. It scales down frequency
and voltage as the supply capacitor empties during operation
to increase clock cycles available for processing. In contrast
to ScaleClock it limits possible frequencies to a small sub-
set, instead of providing full control over the clock tree. Our
proactive assessment method steers system performance to-
wards given optimization goals. D2VFS is reactive and does
not aim for a generic clock configuration architecture.

Kulau et al. [8] propose IdealVolting, which leverages
safety margins of the manufacturer voltage level specifica-
tion by undervolting far below the specification limits, en-
abling energy savings of more than 40 %. In this work, we do
not undervolt below recommended specification limits and
employ hardware with integrated voltage scaling capability.

Antonio et al. [26] introduce a programmable power man-
agement on Wireless Sensor Network (WSN)-class devices
that controls DVFS and power gating on the chip level.
Their work is orthogonal to ours, as they focus on auto-
matic power gating and DVFS implemented in hardware by
a custom design on the register-transfer level. ScaleClock in-
stead improves software control for devices that already pro-

vide those features. Since such devices are becoming more
widely available [28], we investigate how these features can
be uniformly exposed to upper software layers. We want
to bridge the gap between specific hardware capabilities and
energy-aware software which is platform-agnostic.

Improved energy efficiency of low power radio communi-
cation was approached on higher layers with topology con-
trol algorithms [29], and the physical layer via ultra low
power wake up radios [30], or polymorphic radios that dy-
namically adapt between active and backscatter transmis-
sions [31]. As our work exploits energy savings related to
the common fundamental mismatch between CPU and radio
throughput, we expect systems with such ultra low-power ra-
dios to also significantly benefit from our solution.
8 Conclusion and Outlook

In this paper, we proposed ScaleClock, an approach for
generic online clock reconfiguration that suits constrained
IoT devices. We reduced the complexity of managing clock
dependencies by modeling clock trees as simple, reusable
base components with a memory efficient way for encoding
configuration parameters and constraints. Based on this lean
model, we could enable dynamic exploration and reconfigu-
ration of clock trees at runtime. We demonstrated the validity
of our concept by implementing ScaleClock on two indepen-
dent hardware platforms and evaluated its significant impact
on energy savings when used for cross-platform DVFS.

With ScaleClock we have a tool at hand that allows for
fine-grained control of core system parameters. This may
help to master emerging challenges. Future directions of
this research are threefold. First, additional control feedback
mechanisms should be investigated across manifold applica-
tion scenarios, including complex IoT networks and services.
Second, our algorithms shall be studied in a supervised long-
term deployment. Third, our generalized, hardware-agnostic
access to the clock configuration shall give rise to new use
cases and applications of timekeeping and signal generation.
Artifacts: All artifacts are available openly on GitHub
https://github.com/inetrg/RIOT/tree/ScaleClock
Acknowledgements: Funding was provided by the Ham-
burg sharing.city.college of ahoi.digital and the BMBF
project PIVOT.
9 References

[1] A. Dunkels et al., “Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors.” in Proc. of IEEE LCN. Los
Alamitos, CA, USA: IEEE Computer Society, 2004, pp. 455–462.

[2] A. Levy et al., “Multiprogramming a 64kB Computer Safely and Ef-
ficiently,” in Proc. of SOSP ’17. ACM, 2017, p. 234–251.

[3] E. Baccelli et al., “RIOT: an Open Source Operating System for Low-
end Embedded Devices in the IoT,” IEEE Internet of Things Journal,
vol. 5, pp. 4428–4440, December 2018.

[4] X. Jiang et al., “An Architecture for Energy Management in Wireless
Sensor Networks,” SIGBED Review, vol. 4, pp. 31–36, July 2007.

[5] M. Rottleuthner, et al., “Sense Your Power: The ECO Approach to
Energy Awareness for IoT Devices,” ACM TECS, vol. 20, no. 3, pp.
24:1–24:25, March 2021.

[6] S. Eyerman and L. Eeckhout, “Fine-Grained DVFS Using on-Chip
Regulators,” ACM TACO, vol. 8, Feb. 2011.

[7] A. Castagnetti et al., “Power Consumption Modeling for DVFS Ex-
ploitation,” in 13th Euromicro Conf. on Digital Systems Design. NJ,
USA: IEEE, September 2010, pp. 579–586.

[8] U. Kulau et al., “IdealVolting: Reliable Undervolting on Wireless Sen-
sor Nodes,” ACM TOSN, vol. 12, April 2016.

[9] S. Ahmed et al., “Intermittent Computing with Dynamic Voltage and
Frequency Scaling,” in Proc. of EWSN ’20. Feb. 2020, pp. 97–107.

[10] H. Chiang et al., “Power Clocks: Dynamic Multi-Clock Management
for Embedded Systems,” in Proc. of EWSN ’21. Feb. ’21, p. 139–150.

[11] P. Levis et al., “TinyOS: An Operating System for Sensor Networks,”
in Ambient Intelligence, Weber et al., Springer, 2005, pp. 115–148.

[12] D. H. Kim et al., “Racing and Pacing to Idle: Theoretical and Empir-
ical Analysis of Energy Optimization Heuristics,” in 2015 IEEE 3rd
Int. Conf. on CPS, Networks, and Applications, 08 2015, pp. 78–85.

[13] Keithley, “Model DMM7510 7-1/2 Digit Graphical Sampling Multi-
meter Specifications,” https://de.tek.com/sitewide-content/marketing-
documents/m/o/d/model-dmm7510-7-1-2-digit-graphical-sampling-
multimeter-specifications, October 2016.

