
Hermes: Decentralized Dynamic Spectrum Access System for
Massive Devices Deployment in 5G

Zhihui Gao
Duke University

zhihui.gao@duke.edu

Ang Li
Duke University

ang.li630@duke.edu

Yunfan Gao
ETH Zurich

yungao@student.ethz.ch

Yu Wang
Tsinghua University

yu-wang@tsinghua.edu.cn

Yiran Chen
Duke University

yiran.chen@duke.edu

Abstract
With the incoming 5G network, the ubiquitous Internet

of Things (IoT) devices can benefit our daily life, such as
smart cameras, drones, etc. With the introduction of the
millimeter-wave band and the thriving number of IoT de-
vices, it is critical to design new dynamic spectrum access
(DSA) system to coordinate the spectrum allocation across
massive devices in 5G. In this paper, we present Hermes, the
first decentralized DSA system for massive devices deploy-
ment. Specifically, we propose an efficient multi-agent rein-
forcement learning algorithm and introduce a novel shuffle
mechanism, addressing the drawbacks of collision and fair-
ness in existing decentralized systems. We implement Her-
mes in 5G network via simulations. Extensive evaluations
show that Hermes significantly reduces collisions and im-
proves fairness compared to the state-of-the-art decentralized
methods. Furthermore, Hermes is able to adapt the environ-
mental changes within 0.5 seconds, showing its deployment
practicability in dynamic environment of 5G.
Categories and Subject Descriptors

Computer Systems Organization [COMPUTER-
COMMUNICATION NETWORKS]: Network Architec-
ture and Design
General Terms

Design, Standardization
Keywords

Dynamic spectrum access, 5G network, Multi-agent rein-
forcement learning
1 Introduction

Recent development of the fifth-generation (5G) net-
work as well as the explosive growth of the Internet of

Things (IoT) devices draw attention to spectrum manage-
ment (SM), especially dynamic spectrum access. The hybrid
spectrum landscape in 5G, i.e., microwave and millimeter-
wave (mmWave) bands, provides more available spectrum
resources than before [22]. In addition, the thriving numbers
of the ubiquitous IoT devices emerge in our daily life, such as
smartwatches, augmented/virtual reality headsets, and self-
driving cars. With the increase of available spectrum and IoT
devices, an urgent demand is required on an efficient and fair
spectrum allocation management.

The traditional SM refers to centralized methods that are
deployed on a central processor, such as a base station. The
central processor collects all the sensory data from multi-
ple user equipments (UEs) and schedules how to allocate the
limited channels to UEs. The channels allocated by the cen-
tral processor are referred to as the licensed channels. In the
cognitive networks, besides the licensed channels, UEs are
also able to opportunistically access the temporarily unused
channels or unlicensed channels, which is termed as the dy-
namic spectrum access (DSA) [2, 3]. DSA often adopts de-
centralized methods that are deployed on UEs, such that UEs
can access the shared spectrum coordinately. Compared to
the centralized SM, UEs do not have to wait for the deci-
sion by the base station but decides their action by their own.
Hence, the response delay is greatly decreased in DSA. How-
ever, it is very challenging for multiple UEs to coordinate a
schedule plan without collisions.

One of the most widely used SM methods in 4G/5G cel-
lular network is the proportional fairness (PF) [25]. PF has
a better balance between the total throughput and fairness
compared to other methods such as round robin and best CQI
(channel quality indication). As a centralized method, PF
is also bottlenecked by the serious delay when the number
of UEs increases. In addition, all the sensory data of UEs
needs to be uploaded to a central processor, which raises
privacy concerns [5, 31]. As for the decentralized method
in DSA, UEs make their decisions independently to maxi-
mize their own benefits. Therefore, game theory is intro-
duced to analyze the scheduling strategy and benefits of UEs.
For example, the game theory based algorithm ALLURE-
U [26] provides an optimal transmission plan in a realistic
setting. The plan decides how much power to allocate over

