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Abstract
In this paper, we contribute a comprehensive resource

analysis for widely used cryptographic primitives across dif-
ferent off-the-shelf IoT platforms, and quantify the perfor-
mance impact of crypto-hardware. This work builds on the
newly designed crypto-subsystem of the IoT operating sys-
tem RIOT, which provides seamless crypto support across
software and hardware components. Our evaluations show
that (i) hardware-based crypto outperforms software by con-
siderably over 100 %, which is crucial for nodal lifetime.
Despite, the memory consumption typically increases mod-
erately. (ii) Hardware diversity, driver design, and software
implementations heavily impact resource efficiency. (iii) Ex-
ternal crypto-chips operate slowly on symmetric crypto-
operations, but provide secure write-only memory for private
credentials, which is unavailable on many platforms.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;

B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

General Terms
Measurement, Performance, Security

Keywords. Internet of Things, Embedded Security

1 Introduction
Security is an essential building block for the Internet

of Things (IoT). Data confidentiality, integrity, and avail-
ability rely on crypto-operations that are often resource-
intensive and in conflict with device constraints. Neverthe-
less, software updates, access management, and data encryp-
tion rely on these crypto-operations. To enable usable se-
curity in the low-end IoT, cryptographic primitives should
be highly optimized and utilize the constrained hardware
most efficiently—including possible crypto-extensions. This
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Figure 1. The software support layer of RIOT integrating
crypto-peripherals, external crypto-devices, and crypto-
libraries using a common crypto API.

poses a severe challenge, since hardware support is heteroge-
neous and ranges from extended instruction sets to complete
implementations of popular algorithms such as AES.

Figure 1 presents three common options to enable se-
curity in the constrained IoT. (i) cryptographic software li-
braries that try to cope with embedded constraints, (ii) mi-
crocontrollers that include a crypto-peripheral, (iii) external
crypto-devices that connect to the microcontroller using a
communication bus. Software libraries do not exploit crypto-
hardware for portability reasons, and manufacturer SDKs
(on bare metal) reduce flexibility towards a vendor lock-in.

More and more IoT deployments utilize an operating sys-
tem (OS) to keep applications portable while gaining near-
optimal hardware support via an abstraction layer. A key
motivation of this work is to make heterogeneous hardware
components uniformly accessible for both crypto-libraries
and applications, and to quantify its resource gain. Up until
now, platform-agnostic support of crypto-hardware is rarely
available at an IoT system level.

In this paper, we argue that an IoT OS should provide uni-
fied APIs to grant access of available hardware without sac-
rificing performance nor functionality. We will report about
the various challenges that derive from heterogeneous hard-
ware concepts as well as tight resource constraints and how
to over these by trading software for hardware without sacri-
ficing efficiency.
The contributions of this paper are the following:
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