
Condor : Mobile Golf Swing Tracking via Sensor Fusion using
Conditional Generative Adversarial Networks

Hong Jia
†‡

, Jun Liu
†
, Yuezhong Wu

†‡
, Tomasz Bednarz

†
, Lina Yao

†
, and Wen Hu

†

†
University of New South Wales

‡
Data61 CSIRO

{h.jia, t.bednarz, lina.yao, wen.hu}@unsw.edu.au, {jun.liu, yuezhong.wu}@student.unsw.edu.au

Abstract
This paper explores the possibility of incorporating

sensor-rich and ubiquitously deployed mobile devices into
sports analytics, particularly to the game of golf. We de-
velop a novel solution to track a player’s swing in three-
dimensional (3D) space using inexpensive tools such as
depth sensors and Inertial Measurement Units (IMUs). Ex-
isting solutions based on these devices cannot produce con-
sistent and accurate swing-tracking. This is due to com-
monly known issues with occlusion and low sampling rates
generated by depth sensors and complex IMU noise models.

To overcome these limitations, we introduce Condor, a
tailored deep neural networks to make use of sensor fusion
to combine the advantages of these two sensor modalities,
where IMUs are not affected by occlusion and can support
high sampling rates and depth sensors produce more accurate
motion measurements than those produced by IMU. Con-
dor could be implemented with edge devices such as a smart
wristband and a smartphone, which are ubiquitously avail-
able, for accurate golf swing analytics (e.g. tracking, analy-
sis and assessment) in the wild. Our comprehensive exper-
iment shows that proposed method outperforms other solu-
tions and reaches 6.57 cm error in subject-dependent model
and less than 10 cm error for unknow-subjects via a tailored
conditional Generative Adversarial Networks (cGAN).
Categories and Subject Descriptors

C.5 [COMPUTER SYSTEM IMPLEMENTATION]:
Miscellaneous; I.5 [PATTERN RECOGNITION]: Models
General Terms

Design, Models
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Figure 1. The 3D trajectory comparison of a golf swing
for Condor, ground truth, depth sensor and IMU only.
Obviously, Condor shares the most correct details during
all time stamps with ground truth. Depth sensor, how-
ever, cannot tell a smooth tracking due to occlusion. Only
using IMU (the state-of-the-art) bears large offset error
due to its natural mechanism.

1 Introduction
Sports analytics is a thriving industry with its market size

estimated to reach five billion dollars within the next two
years [14]. Swing tracking is one important aspect that pro-
vides the sector with key information in many sports assess-
ments. However, given that current vision-based approaches
typically suffer from low sampling rates, occlusion, and in-
tensive computational resource requirements (such as heavy
GPU workloads) [29], mobile and inexpensive sports analyt-
ics pose a very challenging task. For example, state-of-the-
art motion capture systems such as OpenPose [6] uses five
video cameras to avoid the occlusion [27] and reaches an
3 cm mean average error (MAE). Obviously, multi-camera
is inconvenient for mobile golf swing tracking. Meanwhile,
singular video-based solutions usually miss key information
during the swing-phase transition due to occlusion (i.e., the
point of interest being tracked is blocked by other body parts
from the camera’s view), which reduces their accuracy sig-
nificantly [30, 38]. In fact, professional players in sports
such as golf can produce swings up to 67 m/s, which makes
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singular video-based solution for fast 3D tracking very chal-
lenging. In comparison, we propose to using a singular depth
sensor and an IMU which are mobile and ubiquitous for
swing tracking in golf.

Commercial swing tracking usually relies on marker-
based and fixed camera tracking systems such as Hawkeye
and Vicon [9]. Based on the markers involved, these multi-
ple, high-speed camera-based systems can produce accurate
and fast pose tracking in 3D space. However, these systems
cannot operate without markers and are usually very expen-
sive. To this end, researchers are investigating alternative
methods such as by using single or multiple Inertial Mea-
surement Units (IMUs) to calculate the location of the point
being tracking [11]. Specifically, an IMU captures the accel-
eration, gyroscope, and compass measurements, after which
the trajectory of a point can be calculated through double
integration with quaternion calibration — that is, from ac-
celeration to velocity, and then its integral to the position.
Unfortunately, while the acceleration sensors in inexpensive
IMUs may operate in high sampling rates, they usually suf-
fer from issues with complex noise, which also produces
errors [25]. These faults can be significant — especially
those accumulated over time — even with carefully cali-
brated IMUs. Meanwhile, compasses only operate in low
sampling rates.

Depth cameras and/or sensors such as Microsoft Kinect
can track poses in 3D space. However, current applications
and research on depth cameras show that they too suffer from
accuracy misalignment, occlusion, and problems with miss-
ing frames [18]. Further, existing depth cameras cannot be
used for fast swing tracking directly due to their low sam-
pling rates and occlusion [31].

As such, this paper attempts to address the occlusion and
low sampling rate problem in current golf swing-tracking
approaches using depth sensors. By tailoring a lightweight
deep-learning network, the proposed approach (called Con-
dor1), fuses IMUs and depth sensors to calibrate each other
for swing tracking in golf. The Condor results, compared
with previous works, are shown in Figure 1. During the train-
ing stage, Condor learns to calibrate IMU measurements
with those of the depth sensor as well as the ground truth.
During testing, Condor reconstructs and predicts the trajec-
tory based on the IMU measurements when the depth sensor
is occluded or when it under-samples due to sampling rate
limitation. Compared to state-of-the-art commercial motion-
tracking systems such as Vicon [24], Condor is compara-
tively cheap to run for swing tracking as it replies on equally
inexpensive IMUs and depth sensors built into mobile de-
vices such as Apple Watches, Lenovo Phab 2 Pro Tango-
enabled smartphones, and Intel RealSense depth cameras.
These mobile devices also enable Condor to achieve swing
tracking in an outdoor setting (e.g. in the golf course).

