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Abstract
In this paper, we present the design of SpeedCollect, an

optimized many-to-one communication that uses capture ef-
fect based synchronous transmission. SpeedCollect is de-
signed to be more reliable to network characteristics by re-
quiring only simple network topology information that can
be easily supported. In addition, SpeedCollect provides more
flexibility in the application computation’s timing to ease ap-
plication and protocol development.

We have designed and implemented SpeedCollect on
Contiki OS. SpeedCollect can run on three hardware plat-
forms using the same source code without modification. The
evaluation shows that SpeedCollect can reduce the latency of
data collection from a base many-to-many communication
protocol by an average of 20%. Compared to the state-of-
the-art, SpeedCollect can increase data collection throughput
by up to 3.4x.

1 Introduction
Wireless sensor network (WSN) plays an important role

in smart cities and industry 4.0 [23, 31]. WSN needs flex-
ible and reliable protocols that can adapt to its dynamic
characteristics [5, 16, 27] and low-power constraints [1, 15].
Data collection is a common use case in WSN. With more
sensors modality, a massive amount of data communication
is required which motivates the research direction for high
throughput and efficient data collection. Traditional proto-
cols in WSN use MAC protocols to manage collision (e.g.
CSMA) and routing protocols (e.g. Collection Tree Proto-
col (CTP) [14], RPL [34]) that require link estimation and
end-to-end route discovery. These MAC and routing pro-
tocols incur substantial overhead that significantly impacts
throughput, latency, and energy efficiency.

Use of synchronous transmission in WSN protocol de-
signs have provided some unique advantages that overcome

some of the limitations of traditional approaches [37]. Pio-
neered by Glossy [13] many synchronous transmission based
protocols have shown to achieve high reliability and low
latency. By using broadcast-based communications, these
protocols avoid the need for link estimation and end-to-end
route discovery, thus substantially reducing the overhead in-
curred.

Many existing protocols are based on synchronous trans-
mission such as LWB [12], Blink [36], and Chaos [22].
Hence, even if a data collection application that requires
many-to-one communication is to be supported, these pro-
tocols still have to perform many sequential one-to-all com-
munication rounds. The performance of Glossy-based pro-
tocols are also very sensitive to small drift in timing and thus
are harder to be ported to a more diverse set of devices.

Another approach to implementing synchronous trans-
mission is to rely on capture effect. This is the approach
taken by Codecast [29], Mixer [17], Crystal [19], and
Weaver [32]. With capture effect, these protocols have less
stringent timing requirements and have the potential to be
more portable to new platforms. However, Codecast and
Mixer are designed to support many-to-many communica-
tion and are not optimized for many-to-one communication
while Crystal and Weaver operate by performing many con-
current one-to-all Glossy floods.

In this work, we aim to answer the following questions.
(1) Since many-to-one communication is a common use case
in WSN, rather than supporting general many-to-many com-
munication, can we do better if the protocol is optimized to
support many-to-one communication? (2) How can the pro-
tocol be designed such that it imposes minimum timing re-
quirements on both processing and communication? Remov-
ing these timing constraints would make the protocol easier
to modify and port to different platforms, important consid-
erations for practical deployment.

Many-to-one communication offers an opportunity for
improvement over many-to-many communication since data
is needed to be delivered to a single node (sink). On the
other hand, a key performance bottleneck is the conges-
tion/contention around the sink whereby all the nodes are
trying to deliver to the sink. One surprising observation we
have is that sharing the state of the data items collected by
the sink through acknowledgments does not significantly re-
duce the data collection latency by itself. Instead, a small
amount of topology information, in the form of strong 1-hop



bidirectional neighbors of the sink, goes a long way.
Taking these observations into account, we present

SpeedCollect, a data collection protocol that uses capture
effect based synchronous transmission. Building on a base
layer that uses local broadcast and network coding, we incor-
porate additional features that include (1) acknowledgments
from sink and neighbor nodes, (2) topology information of
one-hop neighbors of the sink, (3) schedule transmissions of
the sink’s 1-hop neighbors, and (4) a polling mode by the
sink node.

In terms of implementation, SpeedCollect does not im-
pose strict timing requirements. Similar to Mixer [17],
SpeedCollect’s design decouples the communication and
computation layers to make porting and programming eas-
ier. The difference is that the processing time in SpeedCol-
lect can be varied independently of the communication slot
length and there is no need to ensure that packet processing
has to be completed within a strict time limit.

The contributions of this paper are as follows:
• We present the design of SpeedCollect, an optimized

data collection protocol that uses capture effect based
synchronous transmission. SpeedCollect incorporates
sink/local acknowledgments and collision management
at the sink node (using TDM and polling) to improve
data collection performance.

• SpeedCollect allows application computation to be
more flexible, while allowing communication slot time
to be reduced independently from the computation time.
Specifically, it requires software timers that support res-
olutions in orders of tens of microseconds, a require-
ment that can be easily supported on existing platforms.