International Conference on Embedded Wireless Systems and Networks (EWSN) 2021
17–19 February, Delft, The Netherlands © 2021 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-5-2

1

Article 2

Figure 1: A high-level overview of Hermes.

licensed and unlicensed channels. The prospect theory is
exploited to estimate the Nash Equilibrium. However, the
output of ALLURE-U is only heuristical. It does not gener-
ate a detailed scheduling plan for each time slot. Therefore,
it cannot be directly applied. Besides game theory, multi-
agent reinforcement learning (MARL) and deep Q network
(DQN) [15] are applied in DSA. The deep Q-learning spec-
trum access (DQSA) [19] deploys DQN on UEs and enables
UEs to choose their own channels without a central processor
or sharing their sensory data. DQSA works well when there
are enough channels for each UE. However, as the number
of UEs increases, DQSA fails in two aspects. First, DQSA
shows poor fairness because UEs do not share the channel
alternatively but occupy certain channels. It is even worse
that UEs are so aggressive that UEs would rather allow colli-
sions to occur than tolerating other UEs’ occupying channels
alone without collisions.

Table 1: Comparison between Hermes and existing SM and
DSA techniques.

Methods Mode Fairness UE
Scalability

PF Centralized Yes No
ALLURE-U - No Yes
DQSA Decentralized No No
Hermes Decentralized Yes Yes

In this paper, we propose Hermes – a decentralized DSA
system in 5G network that can effectively address the afore-
mentioned drawbacks of existing MARL such as DQSA
and achieve comparable performance with centralized PF.
As Fig. 1 shows, Hermes consists of two modules: im-
proved multi-agent reinforcement learning (iMARL) that is
deployed on each UE, and a shuffle mechanism that is de-
ployed on local transceivers as shufflers. These two modules
can overcome the challenges of collisions and fairness re-
spectively. In iMARL, we define a novel reward function for
the Q-learning such that the Nash Equilibrium changes and
collisions are significantly reduced. In addition, two mod-
ifications to DQN’s workflow are made to adapt the shuf-
fle mechanism. The novel shuffle mechanism, deployed on
single or multiple shufflers, is proposed to improve fairness.

Each shuffler does not need to collect all the models but a
portion from participating UEs. With the received models,
the shuffler evaluates the UEs’ preference to each model and
distributes models back accordingly. As the models are shuf-
fled, the UEs’ selections for channels are shuffled. Hence,
UEs can fairly share all channels. Note that during a shuf-
fle only the parameters of iMARL model are uploaded, and
hence the privacy of sensory data is protected.

Table 1 provides a comparison between Hermes and ex-
isting SM and DSA techniques. Hermes differs from PF as
it is a decentralized solution that offers high UE scalabil-
ity. Compared to ALLURE-U, Hermes provides a practical
scheduling plan for each UE, taking fairness into account. In
addition, Hermes overcomes the drawbacks of fairness and
UE scalability in DQSA.

We summarize four major contributions of Hermes:
• To the best of our knowledge, Hermes is the first decen-

tralized DSA system that enables UEs to efficiently and
fairly share channels in massive UE deployment.

• An improved multi-agent reinforcement learning is pro-
posed that significantly reduce the channel collisions.
Besides, iMARL contains a compact DQN structure
specifically designed for Hermes, such that the com-
munication cost of sharing the model with other UEs
is significantly saved.

• We proposed a novel shuffle mechanism that shares the
models from multiple UEs to achieve better fairness
with the UEs’ privacy protected.

• We implement a prototype system of Hermes, and con-
duct extensive experiments via simulating various 5G
settings. Experiment results demonstrate that Hermes
significantly reduces the collisions and improves fair-
ness compared to the state-of-the-art decentralized tech-
niques.

2 Background and Motivation
We begin with introducing the existing centralized SM

and decentralized DSA techniques. We then show that the
state-of-the-art MARL based approach incurs both serious
collisions and unfairness when allocating channels to UEs,
which motivates the design of Hermes.