Overall, this paper makes the following contributions:
• An architecture known as Condor was designed to ex-

ploit IMUs for their high sampling rates and non-line-
of-sight nature (Section 2). This allowed us to address

1In the sport of golf, Condor is an unofficial name for a score of four
under par (−4), and is the lowest individual hole score ever made.

both the positive and negative aspects of depth sensors
(including the occlusion and low sampling rate problem
found in most systems), while simultaneously harness-
ing their advantages to tackle the time-cumulative errors
and complex noise model problem found in inexpen-
sive IMUs. With Condor, these two modalities actually
complement one another during swing tracking in golf.
The design features a novel feature extractor that com-
bines information from spatial, temporal, and modality
domains (Section 3.1).

• To the best of our knowledge, Condor is the very
first deep learning framework specifically designed for
swing tracking in golf. During a swing, the designed
neural network model (Section 3) learns latent relation-
ships between the IMU and depth camera and uses mul-
tidimensional sensor measurements to predict swing
trajectory at different stages once the motion reaches
high speed and the key joints of the skeleton of the
player become overlapped. We also introduced a con-
ditional Generative Adversarial Networks (cGAN) [13]
model to extract subject independent features and in-
crease user-friendliness of the system (Section 3.3).

• We visualize the importance of different sensor modal-
ities in different stages proves that proposed frame-
work interchangeably utilize different sensor in differ-
ent stages to realize 3D swing tracking (Section 4.3).
We implement Condor in a prototype consisting of an
off-the-shelf IMU device and a depth sensor. Compre-
hensive experiments in golf-swing tracking show that
the approach reduces errors by more than 60% com-
pared to the state-of-the-art approach. We tested pro-
posed framework is lightweight enough and can be im-
plemented on edge devices (Section 4.7).

2 Condor Overview
2.1 Use Cases

Figure 2 shows a typical golf swing, which can be cat-
egorized into five stages: setup, top of the swing, impact,
follow-through, and finish. Each respective stage is impor-
tant because it defines a plane of the swing trajectory, in-
cluding speed, direction, and angle information, all of which
direct the ball into different directions and locations.

Importantly, high-speed tracking cameras were set up in
many driving ranges and golf club studios to assist players in
improving their swing skills. Condor makes use of these fa-
cilities to calibrate mobile depth sensors and IMUs through
a novel deep-learning framework, enabling high-precision
swing tracking in practice (i.e., on a golf course).

2.2 System overview
Figure 3 gives an overview of condor architecture. First,

it collects IMU (Accx, Accy, Accz, Gyrx, Gyry and Gyrz) and
depth (Kwx, Kwy and Kwz) measurements from mobile de-
vices such as smart wristbands and depth cameras before pre-
processing them (see Section 2.3). Note that Condor does
not rely on IMU compass measurements; thus, the input can
be denoted as 9-dimension data (Kwx, Kwy and Kwz, Accy,
Accz, Gyrx, Gyry and Gyrz). The output of the pre-processing
module is the concatenation of IMU and depth camera mea-
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Figure 2. One golf swing in three dimensions (3D). The
swing speed reaches 150 mph (67 m/s) and 100 mph (44.7
m/s) for professional golfers and beginners, respectively.

surements (X0, X1,..., X9), which subsequently function as
input for the proposed deep-learning network, used to ex-
ploit the spatial and temporal structure of different sensor
modalities (see Section 3 for details). Finally, the output (or
predictions) ( ˆPosx, ˆPosy and ˆPosz) will be highly accurate
3D positions of the tracking point (i.e., the wrist of a player
and/or the club) at a given timestamp.
2.3 Signal processing

Pre-processing for Condor includes the following compo-
nents.
2.3.1 Coordinates

Traditional coordinates calculation methods require
quaternions for conversion from local coordinates (of the
IMU and depth sensors) to world coordinates. The quater-
nion can be produced based on gravity and the northerly car-
dinal direction produced by accelerometers and compasses.
In contrast, the proposed system automatically converts IMU
coordinates to world coordinates using a deep neural net-
work (discussed in Section 3). Since many edge devices
such as IMU-based smartband did not have compass (e.g.
Samsung Gear S2, Moto 360, etc.), we hereby designing a
framework using accelerator and gyroscope only.
2.3.2 Low-pass filtering

We apply a low-pass filter to smooth any noisy IMU mea-
surements. Since depth sensor measurements are less noisy,
we use the raw measurements directly.
2.3.3 Synchronization

We use Coordinated Universal Time (UTC) stamps help
to organize the measurements captured by different devices
(e.g., depth cameras and IMUs). By tagging time stamps, the
collected sensor data can be aligned automatically for further
preprocessing. Figure 4 shows synchronized measurements
from few golf swings.
2.3.4 Segmentation

Common time-series measurement segmentation meth-
ods include window sliding and gradient cutting. Condor
applies a sliding window to segment the signals from the
depth sensor coordinates along the z-axis; this is because
the gradient varies more along this direction (i.e., roughly

corresponding to the direction of gravity changes) than the
other two axes (i.e., x- and y-axis). As such, the proposed
segments do not have an overlap since swing motions are
separable. Example segmentation results are shown in Fig-
ure 4.