• We have implemented SpeedCollect on Contiki OS.
SpeedCollect requires minimum support from the un-
derlying hardware and has been ported to run on
TelosB, CC2650 SensorTag, and Zolertia. The three
platforms operate in the 2.4GHz spectrum. The same
source code can be used on all three hardware platforms
with only changes needed in the compilation flags for
the different targets.

In the evaluation performed on the Indriya testbed [3], we
show that SpeedCollect can reduce the latency of data col-
lection from a base many-to-many implementation by an av-
erage of 20% when many-to-one enhancements are included.
Compared to Crystal and Mixer, SpeedCollect increases data
collection throughput by up to 3.4x when collecting 60 bytes
of data from 33 nodes. In particular, SpeedCollect has a more
robust performance compared to Crystal and Mixer when the
sink node is varied and works well even in scenarios with a
poorly connected sink.

The paper is organized as follows. Background and re-
lated work are presented in §2. The design of SpeedCol-
lect is presented in §3, followed by the design of the under-
lying communication protocol in §4. The evaluation details
are presented in §5. Finally, we conclude in §6.
2 Background & Related Work

The conventional approach in wireless protocols is to
avoid collisions due to concurrent wireless transmissions be-
cause such collisions result in likely packet losses. CSMA

and TDMA MAC protocols are examples of such ap-
proaches. On the other hand, the idea of synchronous trans-
mission presents a different design trade-off. In synchronous
transmission, collisions do not always lead to packet losses.
Instead, under specific circumstances, it is possible for a re-
ceiver to successfully receive a packet even in the presence
of superimposed signals from multiple transmitters.

There are generally two forms of synchronous transmis-
sions that researchers have exploited. The first is the so-
called ”constructive interference” introduced by Ferrari et
al. in [13] and the second is based on capture effect [25].
An overview of synchronous transmission and a survey of
related protocols can be found in Zimmerling et al [37].

Glossy-Based Protocols Glossy is a protocol proposed
by Ferrari et al. [13] that utilizes the observation that re-
ception has a high likelihood to be successful if multiple
senders transmit identical packets with small-time offsets
among the transmitted signals. In Glossy’s design, using the
IEEE 802.15.4 radios, multiple senders have to initiate their
transmissions with a tiny temporal difference that should be
smaller or equal to 0.5µs. Based on performing network-
wide flooding of the same packet, Glossy can achieve high-
resolution time synchronization in multi-hop networks. For
example, the evaluation shows that Glossy can achieve an
average synchronization error of 0.4µs over 8 hops.

Many synchronous transmission protocols were subse-
quently developed based on Glossy, including low-power
wireless bus (LWB [12]), data dissemination (Splash [8]),
and point-to-point communication (P3 [9]). As these pro-
tocols are based on Glossy, operations are performed using
many rounds of one-to-all flooding of the same packets and
strict time constraints need to be followed to ensure high re-
liability.

Capture Effect Based Protocols Capture effect [25, 4,
11, 24, 35] is a well-known phenomenon in wireless trans-
mission. Successful packet reception can occur when the
signal strength of one transmission dominates over all the
other transmissions. Specifically, the receiver can decode a
packet if the received signal from one node is at least 3 dB
stronger than the sum of the received signals from all other
nodes. However, the difference in signal strength alone is not
sufficient to ensure packet reception. Timing matters as well.
For capture effect to be successful, the competing transmis-
sions have to be transmitted within the preambles of other
transmissions. For the IEEE 802.15.4 ZigBee radio, this is
about 128µs, which is more than 200 times larger than the
timing requirement of Glossy. Thus, synchronous transmis-
sion protocols based on capture effect have the benefit that
the timing requirement is much more relaxed, allowing these
protocols to have the potential to be implemented on a more
diverse set of platforms. For receptions to be successful, dif-
ference in signal strength is the determining factor. Thus,
packet reception can be successful even if multiple transmit-
ters transmit different packets. This is an important differ-
ence that provides significant flexibility to the protocol de-
sign over Glossy-based protocols.

Several capture effect based protocols have been pro-
posed, including for many-to-many communications (Code-
cast [29], Mixer [17]), network agreement (Chaos [22] and



A2 [2]), network flooding [26], collision resolution [33], and
data collection (Crystal [19] and Weaver [32]).

Protocols like Chaos and A2 are designed as network ser-
vices and are not suitable for dissemination of large amount
of data. On other hand, Codecast and Mixer are designed for
many-to-many data dissemination. Since packet reception
using capture effect is much less reliable than Glossy floods,
network coding is used in Codecast and Mixer to improve re-
liability and to increase the rate of useful information flow in
order to achieve higher throughput. Both protocols support
general many-to-many communication and do not optimize
for many-to-one communication pattern. Crystal and Weaver
operate by performing many concurrent one-to-all Glossy
floods. In Crystal and Weaver, a fixed initiator (sink) starts
the communication with a Glossy synchronous flood. After
the end of the Glossy round initiated by the sink node, all the
source nodes start Glossy rounds competing to deliver their
values to the sink which will initiate a Glossy round to ac-
knowledge the value received and the corresponding sender
will stop sending its value in the subsequent rounds.