2.1 Spectrum Management and Centralized
Method in 5G

Spectrum management (SM) [3] in cellular network refers
to the process that a central base station allocates and sched-
ules the limited channels on the spectrum to multiple UEs
over time. The goal of SM is to maximize total throughput
while guaranteeing fairness over UEs. To achieve this goal in
terms of 5G, the scheduling is performed in three steps in a
period. First, all the UEs are required to upload their sensory
data to a 5G new radio gNodeB (gNb, i.e., the base station in
5G). The typical sensory data includes channel quality indi-
cation (CQI) that describes the throughput capacity of each
channel. Second, gNb runs a scheduling strategy, such as PF,
to determine the scheduling plan for the current periodicity
based on the received sensory data from all the UEs. Finally,
the scheduling plan is offloaded to UEs and is executed. UEs

2

can transmit data in the allocated channels until the next pe-
riodicity.

Such a centralized method guarantees that UEs work co-
operatively without collision, and hence yields good perfor-
mance. However, it leads to some privacy issues. For ex-
ample, the absolute value of CQI indicates the distance from
the UE to the gNb [5], such information may breach UEs’
localization and mobility privacy [31].

In addition, with the explosive increase of IoT devices
(over 1 million connected devices per square kilometers[12])
that require massive channels, it is not practical for a gNb
to efficiently manage all the UEs simultaneously. The huge
number of UEs is more challenging to synchronously up-
load sensory data on time and it takes longer time to perform
the scheduling. Hence, the latency of SM dramatically in-
creases. For example, Verizon reported the latency of 5G
in 2019 is 30 milliseconds [7] Furthermore, with the con-
strained spectrum resources, uploading sensory data and of-
floading schedule plans incur non-negligible resource con-
sumption when considering massive UEs are involved.
2.2 Dynamic Spectrum Access

Compared to SM, DSA [30] is a decentralized mecha-
nism developed for cognitive radios. Being cognitive means
that radios can automatically detect available channels and
choose the best one to use. In practice, gNb connects to a
portion of licensed UEs such as smartphones, namely pri-
mary users (PUs), and runs the centralized scheduling strat-
egy for allocating channels to PUs. The rest of UEs are
considered as unlicensed secondary users (SUs), they need
to develop the scheduling plan independently and oppor-
tunistically under the principle that the PUs’ communica-
tion channels are not interfered. For example, an SU can
occupy a temporary idle channel that is not allocated to any
PUs or transmit with low power, which does not interfere
PUs’ communication. SUs can be any kind of IoT devices
other than the PUs, such as smartwatches and glasses, aug-
mented/virtual reality headsets, etc.
2.3 Reinforcement Learning

To address DSA at the SU side, reinforcement learning
(RL) based methods are proposed. The typical RL-based
DSA is single agent paradigm [28, 16, 17] that deploys RL
models on a single SU. The goal of RL is to learn the trans-
mission pattern of nearby PUs and minimize the SU’s col-
lision with them. RL can be formulated with three compo-
nents: state, action and reward. In this RL methods, the state
includes the UE’s own communication requirement and the
sensed signal to interference and noise ratio (SINR) of each
available channel, which is fully perceived by the UE. The
UE decides whether to transmit or which channel to transmit
as the action. It gets positive rewards if data is transmitted
successfully and negative if not.
2.4 Multi-Agent Reinforcement Learning

In most cases, more than one SUs share the unlicensed
channels that are not occupied by PUs, where the interfer-
ence among SUs needs to be considered. Therefore, multi-
agent reinforcement learning (MARL) [19] based methods
are proposed. MARL focuses on the competition and coop-
eration among SUs, ignoring the existence of PUs. In par-

Figure 2: The channel selection using MARL method over
time, where there are 10 UEs sharing 3 channels. The

yellow, red and black represent the three channels and the
white represents the case that the UE stays silent.

ticular, MARL-based method assumes a mapping from the
non-consecutive unlicensed channels to consecutive virtual
channels as if there are no PUs in these virtual channels and
DSA is performed on the consecutive virtual channels. In
this case, collision (i.e., two or more UEs choose the same
channel but none of them is able to successfully transmit)
and idle channel (none of the UEs choose a certain channel)
are two critical challenges.