2.3.5 Resampling
Since different devices have different sampling rates, we

align the measurements from the swing segments following
cubic interpolation into a fixed number of time stamps T
(e.g., T = 152 later used for the evaluation in Section 4).
Example segmentation results are shown in Figure 5.

3 Condor Deep Learning Framework
The Condor network was designed with a feature extrac-

tor, a generator for regression and a discriminator to remove
the subject-related prior (see Figure 3). For a fixed length
swing segment that has T time stamps, the dimensions of the
input matrix is 9 (i.e, X0, X1,..., X9, see Section 2.2) and T re-
spectively. For the output trajectory of a point being tracked,
the dimensions become 3 (i.e, ˆPosx, ˆPosy and ˆPosz, see Sec-
tion 2.2) and T respectively. Intuitively, the input has the
temporal (IMU), spatial (depth camera) and modality (sen-
sor fusion) information. The Long Short Term Memory net-
work (LSTM) mainly focuses on temporal feature extraction.
However, for spatial information, directly converting input
data format to time series before inputting them to LSTM
usually learns a poor representation [21]. Meanwhile, for
spatial information, Convolutional Neural Network (CNN)
has been shown successful as it can extract more informa-
tive features [16, 26]. Therefore, we propose to use the CNN
as the feature extractor to extract more informative spatial
features, before inputting these features into a LSTM to pre-
dict 3D trajectories. Our extensive experiment in Section 4.2
also demonstrated the superior performance of the proposed
approach.

3.1 Feature Extractor
As discussed in Section 2.2, Condor concatenates nine

axis signals (Kwx, Kwy, Kwz, Accx, Accy, Accz, Gyrx, Gyry
and Gyrz) and inputs them into the neutral network, the re-
lationship between these signals need to be encoded into a
latent representation (i.e., feature extraction).

CNN is often used for feature extraction purpose in many
images applications [16, 33, 36, 26, 26]. In Condor, we de-
signed a CNN block as the feature extractor for swing track-
ing and formulate it as a regression problem. Here, the fea-
ture extractor has three separated groups of convolutional
networks: spatial domain, temporal domain, and modality
domain, all of which maximize the input signal’s spatiotem-
poral, intra-modality, and inter-modality feature representa-
tion respectively. This is because the measurements in dif-
ferent sensor modalities (i.e., IMU and depth sensor) can
change rapidly during swing tracking due to occlusion and/or
sensor noise (see the lower two plots in Figure 1). These fac-
tors must be considered within the feature extractor architec-
ture design.

As such, the proposed scenario examines five stages of
separative depth-wise CNN for golf swing feature extrac-
tor which is shown in Figure 6. Specifically, there are four
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Figure 3. Condor system Overview. Input: concatenation of the IMU and Depth sensor, denoted as Xi. Ground truth:
denoted as yi. Subject index: labeled as the domains as di. The framework trains two turns in each epoch. 1. The
regression path learns a relationship from the fusion of the depth and IMU sensor to the ground truth (see Section 3.2
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subject (see Section 3.3 for details). The two networks (i.e., regression and subject classification) gradually reach a
balance during training, which improves the feature extractor. The prediction only use the regression path to generate
a batch collection of 3D swings, denoted as ŷ.

components in the feature extractor. Firstly, we use a con-
volutional network, i.e., Conv 3× 3 in the figure, to encode
the sensor measurements from different modalities to the in-
put format of the next component, i.e, depth-wise Separable
Convolution (DSC). Secondly, we make use of the DSC to
fast filter the sensor signals and group or domain features
of a swing. As a result, the learned grouped convolutions
can extract the interrelationships between the IMU and depth
sensor measurements during the swing. Thirdly, the learned
features are shuffled to make the model robust. Finally, a
Point-wise Convolution (PC) layer, i.e., Conv 1× 1 just be-
fore the decoder, is inserted to convert the shuffled features
into the input format of the decoder.

Since the dimension of depth sensor measure-
ment is 3 (Kwx,Kwy,Kwz), and that of IMU is 6
(Accx,Accy,Accz,Gyrx,Gyry,Gyrz), the dimensions of
the input to the feature extractor of Condor in a swing after
segmentation in Section 2.3 are K ∈ R3×T (depth sensor)
and I ∈ R6×T (IMU) respectively. In Condor, we use
concatenation to combine different input sensor modalities
(i.e., IMU and depth sensors), and denote it with square
brackets. As such, the input can be written as:

X = [K,I] (1)

In Condor, each filter of CNN performs dot production
in a small portion of input data for each layer to compose
features. This process is followed by an activation function
ReLu, which produces a summation of the dot products when
they are positive, or 0 otherwise. Based on the convolution
of these portions of data, each filter is replicated across the
entire input data, and produces a rectified feature map. For
convolutional layer l, filter i, this process can be viewed as:

(2)Pi
l = Relu(BN(∑ω

i
lP

i
l−1 + bi

l)),

where BN is the Batch Normalization [17], and ωi
l and bi

l rep-
resents the weight and bias parameters respectively, which

will be learned during the training process. The input is X
for the first convolutional layer (i.e., P1 = X) and the output
(feature map) of previous layers for the other layers.

The CNN kernel sizes are shown in the feature extractor
part of Figure 6. A pooling layer is applied to the output Pi

l of
the first and last CNN layers to reduce data dimensions. We
used max polling and global average polling in the first and
last layers respectively (the black rectangles in the feature
extractor of Figure 6).

Condor has three domains (Spatial, Modality and Tempo-
ral, see Figure 6) in part of the extractor. Here, we denote j
as the index of domain, and Eq.(2) becomes:

(3)Pi j
l = ReLu(BN(∑ω

i j
l Pi j

l−1 + bi j
l )).