Summary SpeedCollect differs from previous work in the
following ways. First, SpeedCollect does not need many
rounds of one-to-all flooding of the same packet as is the
case in Crystal and Weaver. Such protocols are designed for
less number of sources as the probability of collisions will
be increased with more sources competing to deliver their
messages to the sink. Second, while SpeedCollect also uses
capture effect and network coding like Codecast and Mixer,
it is specifically designed to provide better performance for
many-to-one communication.

3 Data Collection Design
In many-to-one communication, a gateway node (or sink)

collects data from sensor nodes which is a common usage
scenario in WSN. In this section, we first present an overview
of the data collection challenges and then techniques that ad-
dress these challenges. By incorporating these techniques,
the sink can perform data collection with high reliability and
low latency even when the sink node has poor connectivity.
3.1 Overview

Even though many-to-one communication can be sup-
ported as a special case of many-to-many communication,
if the objective is to specifically improve the performance
of many-to-one communication, there are specific challenges
that need to be addressed:

1. In many-to-one communication, it is required to deliver
all the messages from the entire network to one node.
Hence, besides needing to deal with unreliable wireless
links in general, a poorly connected gateway poses even
more severe challenges.

2. Directing the traffic toward the sink is a challenge as
it requires some knowledge of network topology and
location of the sink node. As wireless links are unreli-
able and asymmetric links are common, the overhead of
approximating the topology can easily negate any gain
from using synchronous transmission.

3. With a many-to-one communication pattern, nodes
close to the sink are often required to relay data for all

other nodes to the sink. This naturally leads to high
transmission rates and likely collisions around the sink
node.

To address the first challenge, we incorporate an impor-
tant key design element with the main idea of replicating the
messages from their originator to many other nodes in the
network. This can help handle the first challenge as even
with a poorly connected gateway, having the same messages
replicated at many nodes in the network will help to increase
the delivery probability to the sink.

To achieve message replication, we use local broadcast
performed using capture effect based synchronous transmis-
sion as a basic layer. However, such local broadcast has low
reliability. In SpeedCollect, we overlay the floods by let-
ting nodes mix packets which achieves high efficiency with
many-to-many communication [10, 21]. More details will be
discussed in Section 3.2.

For the second challenge, when it comes to directing the
traffic towards the sink, using topology information can help.
This can be done by defining the node position relative to
the sink node using the hop count for each node from the
sink. However, such an approach has limitations due to the
existence of asymmetric links whereby the link quality in
one direction is much better than in the other direction. Link
asymmetry makes the usage of hop count from the sink much
more complex since for the distance to work well, we may
need to determine the link quality between two nodes in both
directions. For example, a node that can hear the sink may
decide that it is one hop from the sink. However, if the link is
asymmetric and the sink cannot receive from this node, then
the node should not be considered a neighbor of the sink as
it cannot deliver any message to the sink directly. Such link
asymmetry issue applies to all nodes since nodes ”closer” to
the sink may not be able to deliver messages to nodes ”fur-
ther” from the sink. To address this challenge, we propose to
use the notion of distance from the sink only for nodes that
are bidirectional neighbors of the sink. While extra overhead
will be incurred, the number of such bidirectional neighbors
of the sink is small. If the link quality is sufficiently high,
these links have also been observed to be very stable [7].
The use of these bidirectional neighbors is presented in Sec-
tion 3.3.

Finally, with the last challenge, a simple coordination
scheme among the sink node and its 1-hop bidirectional
neighbors, using Time Division Multiplexing (TDM) and
polling, can significantly mitigate congestion around the
sink. Note that TDM is only for communication between
the sink and its bidirectional neighbors. Synchronous trans-
mission is used everywhere else.
3.2 Network Coding

Many network coding schemes have been presented in the
literature (LT codes [6], RL codes [18], Raptor codes [30],
Online codes [28], and Growth codes [20]). Network coding
scheme addresses the issue of what to transmit. However,
given that capture effect is used, constant transmissions will
result in a very high collision and low reliability. So another
important issue is to determine when to transmit.

In SpeedCollect, we use a combination of two techniques,
namely, the network-assisted network coding (NANC) intro-
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Figure 1: SpeedCollect’s packet structure.

duced in Codecast [29] and Random Linear Network Coding
(RLNC) [18]. Codecast uses neighbors’ feedback to help in
the decision of what and when to transmit. In NANC, nodes
encode new vectors to send from what they have already de-
coded. Crafting the new packet from what is already de-
coded allows for choosing the degree (number of data items
to be added) of the new coded bit-vector and its correspond-
ing coded payload. This is useful as it gives a high level of
control on what to send next and reduces uncertainty. How-
ever, depending only on this technique has a limitation as it
does not allow nodes to create combinations from received
packets that are not yet decoded. These limitations are ad-
dressed by using Random Linear Network Coding (RLNC)
which allows nodes to send random linear combinations of
received packets. In RLNC, sending nodes generate a new
packet by adding random rows from its coding matrix and
the received coded payloads.