Note that each UE can only perceive its own state instead
of the states of peers in MARL. This means the observa-
tion that UE obtains cannot fully represent the state. In such
a non-Markovian model, UEs are supposed to decide their
next action based on not only the current observation, but
also the action history in recent time slots as additional ob-
servations. With more information added to the state vector,
the state space is exponentially extended for tabular Q learn-
ing. Hence, deep Q network (DQN) is introduced to assist
the decision.

We consider the competitive model where a UE’s reward
is based on its own throughput within a time slot. When
there are sufficient channels for each UE, UEs are able to
share the available channels with few collisions as claimed
in [19]. However, when there are more UEs than channels,
directly applying MARL leads to two issues as shown in Fig.
2.

First, the majority of the UEs choose to request channels,
leading to serious collisions all the time and none of the UEs
can successfully communicate. The reason is that all the UEs
are so selfish that they prefer to request channels even with
a slight probability to obtain access when the other competi-
tors turn to random choice than staying silent.1 A more pro-
found explanation of these collisions by Nash Equilibrium is
provided in Sec 3.4.

Second, UEs tend to either occupy a particular channel or
never request channel over time except the ε-greedy policy.
Such behavior is also harmful even if the collision does not
occur. In this case, some UEs can always occupy channels

1In reinforcement learning, we take the ε-greedy policy, where agents
take the random choices with little probability ε.

3

and transmit data while others can never communicating data
through these channels, hence, the fairness issue arises. The
reason is that the action history that UEs store is limited by
several factors, including UEs’ memory size and the input
size of DQN model. With the limited memory size, it is im-
possible for UE to learn an alternative choice pattern. As an
extreme result, UEs stick to particular channels all the time.
2.5 Observation and Motivation

We implement the above MARL method under different
settings and analyze the trained models of each UE. We make
two key observations from the existing MARL methods.

First, the longer the models are trained and the closer to
the convergence, the more diverged the models across UEs
are. Specifically, not only the models that converge to the dif-
ferent channels have different parameters, but also the mod-
els that prefer to choose the same channel diverge. Such an
observation indicates that these models do not need to be uni-
fied and the discrepancy among converged models should be
maintained.

Furthermore, the aforementioned model divergence does
not result from the input sensory data. Instead, the subtle
difference of random initialization of models leads to the
significant discrepancy of the converged models. The inter-
action across UEs is the only feasible way to train a model
that converges to choose a particular channel. This observa-
tion suggests that we cannot modify the models’ parameters,
but either reuse an existing model or train models from the
scratch.

Based on those two key observations, we propose a novel
shuffle mechanism in Hermes, where we shuffle the up-
loaded models and distribute them back to UEs. Such a shuf-
fle mechanism maintains the diversity of models and reuses
all the existing models for the next period. As a result, af-
ter shuffling the models, UEs are likely to change the chan-
nel choice, e.g., from staying silent to requesting a particular
channel and vice versa. Therefore, the fairness issue can be
effectively addressed.

3 Framework Design
3.1 Overview

Fig. 3 shows a closer look at the Hermes architecture.
As shown, Hermes consists of two modules: the improved
MARL (iMARL) framework and the shuffle mechanism.

In iMARL, we deploy a DQN on each UE to learn the
Q function. For every time slot, each UE inputs sensory
data and feedback from the environment, which constitutes
the observations, to the DQN and takes an action according
to the DQN outputs. The environment collects the actions
from all the UEs and provides rewards and feedback for UEs.
Then the DQN will be updated based on the observations,
actions and rewards.