3.2 Regression layers
For swing tracking regression in a 3D space, the decoder

of Condor makes use of a LSTM neural network. When
dealing with time-series data involving 3D-based point track-
ing, LSTM provides a powerful type of recurrent neural net-
work (RNN) for sequential data regression, especially for
IMU measurements with errors accumulated over time [25].
Essentially, this is because RNN can model both short and
long interrelationships within fixed measurements, which is
challenging for other methods. Besides, LSTM has also ad-
dressed the long-term dependency problems in traditional
RNNs because of gradient descent of an error criterion by
introducing a sophisticated repeating structure.

As such, a common LSTM fully connected convolutional
(FCN) neutral network was selected as the decoder in Con-
dor because it is designed for time series data regression [20]
and produces better performance in most related work than
its variations [15, 20]. Meanwhile, one recent study with a
time series datasets consisting of 3,627 experiments [21] saw
that an LSTM-FCN neutral network outperforms other mod-
els such as FCN or attention-based LSTM-FCN. Our abla-
tion study in Table 5, Section 4.5 demonstrates its effective-
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Figure 4. Signal synchronization and segmentation. O
and ∗ denote the start and endpoint of a swing, respec-
tively. Top: the z-axis of Ground Truth; Middle: the z-
axis of depth sensor measurements; Bottom: the z-axis of
gyroscope measurements. Note that the signal of one axis
must be segmented as the measurements of different axes
(as well as those of the accelerometer) are synchronized.
The Ground Truth and depth sensor are aligned with the
marker on depth sensor.

ness in regression against its variations such as Bidirectional
LSTM (Bi-LSTM).
3.2.1 LSTM as regression layers

Regression layers is shown in Figure 7. LSTM has four
gates and one cell state. For the purpose of clarity, we denote
the output of the (last CNN layer of) generator of regression
Plast as P, which is also the input of the decoder LSTM. Let
wi denote the weight and βi denote the bias for an input gate
respectively, which will be learned in the training. Then, the
input gate (it ) can be calculated as:

it = σ(wi [ht−1,Pt ]+βi) , (4)

where t is a time stamp, ht−1 is the hidden state in previous
time stamp, and σ is the sigmoid function. Similarly for for-
get gate, w f and β f are the weight and the bias of a forget
gate to be learned respectively. The forget gate ( ft ) is:

ft = σ(w f [ht−1,Pt ]+β f ) . (5)

Let wo and βo denote the weight and bias of an output gate
to be learned respectively. Then, the output gate (ot ) is:

ot = σ(wo [ht−1,Pt ]+βo) . (6)
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Figure 5. The measurements of different sensor modali-
ties in one swing motion after pre-processing.

Let c̃t denote update gate as:

c̃t = tanh(wc [ht−1,Pt ]+βc) , (7)

where wc is the weight and βc is the bias of update gate to be
learned respectively. Cell state ct can then be calculated as:

ct = ft ∗ ct−1 + it ∗ c̃t . (8)

Finally, the output of the LSTM ht can be calculated from:

ht = ot ∗ tanh(ct) . (9)

Here, we can see that LSTM can take both current input and
previous context/states into account for regression.

3.2.2 Filtering
In the prediction, we found that the trajectory of our net-

work changes abruptly around the corresponding points in
the ground truth. To this end, we use a Savitzky−Golay
(S−G) filter to smooth the time series predictions, i.e., the
Filt(er) Block in Figure 7. This procedure can seem as post-
processing as its function is to smooth the regression pre-
diction and we have added the S−G filter to all methods in
our evaluation in Section 4. The S−G filter can be formally
defined as:

Yj =

m−1
2

∑
i= 1−m

2

Ciy j+i,
m−1

2
≤ j ≤ n− m−1

2
, (10)
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where m is the convolution coefficients, j ∈ n represents
the jth smoothed data points, and C is a constant parameter
based on m and j. In Condor, the m and j are chosen as 13
and 3, respectively.

3.3 Subject-independent discriminator
We designed Condor for two scenarios: subject depen-

dent and independent. Here, the ‘domains’ are referred to
as the subjects. The ‘domain adaptation’ refers to remove
the subject dependence. The subject-independent model is
designed for unseen-subject swing tracking to alleviate the
burden of data collection, labeling and supervised training.
In this case, the player can directly use Condor system to
perform swing tracking without training. Inspired by [19],
we design a discriminator to make the CNN-LSTM model to
perform swing tracking for unseen subjects.

The discriminator is shown in Figure 8. It takes the en-
coded features and labeled tags as input. The learned tags
are the output. The discriminator is optimized with Stochas-
tic Gradient Descent (SGD) optimizer, with 0.9 momentum
and 5e-5 weight decay. The discriminator learns the real tags
of the labeled domains (i.e., subjects).