Figure 1 shows the layout of SpeedCollect’s packet. The
structure has the following fields:

• Source node ID: which is used for the sink 1-hop bidi-
rectional neighbors.

• Coded bit vector: meta-information for the message in
the coded payload.

• Coded Payload: the payload of the packet.

• Feedback bit vector: which is used by nodes to feed-
back on their current status.

• Slot #: for slot number consistency between the sink
and its neighbors.

• Flags: for signals initiated by the sink nodes.
Following, we will describe the network coding design

choices that determine what and when to transmit?

What to transmit? Deciding on which messages to in-
clude in each transmitted packet is a decision that takes into
account the node status, neighbors’ status, and the stage of
dissemination. We break the decision process into four parts:
(1) at the beginning of a round, (2) rank increase, (3) based
on what is decoded, and (4) based on what is received (not
yet decoded).

• At the beginning of each round, each node with data
starts by sending its data items which are considered
new innovative information for its neighbors.

• When a node receives a new packet, it uses the received
coded packet and the coding matrix to check if a new
innovative packet is received. The packet is innovative
if the rank of the coding matrix increases. Whenever
a node increases the rank of its coding matrix, it will
include the newly added row in the packet to be trans-

mitted. This is to ensure it is sharing what it has recently
learned from its neighbors. This is justified by the fact
that if this information is new to a node, it will be useful
to its neighbors with a high probability.

• Sending nodes to enter into a combined encoding pro-
cess to build a new packet. The first is using what a
node has already decoded and based on the feedback
from its neighbors. The first step is more NANC-based.
Each node chooses a degree based on what it has al-
ready decoded and on the least rank among its neigh-
bors. The chosen degree determines how many decoded
data items will be used to build up the new packet. Us-
ing this degree, a node will start by adding what it has
and is missing from its recently connected neighbor. If
the number of added data items is less than the pre-
chosen degree, intersected data items between the node
and its neighbors can be added. Adding more data items
may help other neighbors that have not received these
data items.

• If the first encoding process failed to create an inno-
vative packet to the neighbor, another encoding mecha-
nism is used which is based on RLNC. A node will loop
through its coding matrix starting from a missing row in
the recent feedback. If the missing row is the same as
the last choice, the node will start the loop from a ran-
dom position. Looping through the coded matrix, each
row will be added to the packet until the resulting packet
is innovative to the recent neighbor or until predefined
threshold rows are added.

When to transmit? A node transmits whenever it learns
something new (increases the rank of its coding matrix).
When there is no new information, a node transmits with
probability. In all the experiments, this probability is set to
0.1.

3.3 Bidirectional Neighbors
The sink’s 1-hop bidirectional neighbors are those nodes

that have links of high reliability in both directions. These
bidirectional neighbors perform their tasks differently in two
ways. First, these nodes control what all other nodes in the
network transmit based on what they hear from the sink. Sec-
ond, these nodes focus on helping only the sink, while other
nodes in the network focus on disseminating new informa-
tion to all their neighbors.
3.3.1 Acknowledgements

All nodes in the network use local ACK for feedback on
what they have already received. This will help their neigh-
bors to decide on the proper degree as well as what to in-
clude in the next packet. Using local ACK between nodes in
the network is motivated by the idea of replicating the mes-
sages to many nodes in the network. The 1-hop bidirectional
neighbors use different feedback compared to the rest of the
network. Each of these nodes performs a union of what it
has and what the sink node has already received to compute
what we called the union ACK. Nodes receiving the union
ACK incorporate this ACK information into their state. As a
result, the rank of the completed matrix seen by other nodes



is the union of all the data received by the sink and all the
bidirectional neighbors. In this way, nodes will prioritize
these ”unseen” data items reach the bidirectional neighbors
faster and hence to the sink.

What to send? The 1-hop bidirectional neighbors will al-
ways use the feedback coming from the sink when encoding
a new packet to send. For the first part of the combined en-
coding which is based on NANC, when these nodes build a
new packet from what they have already decoded, they will
only add what they have and missing at the sink. If the added
rows are less than the chosen degree, they will not add from
the intersection between them and the sink. This is to fo-
cus on always helping the sink node and directing the traffic
towards it.

When to Send? A well-known challenge to address in
capture effect based synchronous transmission is how to in-
crease reception reliability while ensuring that some node is
transmitting. If the decision is probabilistic and not coordi-
nated, when the nodes are transmitting too aggressively, we
end up losing a lot of packets due to collision. This is partic-
ularly problematic around the sink.

This motivates us to incorporate the information of the
sink 1-hop bidirectional neighbors in the transmission deci-
sion. In SpeedCollect, the sink and its 1-hop bidirectional
neighbors use a TDM scheme to decide on which slot to
transmit. This is done using a slot number shared by the
sink in each transmitted packet to update its neighbors. Note
that such a scheme does not disable capture effect as other
nodes in the network still perform probabilistic transmission
decisions. Further, there can be inconsistency in the values
of the slot number seen by the neighbors caused by packet
losses and loss of synchronization. Nevertheless, adding the
TDM scheme significantly reduces collisions around the sink
while retaining high channel utilization.