After several updates of DQN, the local models from UEs
will be uploaded to the shuffler, where the proposed shuffle
mechanism is performed. We execute shuffle mechanism in
two steps: model evaluation and model distribution. First,
the model evaluation module estimates the potential UE pref-
erence for the received models from UEs. The model distri-
bution module will then fairly distribute corresponding mod-
els back to UEs based on the estimated preference.

Fig.4 shows the workflow of Hermes. Once a DQN model
is distributed by the shuffler, the UE keeps running and train-
ing this model until the next model arrives. It means that UEs
never wait for the next shuffled model to come. The training
of iMARL is only performed between two shuffling cycles.
After UEs upload their models to the shuffler, they merely
run the model, but not train the model any longer. Train-
ing is not taken in parallel with shuffles because the trained
models will be overwritten by the incoming shuffled models.

Although training and shuffling the DQN model incurs
certain computation cost, the critical bottleneck of the delay
is only the inference latency by the DQN. Therefore, given a
DQN with efficient inference, Hermes can offer very respon-
sive spectrum management.

3.2 Design Challenges
The combination of iMARL and shuffle mechanism in

Hermes is promising for decentralized DSA, however, it also
introduces three design challenges.
Challenge 1. As described in Section 2, one of the major
drawbacks in the existing MARL based method is channel
collision due to UEs’ greediness. Considering the decentral-
ized settings where UEs do not interact with each other, it is
challenging to design iMARL that converges to a model that
can maximally avoid collisions and significantly improve the
channel utilization.
Challenge 2. Traditional DQN architecture is heavy in two
aspects: First, deep neural networks often contain a large
number of parameters. Even worse, the Q network and the
target Q network in DQN double the model size. Second,
a replay buffer that stores previous experience is attached
to each model. Sharing the DQN model between UEs and
the shuffler incurs significant communication overhead on
throughput. How to design a compact DQN structure to re-
duce communication overhead becomes a great challenge.
Challenge 3. As presented in Section 2.5, the DQN model
are heterogeneous across UEs. The shuffler needs to match
the DQN model with UEs based on their potential prefer-
ences for channel selection. However, it is difficult to deduce
the channel selection from the received model parameters.
Moreover, the sensory data cannot be explicitly shared with
the shuffler. Hence, the preference evaluation can only be
performed using the received models. Therefore, how to effi-
ciently evaluate the personalized preference of each UE w.r.t
each model without sensory data poses another challenge.

Addressing these challenges is not trivial. Without care-
ful design of the DQN model, the communication overhead
of sharing the DQN model can overshadow the benefits they
bring. Even worse, if the model does not converge to a sce-
nario with little collision, the channel cannot be efficiently
utilized and is wasted. In addition, the evaluation module at
the shuffler needs to be carefully designed, such that the UEs
can be well matched to the model without raw sensory data.
In the following, we present the techniques we develop in
Hermes to effectively address those challenges.

3.3 System Configurations
Before diving into the design details, we need to clarify

the system configurations of Hermes, which significantly im-
pacts our design. In terms of the wireless environment, we

4

Figure 3: A closer look at the Hermes architecture.

Figure 4: The work flow of Hermes.

assume there are N UEs to share M channels, where N > M.
The achievable bits transmitted per unit of time, or termed
as data rate, offered by each channel varies among different
UEs and can be estimated by CQI.

In one time slot, a UE can either stay silent or request
one channel to transmit data. A silent UE does not send any
data or interfere with any channel. If a UE requests a par-
ticular channel, it can successfully transmit data when the
channel is only requested by this UE. Otherwise, when two
or more UEs request the same channel, a collision occurs
and all UEs fail to transmit. At the end of this slot, UEs ob-
tain feedback from the environment. The feedback is about
whether they have transmitted data successfully or not. How-
ever, UEs cannot know peers’ choices for the channels and
which UE has a collision with them.