In out experiment setting, the features are encoded as a
format of batch multiple 456, followed by three linear layers
with input features of 456, 128, and 32, respectively. The

Features

Training flow

batch × d̂ 

Linear & Relu layers

(456,) (128,) (32,)

(Xf, d)

0≤j≤i

Figure 8. Subject independent discriminator. After train
the extractor and regression path, the encoded features
shares the regression ability but still bears the subject-
dependent prior. We take the subject domains which are
labelled with sensor data as the discriminator label to
train the discriminator. The two-game training reaches
a balance that the model is both able to perform re-
gression and cannot discriminate which subject the data
are labelled. By designing so we can achieve a subject-
independent model.

output features of linear layers are 128, 32, and 12, respec-
tively. The weights of all layers in discriminator are initiated
with normal initialization with 0 mean and 0.1 standard de-
viations. All biases are initiated with 0.
3.4 Optimization

The changes of the depth sensor measurements in Condor
are often abrupt because of occlusions, especially in stages
such as top of swing and impact (see Figure 2). Furthermore,
the IMU sensors in Condor also have acceleration effects
(i.e., the changes in the sensor bias depending on how the
sensor experiences acceleration) during different stages of
the swing. Therefore, we choose Huber loss function as part
of the loss function of Condor because it is less sensitive to
outliers, compared to the other loss functions such as Mean
Square Error (MSE) [12]. The Huber loss of regression pre-
diction vector (ŷ) and ground truth (y) with dimension of T
time stamps (note that yi and ŷi are 3D points) is formally
defined as:

Lh(y, ŷ) =
1
T

T

∑
t=1

zt (11)

wherezt is given by:

zt =

{
0.5(yt − ŷt)

2 , if |yt − ŷt |< 1
|yt − ŷt |−0.5, otherwise.

(12)

For swing tracking, the trajectory defines a plane in 3D
space for the swing, which is the key information that de-
fines which direction and speed the ball goes after impact.
Therefore, we add this information into the loss function of
Condor by calculating the angle between the planes defined
by y and ŷ respectively. Specifically, we use Cosine similar-
ity to calculate the difference between two planes, which is
defined as:

Lp = 1− cos(θ) = 1− ∑
T
i=1 yiŷt√

∑
T
t=1 y2

t

√
∑

T
t=1 ŷ2

t

(13)

In domain discriminator, the true domains are labelled as

6



Table 1. Prototype configuration
Items Description

IMU Samsung Gear S
IMU Sampling Rate 100 Hz
IMU Signals 3-axis acceleration and

3-axis gyroscope
Depth sensor Realsense D435
Depth Sensor Sampling Rate 30 fps
Depth Sensor Signals 3-axis locations of a wrist
Ground Truth OptiTrack
OptiTrack Sampling Rate 120 fps
Subject distance from depth sensor 1 - 3 m

d, the learned domains are labelled as d̂. We use cross en-
tropy loss to learn the discrepancy between the labelled do-
mains and true domains. Thus the domain discrimination
loss can be denoted as:

Ld =−d · log(d̂). (14)

In consideration of the loss in GAN setting, where we wish
discriminator cannot tell which domain comes from, we mul-
tiply a negative sign in domain loss and also applying a regu-
lation parameter α (0≤ α≤ 1, in our experiments we select
α = 0.6) to balance the first two losses. Combining Eq. (11),
(13), (14), the total loss function thus becomes:

L(y, ŷ) = α×Lh(y, ŷ)+(1−α)×Lp(y, ŷ)

−1×Ld(d, d̂).
(15)

4 Experiments
4.1 Implementation

We design and implement a Condor prototype based on a
Realsense D435 depth sensor and a Samsung Gear S smart
wristband (IMU). The ground truth in this paper was col-
lected using a motion-capture system comprising 25 high-
fidelity cameras called OptiTrack [32] on the ceiling (see
Figure 9). These cameras operate at a 120 fps sampling rate
for marker-based tracking and can achieve millimeter-level
tracking accuracy in 3D. The detailed prototype configura-
tion is shown in Table 1.

4.1.1 Setup
The IMU sensor and a marker for OptiTrack are attached

to one of the wrists of a user (depending on the user’s pref-
erence) as the point of interest being tracked (see Figure 9).
The raw depth signal from the depth camera produced 25
of the most important skeleton joints through feature extrac-
tion, with model fitting by Nuitrack API. Meanwhile, the 3D
position of the skeleton joint corresponding to the IMU sen-
sor’s location on the wrist was selected as one of the input
variables in the deep neural network of Condor. One alter-
native is to choose the end of the club as the swing-tracking
point; however, this means the IMU becomes a target that in-
evitably collides with the ball during impact. Evidently, this
significantly reduces the device’s life span over time.

Club Smartwatch/
Smartband

Depth 
Sensor

SmartphoneMarkers

Figure 9. Setup of the proposed Condor framework.
Analysis was completed by placing an IMU sensor on a
subject’s wrist and a depth sensor face-on. Sensors in
proposed framework are all ubiquitous and mobile.

4.1.2 Data collection
We collected our datasets based on 12 subjects (10 males

and 2 females)2, including 3 professional golf players to col-
lect the data. Their age is ranging from 26 to 35, height from
160 to 178 cm, and weight from 52 to 74 kg. During the
data collection, in each swing, we will shut down all IMU,
depth sensor, and Ground Truth when the subject feels tired
or want to stop.

We have 12 sensor modalities, i.e., a three-axis of depth
sensor location (i.e., Kwx, Kwy and Kwz defined in Sec-
tion 2), accelerometer (Accx, Accy, and Accz), gyroscope
(Gyrx, Gyry and Gyrz) and ground truth location (Posx, Posy
and Posz) produced by OptiTrack, respectively, and chose
the fixed number of time stamps defined in Section 2 as
T = 152 in one swing-motion segment according to the sam-
pling rates of the sensors specified in Table 1. As such, the
total size of the dataset contained more than 2 million sensor
measurements. Furthermore, the data were collected over a
period of 4 weeks and with different D435 sensor, Samsung
Gear S, and golf club hardware because the golf swing is an
energy-intensive exercise and long-term continuous swings
could cause muscle fatigue.