Sink Node As the sink node does not have data to trans-
mit, it also behaves differently than the rest of the network.
First, it only needs to send/update feedback in the form of
acknowledgments to the rest of the network. The sink sends
based on the TDM allocation. In addition, it will only send
when it has learned a sufficient amount of new information,
determine by a sufficiently large change in the rank of its
coding matrix.

3.4 Polling
In this section, we discuss another design mechanism

which can mitigate congestion at the sink. This is motivated
by the observation that if a sink’s 1-hop bidirectional neigh-
bor has a significant amount of new data, it can be more
efficient for this neighbor and the sink to simply switch to
another channel to communication rather than wait for the
neighbor to transmit on the allocated TDM slot. In Speed-
Collect, the sink can thus instruct a specific bidirectional
neighbor to switch to another channel using a polling mode.

Polling uses a two-way handshake fashion. When the sink
node decides to poll one of its neighbors, it adds the informa-
tion inside the flag but it does not switch to the other channel
until it receives an acknowledgment from the polled neigh-

bor on the switch. Once the polled neighbor receives the
switch flag from the sink, it acknowledges the message and
then switches to the other channel.

One limitation of polling is that the switch command from
the sink and the acknowledgment from the polled neighbor
can be lost. The choice of a two-way handshake fashion is to
make sure that if the switch is not completed properly by the
two parties, the waste will be more on the polled neighbor
rather than the sink as the polled neighbor will be the one
switching first to the other channel. Another limitation of
polling is that the sink can receive packets from other nodes
between sending the switch command and receiving the ac-
knowledgment making the switch redundant or less useful.

Due to these limitations, polling tends to work better in
cases where the 1-hop bidirectional neighbors have more
data to send initially. In such scenarios, the benefit of polling
becomes more significant.

3.5 Smart Shutdown
The network shutdown is capped by the maximum num-

ber of slots in each communication round. However, we
would like to terminate faster with a simple smart shutdown
mechanism. The termination in data collection is determined
by the sink node as the target is to deliver data to this spe-
cific node. The termination decision cannot be locally driven
by individual nodes as even if a node delivers its data to the
sink, it could be needed to relay other messages from the net-
work. In SpeedCollect, the termination decision comes from
the gateway node and is taken in two steps.

The first termination step is based on the fact that the
sink node monitors the feedback from its bidirectional neigh-
bors. Once the union of its bidirectional neighbors’ feedback
reaches full rank, the sink can send the rest of the network
to sleep. This comes from the idea that these neighbors are
reliable to deliver what they have to the sink. The second
termination step comes when the sink reaches full rank. The
sink node sends another sleep signal which puts the entire
network into sleep.

Whenever a node receives a sleep signal, it will send the
signal in the next transmitted packets for a predefined num-
ber of transmissions and then sleep if it’s eligible for sleep-
ing. A node in the group of 1-hop bidirectional neighbors is
eligible to sleep on the second sleep signal while other nodes
in the network can sleep after receiving the first sleep trigger.

4 Communication Layer
The design of SpeedCollect is driven by the goal to have a

relaxed timing synchronization requirement. We implement
our version of capture effect based synchronous transmis-
sion to decouple the communication and processing layers so
that programming using SpeedCollect has a minimum timing
constraints on the processing.

The typical implementation of communication in syn-
chronous transmission communication protocols (e.g. [13],
[12], [22], [29], [17], [19], [32]) is based on a fixed cycle
with a bounded time given for packet reception/transmission
and computation. The communication and computation cy-
cles are tightly coupled. Given that the interval between
communication slots needs to be small to maintain time syn-
chronization, there is a limit on the time between consecutive
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communications slots that can be used for computation. This
coupling also results in a trade-off between communication
slot time and computation slot time. If the time intervals be-
tween packet transmission and/or receptions are too small,
there may be very little time left for computation. If the
intervals are made larger, the throughput goes down, or la-
tency increases since the amount of communication that can
be done per unit time reduces.

SpeedCollect uses two separate processes for communi-
cation and computation to allow a complete decoupling of
processing and transmissions/receptions. There is no depen-
dency between the two processes during the round. They
only communicate through shared buffers. The timing is de-
coupled in the sense that packet processing can take longer
than a single communication slot. This separation gives the
designer full control over how the communication and com-
putation processes can work. The designer can choose to
give more time for processing to support computational ap-
plications and yet choose short communication slots to in-
crease communication and reduce latency.
Core Architecture: The communication layer is presented
in Section 4.1 and the computation layer in Section 4.2. Fig-
ure 2 shows the relation between the two layers.