[14] S. Sudevalayam and P. Kulkarni, “Energy Harvesting Sensor Nodes:
Survey and Implications,” IEEE Communications Surveys & Tutori-
als, vol. 13, pp. 443–461, March 2011.

[15] N. A. Bhatti et al., “Energy Harvesting and Wireless Transfer in Sen-
sor Network Applications: Concepts and Experiences,” ACM TOSN,
vol. 12, pp. 24:1–24:40, August 2016.

[16] A. Kansal et al., “Power Management in Energy Harvesting Sensor
Networks,” ACM TECS, vol. 6, pp. 32–44, Sept. 2007.

[17] M. Simonović et al., “An Approach to Modeling Clock Tree of a
Complex System-on-Chip,” in 2016 24th Telecommunications Forum
(TELFOR). Piscataway, NJ, USA: IEEE, November 2016, pp. 1–4.

[18] G. Kazdaridis et al., “Nano-Things: Pushing Sleep Current Consump-
tion to the Limits in IoT Platforms,” in 10th Int. Conf. on the Internet
of Things, ser. IoT ’20. New York, NY, USA: ACM, 10 2020.

[19] D. Jagtap and P. Pannuto, “Reliable Energy Sources as a Foundation
for Reliable Intermittent Systems,” in 8th WS Energy Harvesting and
Energy-Neutral Sensing Systems (ENSsys). ACM, 11 2020, p. 22–28.

[20] A. Y. Majid et al., “Continuous Sensing on Intermittent Power,” in
2020 19th ACM/IEEE IPSN, IEEE, April 2020, pp. 181–192.

[21] A. Bakar et al., “REHASH: A Flexible, Developer Focused, Heuris-
tic Adaptation Platform for Intermittently Powered Computing,” Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 5, Sep. 2021.

[22] Mike Turquette. The Common Clk Framework. https://www.kernel.
org/doc/Documentation/clk.txt.

[23] Embedded Linux Wiki. Device Tree Reference. https://elinux.org/
Device Tree Reference.

[24] S. Liu et al., “Energy Aware Dynamic Voltage and Frequency Selec-
tion for Real-Time Systems with Energy Harvesting,” in Proceedings
of the Conference on Design, Automation and Test in Europe, ser.
DATE ’08. New York, NY, USA: ACM, March 2008, pp. 236–241.

[25] S. Bhalachandra et al., “Improving Energy Efficiency in Memory-
Constrained Applications Using Core-Specific Power Control,” in
Proceedings of the 5th International Workshop on Energy Efficient
Supercomputing, ser. E2SC’17. New York, NY, USA: ACM, 2017.

[26] R. Antonio et al., “Implementation of Dynamic Voltage Frequency
Scaling on a Processor for Wireless Sensing Applications,” in TEN-
CON 2017. IEEE, Nov. 2017, pp. 2955–2960.

[27] T.-T. Zhu et al., “Error-Resilient Integrated Clock Gate for Clock-Tree
Power Optimization on a Wide Voltage IOT Processor,” IEEE Trans.
Very Large Scale Int. (VLSI) Systems, vol. 25, pp. 1681–1693, 2017.

[28] H.-S. Kim et al., “System Architecture Directions for Post-SoC/32-bit
Networked Sensors,” in Proc. of the 16th ACM SenSys. New York,
NY, USA: ACM, November 2018, pp. 264–277.

[29] J. Ma et al., “Energy-Efficient Localized Topology Control Algo-
rithms in IEEE 802.15.4-Based Sensor Networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, pp. 711–720, 4 2007.

[30] R. Piyare et al., “Ultra Low Power Wake-Up Radios: A Hardware
and Networking Survey,” IEEE Communications Surveys Tutorials,
vol. 19, pp. 2117–2157, 7 2017.

[31] M. Rostami et al., “Polymorphic Radios: A New Design Paradigm for
Ultra-Low Power Communication,” in 2018 ACM SIGCOMM. New
York, ACM, 2018, p. 446–460.

https://github.com/inetrg/RIOT/tree/ScaleClock
https://de.tek.com/sitewide-content/marketing-documents/m/o/d/model-dmm7510-7-1-2-digit-graphical-sampling-multimeter-specifications
https://de.tek.com/sitewide-content/marketing-documents/m/o/d/model-dmm7510-7-1-2-digit-graphical-sampling-multimeter-specifications
https://de.tek.com/sitewide-content/marketing-documents/m/o/d/model-dmm7510-7-1-2-digit-graphical-sampling-multimeter-specifications
https://www.kernel.org/doc/Documentation/clk.txt
https://www.kernel.org/doc/Documentation/clk.txt
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference

	Introduction
	The Clock Tree and its Forest of Problems
	Common Building Blocks for Clock Trees
	Configuration Space(s)
	Complex Clock Configuration Transitions
	Hard Resource Limits

	ScaleClock Approach for Self-Optimization
	Resource Demands are Dynamic
	Assessment of Resource Utilization
	Dynamic Scaling
	Interfacing Functional Capabilities

	ScaleClock Implementation
	Layered Architecture for Flexibility
	Property Encoding
	Notification & Transaction Mechanism

	Evaluation of ScaleClock
	ScaleClock Core Functions
	ScaleClock overhead

	Case Study: Energy-Efficient Networking
	Related Work
	Conclusion and Outlook
	References