4.1.3 Evaluation Metrics
For subject-dependent model, we take 80% of all col-

lected data as training set and 20% as evaluation. For
subject-independent model, we take data collected from 11
subjects as training data and the remaining unseen subject as
test data. A more detailed discussion about the dataset for
subject-independent model is discussed in Section 4.6. We
use an average of a 10-fold cross-validation for these eval-
uation. The principal goal was to evaluate the accuracy of
3D position tracking, which has T time stamps. Here, T can
be any value while our test find out that T ≥ 150 is good
enough for a smooth swing (we choose 152 for convenience
of model parameters selection). Thus, our main evaluation
metrics for analysis include both the Root Mean Squared

2Data collection involving human subjects has been approved by the
ethics committee of the corresponding organization (HC17818).
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Error (RMSE) as

1
T

T

∑
i=1

√
(Posi

x− ˆPosi
x)

2 +(Posi
y− ˆPosi

y)
2 +(Posi

z− ˆPosi
z)

2,

(16)
and Mean Absolute Error (MAE) as

1
T

T

∑
i=1

(|Posi
x− ˆPosi

x|+|Posi
y− ˆPosi

y|+|Posi
z− ˆPosi

z|). (17)

Table 2. Subject dependent 3D position tracking perfor-
mance. ** denotes the state-of-art BiLSTM model us-
ing IMU only called IONet, while * denotes using sensor
fusion. For fair comparison, we compared BiLSTM for
both methods.
Model MAE (cm) RMSE (cm)

IONet (BiLSTM)** 11.13±0.83 16.98±0.93
SVR* 29.71±2.36 35.58±4.12
LSTM* 10.17±0.55 14.54±0.81
BiLSTM* 8.95±0.53 12.97±0.80
Condor* 4.71±0.30 6.57±0.60

Table 3. Subject independent 3D position tracking per-
formance
Model MAE (cm) RMSE (cm)

Without domain adaptation 9.43±0.68 11.50±0.91
With domain adaptation 7.37±0.54 9.38±0.77

4.2 Overall performance
Baselines. IONet [7] is the state-of-the-art model for

IMU-based tracking. The IONet prediction has three dif-
ferent neutral network models, i.e., CNN, LSTM and BiL-
STM, and the BiLSTM produces the best performance in our
experiment. Furthermore, we have produced the model of
BiLSTM for both IMU-based prediction and sensor fusion
(i.e., IMU plus depth sensor) prediction in Table 2. Firstly,
it shows that using a BiLSTM model, adding depth sensor
modality (termed BiLSTM in Table 2) improves tracking ac-
curacy, unsurprisingly (i.e., RMSE reduced from 16.98 cm
to 12.97 cm). Secondly, Condor has re-modelled the neu-
ral network architecture, which further improves tracking
performance (RMSE: 6.57 cm). Finally, Condor features a
cGAN architecture that can work with unseen subjects (see
Table 3).

We also compares other baselines include Support Vector
Regression (SVR) and LSTM. Table 2 shows how Condor
performs best by reducing tracking errors by approximately
50% compared to the second-best (i.e., BiLSTM). For exam-
ple, the RMSE for BiLSTM is 12.97 cm while that of Condor
is only 6.57 cm. It reduces tracking errors by approximately
82% and 61%, respectively, compared to SVR and IONet.
We observe the better performance produced by LSTM and
BiLSTM than that of IONet because they make use of both
depth sensor and IMU information, while IONet relies on
IMU only. We observe similar results for MAE likewise.

Figure 10 shows some randomly chosen swings along the
z-axis. Evidently, occlusions occur regularly during swing
track, and these have a great effect on the performance of
the depth camera. This certainly justifies our decision to pair
sensor fusion with an IMU and a depth camera. The figure
also shows that the Condor produces very good quality track-
ing results which are very close to ground truth, and signif-
icantly outperforms the state-of-the-art deep learning-based
tracking system IONet.

Figure 10 also shows that Condor has calibrated different
types of errors in swing tracking. Specifically, state-of-the-
art methods sometimes predict wrong directions due to oc-
clusions or accumulated errors at various stage changes. For
example, as shown in Figure 10, IONet offen made error at
the Stage Top of Swing, but Condor corrected these anoma-
lies successfully.

The subject-independent performance in Table 3 shows
that with and without discriminator as domain adaptation
path has an approximately 18.4% improvement. A further
detailed discussion towards domain adaptation is discussed
in Section 4.6.

4.3 Impact of Different Sensor Modalities
We study how Condor learns multi-modality representa-

tions during one swing among depth sensor position, accel-
eration and gyroscope, respectively. To this end, we activate
one sensor modality only by setting the measurements of the
rest sensor modalities to zero for each swing. Then we in-
put such augmented measurements to the Condor model to
calculate a position prediction based on each sensor modal-
ity only in turn in each timestamp. Finally, we compare the
predictions and ground truth to find the sensor modality that
produces the minimum error in each timestamp. We group
the sensor measurements into five stages as shown in Fig-
ure 2, and investigate the ratio of different sensor modali-
ties that produce a minimum error in each stage. Figure 11
shows the results of the analysis. Unsurprisingly, in Stages
1 (Setup) and 5 (Finish), the depth camera plays a key role
when the speed of the tracking point is relatively slow and
occlusion does not occur. The contribution (the ratio of min-
imum error) of the depth sensor gradually decreases in Stage
2 (Top of Swing). When the speed intensifies (up to 44.7
m/s) and occlusion is likely, e.g., in Stages 2, 3 (Impact) and
4 (Follow Through), the IMU plays an increasingly impor-
tant role. Note that the depth sensor produces less impor-
tance in Stages 3 and 4, and take near all dominance in Stages
1 and 5. Figure 12 shows the sensor modality that produces
a minimum error for a sample swing (x axis) and further il-
lustrates their contributions over time. The figure shows that
Condor is further able to learn the temporal dynamic char-
acteristics of different sensor modalities to produce highly
accurate tracking results.