4.1 Communication and Tx/Rx Buffers
Once communication commences, the communication

process is a time-grid slot of transmissions and receptions
of fixed time intervals. Scheduling the next Tx/Rx slot is
affected by the last Tx/Rx which implicitly uses the last
Tx/Rx to be a reference time for the next Tx/Rx. The du-
ration of each time grid consists of two components. The

first component is the packet on-air transmission time. We
assume that the packet sizes are the same throughout. Note
that even though the packet sizes are the same, there can be
still small variations in the packet transmission times. The
second component is a timer-driven time gap between each
TX/RX interval. This is called the TX/RX slot gap in Fig-
ure 2. Such gaps are used to provide buffers for variations
in radio send/read times and clock drifts on different nodes.
One can increase the gap length to tolerate a higher level of
variations. The number of slots in a communication round
determines the maximum time of the round. Nodes can ter-
minate before the end of the round depending on the termi-
nation policy of the application.

We would like to emphasize that the time-grid slots are
only needed during the communication round and not needed
between rounds. Also, nodes are not synchronized to their
neighbors or fixed initiator. Nodes lock onto their time grid
after the reception of the first valid frame until communica-
tion for this round completes.

On the first successful reception, the new packet will also
be inserted into the Tx Buffer. This is to ensure that there
is always (exactly) one packet in the Tx Buffer. In trans-
mission slots, a node transmits the packet in the Tx Buffer.
By having only one packet in the Tx Buffer, the application
can directly determine which packet will be transmitted next.
SpeedCollect allows the application to specify the likelihood
of a transmission with a value between 0 and 1. Hence, the
application can ask the communication layer to re-transmit
the same packet many times, transmit less often, or trans-
mit the most recent data it has received by overwriting the



packet in the Tx Buffer. The decision on whether the node
should transmit or not is thus determined by the computation
process based on the application logic.

4.2 Computation
The computation process is triggered when a node de-

cides to join a communication round (after receiving the first
valid frame and writing it into the Rx Ring Buffer). Com-
putation in SpeedCollect differs from existing synchronous
transmission based protocols in fundamental ways. As il-
lustrated in Figure 2, there is no need for computation to
start and end within a communication slot. The duration of
a computation can be much longer than a communication
slot as shown in the left part of Figure 2 (e.g. p2 and p3).
Thus, we do not control the actual processing time but in-
stead, control the time gap between processing slots. At the
end of a computation slot, a timer is set to trigger the next
computation slot. This time gap is needed to release the pro-
cessor resources for other processing tasks to be completed.
This is called the processing slot gap in Figure 2. Process-
ing times are thus completely decoupled from the transmis-
sions/receptions times.

When the computation process is triggered, it checks on
the Rx Ring Buffer. A new packet, if any, will be processed.
When processing ends, a new packet, if any, is written to the
Tx Buffer. After that, the process sets the timer for the next
slot and then goes to sleep.

5 Evaluation
The performance of SpeedCollect has been evaluated on

Indriya2 [3]. Indriya2 has two types of motes namely,
TelosB and CC2650 SensorTag deployed over three floors.
During the evaluations, Indriya2 has 34 TelosB and 17
CC2650 SensorTag available to run the experiments. Ad-
ditional experiments were done in a lab environment on a
desk for evaluation on additional hardware platforms not
supported by the testbed. Each experiment runs for a maxi-
mum of 300 communication slots.

The following metrics are used:
1. Completion time: the duration between the time the

sink wakes up to the time it collects all the data.

2. Network radio-on time: the average time for all the
nodes from when they wake up until they sleep.

3. Reliability at the sink: the percentage of (unique) data
from all sources received by the sink over all experi-
ments.

4. Throughput at the sink: the size of (unique) data from
all sources received by the sink divided by the time
taken over all experiments.

We first evaluate the performance of different design
mechanisms of SpeedCollect (Section 5.1). Next, we eval-
uate the performance of SpeedCollect using Crystal 1 and
Mixer 2 as the baseline (Section 5.2). Next, we demonstrate
the effect of varying the Tx/Rx slots gap on the performance
of SpeedCollect by running SpeedCollect on a small network

1https://github.com/d3s-trento/crystal
2https://gitlab.com/nes-lab/mixer

of devices and vary the Tx/Rx slots gap (Section 5.3). Fi-
nally, we show the performance of SpeedCollect running on
a network of three different types of sensor devices in Sec-
tion 5.4.

Unless otherwise stated, all settings in Crystal and Mixer
are set to the default values. In Crystal, the default slot length
is 10ms for the synchronization slot, 8ms for the transmis-
sion slot, and 8ms for the acknowledgment slot. In Mixer,
the slot length is set to 4ms. For SpeedCollect, the Tx/Rx
slots gap and processing slots gap are set to 3ms and 2ms,
respectively. In all the experiments, the message payload
size is set to 60 bytes. Note that since we set the Tx/Rx gap
length to 3ms, the corresponding communication slot length
for SpeedCollect (Tx/Rx gap + Tx/Rx time) is around 5.6ms.

5.1 Design Elements
In this section, we evaluate the effect of different design

elements on performance. We focus on evaluating the data
collection optimization mechanisms. We run four different
versions, each adding a new feature to the previous version,
starting with a base layer:

• Basic The base layer uses capture effect and network
coding. The transmission probability of the sink is re-
duced since the sink mostly receives data.