In addition, each UE has a local buffer that temporarily
stores the data to transmit. In our settings, we only care
about the amount of buffered data. The amount will increase
when the UE has new data to transmit but does not get suffi-
cient channel resources instantly. In contrast, when a UE is
able to transmit data through a certain channel, the amount
of buffered data will decrease accordingly. The data trans-
mission will be terminated once the buffer is empty but the
channel will be continuously occupied in the rest time of the
current slot.

3.4 Design of the Improved Multi-Agent Re-
inforcement Learning

We implement iMARL based on Deep Q Network
(DQN)[15]. The structure of DQN deployed on each UE is
shown in Fig. 5. In this part, we will first introduce the core

Figure 5: The structure of 2-layer-FC DQN.

components of iMARL, including observations, actions and
rewards. Then, the compact DQN structure is presented. Fi-
nally, we will explain how we modify the DQN’s workflow
to further adapt the shuffle mechanism.

The observation oi(t) of the ith UE at time slot t consists
of four parts, whose space is

oi(t) ∈ RM
+ ×N+× ({0,1}×NM

+)×{0,1} (1)

where N+ and R+ represent the set of positive integers and
positive real numbers. The first M elements are the available
data rate offered in M channels. This part is the sensory data
that is collected by the UE’s sensor and is independent of the
actions. The second part is the buffer status. It has only one
bit indicating whether the buffer is empty or not. The next
M + 1 elements record the UE’s action history in the previ-
ous slots: the first element indicates whether the UE stays
silent or not in the last slot; and the following M elements
record how long from the last request for the M channels
accordingly. The last element refers to whether the UE has
successfully transmitted data in the last slot.

Let ai(t) denote ith US’s action at time slot t, which can
be formulated as:

5

ai(t) ∈ {1,2,3, ...,M,M+1}, (2)

where the former M elements represent the preference for
choosing each one channel from the M channels and the last
element represents the preference for staying silent. For
the time slot t, the ith UE’s action ai(t) is determined by the
ε-greedy policy. After an inference of DQN, the output is
considered as the action vector. The action vector contains
M +1 elements, each of which is corresponding to a choice
of ai(t). In ε-greedy policy, UEs choose the best action with
the maximal value in the action vector with probability 1−ε

and take random choice in small probability ε.

(a) Reward Table of Existing
MARL

(b) Reward Expectation Table of
Existing MARL

(c) Reward Table of iMARL (d) Reward Expectation Table of
iMARL

Figure 6: Reward tables and reward expectation tables of
existing MARL and iMARL in a toy example, where two
UEs, Alice and Bob, share one channel. The reward and

reward expectation are painted as red and blue for Alice and
Bob, and the gray scenarios are the Nash Equilibriums.

The setting of the rewards plays an important role in UEs’
actions after convergence. Let ri(t) be the reward ith UE ob-
tains at slot t. In the existing MARL methods, ri(t) depends
on its transmitted data, i.e., UEs get positive rewards when
successfully transmitting data and zero rewards otherwise.
Such rewards lead to frequent occurrences of collisions, as
demonstrated in a toy example in Fig. 6 where 2 UEs, Alice
and Bob, share one channel. The reward settings for Al-
ice and Bob in existing MARL methods can be formulated
as a reward table in Fig. 6a. Because of the ε-greedy pol-
icy, UEs do not always take the same actions even after con-
vergence. Therefore, we cannot directly calculate the Nash
Equilibrium from the reward table. Instead, a table contain-
ing the reward expectation over actions for each scenario is
required. Let ε be 0.2 in this toy example, which means there