4.4 Impact of Loss Function
We investigated the effects of the different loss function

in Condor’s deep learning model to measure 3D tracking ac-
curacy in the golf swing. Table 4 shows that, for single loss
functions, the performance of Huber is the best by produc-
ing RMSE and MAE of 6.82 cm and 5.05 cm, respectively.
However, the performance can be further improved by the
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Figure 11. Ratio of contributions of different sensor
modalities over five stages of a swing. Not surprisingly,
depth sensor offers more accurate tracking in Stage 1
and 5. Gradually, however, IMU plays an more impor-
tant role to calibrate depth camera when it is occluded.
An interest trend is that Gyroscope gradually dominate
the tracking task during vision-occluded stages.

combination of Huber and Cosine distance (Eq. (15) without
domain discriminator in Section 3.4) to 6.57 cm and 4.71
cm, respectively. Also, compared to common loss functions
MSE and MAE, the proposed loss function reduces MAE by
approximately 32% and 10% respectively. The other metric
RMSE also shows similar patterns. We note that the value of
regulation parameter α in Eq. (15) was learned to 0.6 auto-
matically by our model during training.

Table 4. Comparison of different deep learning loss func-
tions
Model MAE (cm) RMSE (cm)

MSE 6.17±0.30 8.09±0.28
MAE 5.16±0.40 7.05±0.34
Cosine Distance 16.40±1.90 35.60±2.40
Huber 5.05±0.20 6.82±0.30
Condor 4.71±0.30 6.57±0.60

4.5 Impact of Model Parameters
We investigated the effects of the numbers of LSTM or

BiLSTM layers in the proposed Condor LSTM architecture
to its performance. Table 5 shows that 128 layer LSTMs
produce the best result. Although the BiLSTM has double
parameters as those of the single-layer LSTM, it does not
produce significantly better tracking accuracy. Therefore,
Condor chooses 128 single-layer LSTM as the decoder to
reduce resource consumption in mobile devices.

4.6 Impact of Domain Adaptation
4.6.1 Domain adaptive path

The domain-adaptive model is designed specifically for
unseen-subject scenarios. The intuition for the domain-
adaptive path is to improve the original CNN-LTSM model
to generate swing tracking for unseen subjects. To evaluate
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Figure 12. Qualitative analysis of the dominant measurements (x axis) over time for one example swing for Condor
visualization. In the first stage (i.e. Set-up), depth sensor � (green) is more close to the ground truth (GT) (red). In
stage two, when depth camera is occluded, the Gyroscope H (blue) tries to pull up the tracking to the GT. In stage tree
and four, Gyroscope and Acceleration (yellow) from IMU shares more common trend than other depth sensor. In
stage five, depth sensor again close to the GT more than IMU.

Table 5. LSTM parameter selection. lr: layers. Bi: BiL-
STM
Metrics 64lr 128lr 256lr

MAE (cm) 5.04±0.19 4.71±0.30 5.32±0.28
RMSE (cm) 6.88±0.30 6.57±0.60 7.26±0.29

Metrics 64lr Bi 128lr Bi 256lr Bi

MAE (cm) 5.10±0.22 4.73±0.35 4.96±0.15
RMSE (cm) 6.90±0.32 6.62±0.28 6.58±0.23

the domain adaptation, we use the original CNN-LSTM as
baseline. Table 3 shows that the original regression path can
be improved via domain adaptation by 18% in RMSE.
4.6.2 Training size of domains

In a domain-adaptive scenario, the Condor may be trained
with different numbers of domains (i.e., subjects). We eval-
uate the impact of domain size by changing different num-
bers of domains in the training set. Figure 13 shows that the
increase of domains can improve swing tracking accuracy.
With 11 domains being trained, the model reaches the low-
est RMSE with 9.38 cm.
4.7 Micro Edge Benchmark

We measure the resource and computation consumption
of Condor swing tracking prediction on a popular smart-
phone platform iPhone X 3 with Core ML using iOS Energy
Diagnostics profiling template. We repeat the prediction for
1,000 times and report the average values. Table 6 shows
that it takes 4.56 ms only for the ML Core to make a pre-
diction, which enables realtime 3D golf swing tracking feed-
back. The energy consumption of Condor is only 152 mJ
for one swing prediction. Thus, 1% of iPhone X’s battery
(i.e., 2,716 mAh) can support more than 590 Condor swing
prediction. The deep learning model of Condor has 90,300

3Model: NQA62ZP, Core ML 3, ios 13.0
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Figure 13. RMSE under different number of unseen sub-
ject domains. Clearly, with more domains been collected,
the tracking accuracy will be further improved.

parameters and consumes 0.6 Mega floating-point operations
per second (MFLOP), which only further demonstrates Con-
dor’s resource efficiency.

Table 6. Resource consumption (prediction)

Model Times
(ms)

Energy
(mJ)

Number of
Parameters (K)

MFLOP
(M)

Condor 4.56 152 90.3 0.6

5 Discussion and Future Work
Indoor experiments. The aim of the Condor is to provide

golf swing tracking and analytics in real-world settings, such
as an outdoor golf course. There, dynamic outdoor lighting
conditions may negatively affect the performance of depth
sensors and, in turn, tracking reports. This means the results
reported for Condor may have been favorable to the other-
wise stable lighting conditions found indoors. Lack of an

10



outdoor ground truth system remains a limitation to which
we are exploring alternatives.