• ACK In this version, bidirectional neighbors to the sink
and sink acknowledgments are added to Basic.

• TDM In this version, TDM transmission among the
sink’s bidirectional neighbors is added to ACK.

• Polling In this version, a polling mode by the sink is
added to TDM.

As the performance varies with the choice of the sink
node, we show the result for a specific sink node to illus-
trate the overall trend. Results for different sink nodes will
be presented later. In this evaluation, all nodes start with one
data item with a payload of 60 bytes to be sent to the sink.

Figure 3 shows the average number of successful recep-
tions at the sink and the median completion times at the sink.
The error bars show the range between the maximum and
minimum values.

Note that successful receptions do not always imply that
the reception is useful (new information learned). The utility
of the receptions is reflected by the completion time. The
performance of Mixer is included as a baseline. There are at
least 50 runs for each version.

Besides differing in the detailed implementations of net-
work coding and transmission probabilities, Basic also dif-
fers from Mixer in the sink’s transmission probability. The
results show that Basic outperforms Mixer in terms of a
slightly higher average number of successful receptions at
the sink and shorter sink completion latency. However, when
the sink’s bidirectional neighbors and the sink’s feedback are
added, there is surprisingly little improvement in terms of la-
tency even though there is an increase in terms of successful
receptions at the sink. This can be explained as follow. While
adding acknowledgments helps to reduce redundant trans-
mission, there is a substantial collision at the sink. Without a
coordinated transmission from the neighbors, the impact on
the latency is minimum.
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Figure 3: Average number of successful receptions and sink
completion time at the sink under different versions of the
proposed mechanism.
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Figure 4: Sink Completion time using different message dis-
tribution using SpeedCollect without and with polling design
mechanism.

The results improve significantly when TDM is added
to manage the bottleneck around the sink node. Scheduled
transmissions from bidirectional neighbors increase the av-
erage number of successful receptions at the sink and reduce
the median completion time at the sink by 56% and 25%,
respectively over ACK. Note that performance improvement
builds on the use of acknowledgments.

The last feature to be added is polling, where the sink
node can ask a certain neighbor to switch to another channel
to exchange packets and back to the original channel after
that. The result shows that while polling can increase the
number of successful slots, it does not decrease median la-
tency. This can be explained as follow. Polling incurs over-
head for channel switching and in some cases, we have ob-
served that it takes several message exchanges before chan-
nel switching can be completed successfully. Hence, without
sufficient data on the bidirectional neighbors, polling may
not provide much benefit.

Overall, in this evaluation, comparing Mixer to Speed-
Collect (with all features included), we see a 133% increase
in the average number of successful receptions and a 45%
reduction in the median completion time at the sink.

When Polling is Useful: To evaluate the impact of

polling, we redistribute the data items such that the sink’s
bidirectional neighbors start with 5 messages, while the other
nodes have 1 data item each. Hence, the bidirectional neigh-
bors have more data to transmit than other nodes.

Figure 4 shows the median completion time of 2 different
sink nodes running SpeedCollect without and with polling.
The error bars represent the maximum and minimum val-
ues. As shown in the figure, while the median completion
times do not change significantly, the maximum latency is
much smaller. This shows that in cases whereby the latencies
are much longer, polling can be useful when the overhead of
channel switching is small compared to the overall latency.
5.2 Data Collection

In this section, we evaluate the overall performance of
SpeedCollect using Crystal [19] and Mixer [17] as the base-
line protocols. Each experiment runs on a network of 34
TelosB nodes, with 1 sink and 33 sources. Each source
shares 1 message of size 60 bytes payload. We show the
results for 3 different sink nodes with different completion
times on Indriya. We run each experiment for at least 110
iterations to compute the average values.

Figure 5 shows the completion time, network radio-on
time, reliability at the sink, and throughput measured at the
sink. We have chosen a node (sink 1) with good connectivity,
a node with average connectivity (sink 2), and a corner node
with bad connectivity (sink 3).

Figure 5a shows the median completion time. The er-
ror bars in the figure represent the minimum and maximum
completion times. As shown in the figure, for all the cases
with different sink nodes, the completion times for Speed-
Collect are less than Mixer. For sink node 3, the median
completion time of SpeedCollect is up to 62% lower than
Mixer.

The case is different for Crystal where we can see a higher
completion time compared to Mixer and SpeedCollect in the
case of sink node 1. However, the completion time is lower
for the poorly connected sink nodes 2 and 3. This can be
explained by the fact that with the poorly connected sink, the
sink node is not able to receive information for subsequent
rounds which results in a time-out at the sink in some cases
and the sink node goes to sleep prematurely. This is also
indicated by the lower reliability shown in Figure 5c.

Figure 5b shows the network radio-on time. For Mixer,
the network radio-on times remains more or less the same
regardless of the node chosen as the sink. The radio-on time
for each node is determined based on a local decision on
their completion and their neighbors’ completion. Hence,
some nodes can go to sleep much early when the sink is still
running. For Crystal, nodes locally decide to sleep if they
are not able to receive for multiple rounds which results in
lower radio-on time for sink node 3 compared to sink node 1.
However, this maps to very low reliability. For SpeedCollect,
the network goes to sleep on a sleep signal generated by the
sink node. When the sink node has very bad connectivity, it
can take more time for the sink to collect data and thus delay
the trigger of the sleep signal.

Figure 5c shows the reliability at the sink node. As shown
in the figure, SpeedCollect can be more robust than Crystal
and Mixer.
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Figure 5: Performance of SpeedCollect vs. Mixer on Indriya testbed using different nodes as the sink.

Figure 5d shows the throughput at the sink node. The
throughput shown is calculated over all experiments, includ-
ing those that did not successfully receive all data items, by
keeping track of the number of unique data items received
by the sink within the given time.

SpeedCollect can achieve higher throughput in all cases
compared to Crystal and Mixer and the improvement is up
to 2.3x for a sink node with bad connectivity (sink node 3).
It is expected for Mixer’s completion time to increase and
reliability to decrease with bad connectivity at the sink node
as it’s harder for nodes to deliver their data to the sink. It’s
even more challenging for Crystal as it is designed for a small
number of concurrent sources and it does not work as well
with a poorly connected sink.

Figure 6 shows the CDF of sink completion times of
SpeedCollect and Mixer using 5 different nodes. For each
sink node, we have up to 100 different runs. As shown in
the figure, while the completion times of SpeedCollect are
concentrated within a smaller range between 0.67s to 4.3s,
the completion times of Mixer vary over a much large range
with about 10% of the completion times larger than 4s.

5.3 Varying the Tx/Rx Slots Gap
We experimented to show how the completion times vary

when the Tx/Rx slots gap is varied. Note that while a smaller
gap time can improve performance by allowing more Tx/Rx
in a fixed duration, the intervals between Tx/Rx should also
be large enough so that sufficient processing can be com-
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Figure 6: Sink completion time CDF on Indriya testbed of
running experiments using a different sink node in each run
with a total of five different nodes to be the sink.

pleted to generate new information.
In the experiments, 6 nodes served as sources sending

data to the sink. All source nodes are 1-hop neighbors of the
sink. Each of the source nodes sends 8 60-byte data packets
to the sink. For SensorTag, the Tx/Rx slots gap time is var-
ied from 0.1ms to 3ms. For TelosB, the Tx/Rx slots gap time
is varied from 3ms to 10ms. We run each set for at least 10
rounds.

Figures 7 and 8 show the sink median completion time in
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Figure 7: SpeedCollect running on 7 CC2650 SensorTag
nodes on desk with a message size of 60 bytes while varying
the Tx/Rx slots gap length.
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Figure 8: SpeedCollect running on 7 TelosB nodes on desk
with a message size of 60 bytes while varying the Tx/Rx slots
gap length.

seconds with the error bars representing the maximum and
minimum values. For SensorTag, it can be observed that as
the time gap reduces from 3ms to 0.2ms, there is a corre-
sponding around 50% reduction in median completion la-
tency. However, reducing the Tx/Rx slots gap length further
to 0.1ms increases the completion latency. This shows the
need to have sufficient time for processing between Tx/Rx
slots. Similar behavior can be observed for the TelosB. How-
ever, since the processor of TelosB is much slower than Sen-
sorTag’s processor, the reduction is from 10ms to 6ms, and
completion times increase after that.

Note that the processing load in this section (48 messages)
is higher than the load in the previous section (33 messages).
Hence, a smaller time gap of 3ms is used in the previous
section.

5.4 Heterogeneous Devices
In this section, we validate the portability of SpeedCol-

lect and its ability to run on heterogeneous devices with dif-
ferent clock rates and processor types working together. The
same source code is compiled to run on three platforms (Fig-
ure 9) namely: TelosB, CC2650 SensorTag, and Zoleria. In
the experiment, we have a sink node (TelosB) collecting data

from 6 other nodes, 2 TelosB, 2 CC2650 SensorTag, and 2
Zoleria. Each of the sources has 6 messages of size 60 bytes
to be transmitted to the sink.

Figure 10 shows the CDF of the completion times at the
sink. As shown in the figure, SpeedCollect works on the
three different platforms and can finish as fast as 0.7sec with
a median completion time of 1.19s which gives a throughput
of about 15kbps with 100% reliability.
6 Conclusions

We have designed a portable and flexible many-to-one
communication protocol, SpeedCollect, which is based on
synchronous transmission and capture effect. SpeedCol-
lect is hardware-independent which allows us to evaluate it
on networks of heterogeneous devices. We have shown that
SpeedCollect is effective in improving the performance of
many-to-one communications through the combinations of
acknowledgment, 1-hop bidirectional neighbors, TDM and
polling compared to the baseline. With the decoupling of
communication and computation, SpeedCollect is also able
to support protocols that required more processing. We be-
lieve that SpeedCollect opens up the potential to develop
more diverse classes of applications that can simultaneously
run on multiple platforms.
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