Stereo cameras. Multiple (dual) cameras and LiDAR are
available in many latest smartphone models such as iPhone,
Galaxy S9 and P30 Pro, which could be used to render ob-
jects in 3D depth maps similar to depth cameras. We be-
lieve that the principles of Condor can be applied to these
smartphones directly. The challenges here are how to pro-
duce important skeleton joints efficiently as we did for depth
cameras in Section 4.1.

Generalization. We believe that the principle of Condor
can be applied to the swing tracking in other sports, such as
baseball and tennis. However, to evaluate the performance
of Condor in these sports will involve non-trivial extra data
collection, which we will leave as future work.

6 Related Work
Swing tracking research can be broadly divided into

two categories: vision-based and IMU-based. Vision-based
swing tracking mainly focused on pose estimation [1, 2].
One example concerns benchmark OpenPose, which is a
real-time multi-person key-point library that can convert the
subjects in 2D images into 3D skeleton joints. However, 2D
to 3D estimation is still ambiguous [30]. Also, to reach an
occlusion-free tracking in mobile, multiple video camera is
extremly inconvenient for end users [27].

Similarly, stacked Hourglass Networks [29] produce a
CNN architecture for human pose estimation. However, the
model is computationally expensive and time-demanding.
Another problem for stacked Hourglass and all other vision-
based pose estimation solutions is occlusion. During a
swing, a player’s wrist may be hidden behind their body,
especially in the Stages Top-of-Swing and Finish (see Fig-
ure 2), because the field of the view of the camera will be
blocked if the camera is placed in front of the player. Sim-
ilarly, occlusion will happen in other stages if the camera is
placed in other locations instead of in the front.

By subsequently leveraging such depth cameras as
Kinect, Yu et. al. proposed to produce a 3D spatial trajec-
tory via a golf club [35]. This system uses depth images
and the depth-related shadow to calculate the 3D trajectory
of the club. By establishing the spatial trajectory, this model
can eliminate the need of the IMUs, which must otherwise
be attached to the subject’s body (i.e., their wrist) or their
club. Nonetheless, occlusion remains a barrier and success-
ful operation only extends to indoor environments due to the
comparatively complex lighting conditions found outdoors.
Kumada et. al. perform a pixel level analysis on swings [23],
but is insufficient for informative swing analysis as a pixel to
3D is ambiguous. Similarly, Soonchan et. al. proposed a
multiple random forest tree method to vote and cast the oc-
cluded wrist joints called SWAN [30]. However, as the au-
thors concluded, SWAN often misses some key phases due
to fast swings that cannot be captured with Kinect.

The other category of swing tracking is based on IMUs or
other multiple sensor modalities [4, 22, 37]. Shen et. al. ex-
plores the IMU tracking to eliminate the accumulated error
for motion tracking [34]. However, this work reaches the
accuracy of IONet and still suffers from the noise model of

IMU. Chesser et.al using a mobile BLE device with a bea-
con device to do indoor tracking [8]. However, the 23.5 cm
accuracy makes it very hard to deploy for fast swing track-
ing. Nam et. al. proposed a system that utilizes an IMU and
stereo cameras to track a golf club [28]. For this, a swing’s
motion-tracking algorithm was proposed to obtain the club’s
orientation through a T-shaped LED. However, using one-
third length of the club’s LED as the marker cannot offer a
practical prediction. The system also needs to be practiced
indoor to fix the camera and suffers a 13.2 cm error. Other
works also make use of multiple IMU sensors combined with
sophisticated sensor fusion methods [3, 5]. S. Chun et. al.
attached two IMUs on a player’s wrist and their club, respec-
tively, to calculate the trajectory of the motion [10]. How-
ever, these systems proved both immobile (e.g., the need for
a bino-camera [28]) and low accuracy. Recently, Chen et. al.
proposed a deep learning-based method (IONet) to calibrate
the IMU sensors [7], which inspired our work in Condor.
Importantly, this paper contends to significantly expand the
deep learning model using a novel sensor-fusion architec-
ture that produces significantly better swing-tracking perfor-
mance.

In addition to the academic research works, there are
some commercial mobile (golf) swing tracking and analysis
products on the market such as Zepp4, Rapsodo5, PIQ Golf
Sensor6, Blast Motion7 and Garmin TruSwing8. However,
IMU-based products such as Zepp cannot not show 3D swing
tracking trajectory, which lost one of the main information
for sports analytics [14]. As discussed, depth sensor-based
products cannot accurate render the player’s swing motions
in 3D space.

In contrast, Condor attempts to explore the 3D depth-
sensing capabilities of the latest mobile technologies such as
Tango-enabled smartphones and Intel RealSense depth cam-
eras to improve the 3D tracking accuracy of swings.

7 Conclusions
This paper proposed a lightweight golf swing-tracking

CNN-LSTM model that fuses measurements from differ-
ent sensor modalities and further addresses the challenges
in single-sensor modalities, including occlusion, low sam-
pling rates, and complex sensor noise models. As shown, the
model, known as Condor, can be deployed in ubiquitously
available smart wristbands and smartphones to provide IMU
and depth sensor measurements, respectively. Our exten-
sive evaluation shows that Condor produces highly accurate
tracking performance and can reduce tracking errors by ap-
proximately 62% compared to state-of-the-art approach. For
unseen subject scenarios, our proposed conditional GAN in
Condor can achieve approximately less than 10 cm tracking
accuracy.
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