is 0.9 probability to take the best action and 0.1 probability to
take the other action. Based on this probability distribution,
we can calculate the reward expectation from reward table.
In the scenario that both Bob and Alice request the chan-
nel, the possibilities of collision, Alice’s using the channel
alone, Bob’s using the channel alone, and the channel’s be-
ing idle equal 0.81, 0.09, 0.09, 0.01 respectively. We take the
products between the possibilities and Alice’s corresponding
rewards in Fig. 6a and sum the products up, yielding Al-
ice’s reward expectation as 0.09 in this scenario. Doing so
for both Alice and Bob in all the four scenarios, we obtain
the reward expectation table in Fig. 6b. In this reward expec-
tation table, the scenario where both Alice and Bob request
channel is the Nash Equilibrium. Hence, collisions occur
frequently. In contrast, negative rewards are assigned to the
UEs with collisions in Hermes. As Fig. 6c shows, the re-
wards of the collision scenario is set to negative values, −1
in this toy example, for both UEs. Similarly, the reward ex-
pectation table with ε-greedy policy can be calculated as in
Fig. 6d. In this case, Nash Equilibrium moves to the scenar-
ios where one UE transmits successfully and the other stays
silent without collisions. Generally, Nash Equilibrium is the
situation where M UEs stick to M channels and N−M UEs
always stay silent in iMARL. Hereby, we define the reward
function as:

ri(t) =

{ xi(t) Success to transmit
−α∗ xi(t) Fail to transmit

0 Stay Silent
(3)

where xi(t) is the data rate and α is a punishment factor. With
the discounted factor γ, the total reward of the ith UE Ri is
defined as:

Ri =
T

∑
t=1

γ
t−1ri(t). (4)

To reduce the overhead of sharing the DQN model, as
well as the inference latency of DQN, the structure of DQN
should be compact. Therefore, the DQN that we design for
each UE contains two fully connected (FC) layers and two
activation layers ReLU and Sigmoid respectively. The feed-
forward process of FC layers can be formulated as:

xl+1 = Wlxl +bl

(l = 1,2)
(5)

where W is the weight matrix and b is the bias vector; xl and
xl+1 are the input and output of the lth FC layer. We denote
the size of the hidden layer as L and the total parameters of
the two FC layers in the network are (3L+1)× (M+1).

To train the DQN for each UE, we establish two iden-
tical networks, i.e., Q network and target Q network. The
target Q network is fixed during the time that Q network is
being trained. Once one training epoch ends, the Q network
is copied to the target Q network. Also, a replay buffer is
assigned to store the experiences and a batch of experiences
are randomly sampled from the space in the training process.

6

In the replay buffer, the tuples [si(t),ai(t),ri(t),si(t + 1)] at
previous time slots are stored. The notation of the tuple is
simplified as [s,a,r,s′] in the rest of the paper. To train the
network, we define the loss function as follows:

L(θ) = E(s,a,r,s′)

[(
r+ γmax

a′
Q(a′,s′;θ

target)

−Q(a,s;θ)
)2
]
,

(6)

where θ is the parameters of the Q network and θtarget is the
parameters of the target Q network. It is easy to calculate the
gradients of the loss function as in Eq. 7 and the Q network is
optimized with the expectations of gradients being estimated
via sampled tuples in the batches.

∇θL(θ) =E(s,a,r,s′)

[
−2
(
r+ γmax

a′
Q(a′,s′;θ

target)

−Q(a,s;θ)
)
∇θQ(a,s;θ)

]
.

(7)

To further reduce the overhead of communicating iMARL
between UEs and the shuffler, two additional modifications
are introduced. UEs only upload the DQN model right af-
ter one training epoch ends. At this moment, the Q network
is about to be copied to the target Q network, so the two
are supposed to be the same. Thus, only the Q network is
uploaded. Also, since training no longer proceeds after up-
loading and the target Q network is never used for inference,
the local copy can be omitted. The second modification is
that the replay buffer is not uploaded and it is cleaned when
a new shuffled model arrives. UEs train the DQN using data
that is collected recently and locally. The rationale is that
when the training is close to converging, the variance of the
experience is low, so a small batch of experiences are able to
provide an accurate estimation of the gradient expectation in
Eq. 7. Before being converged, the model changes rapidly
and the memory that is generated a long time ago is out of
date.
3.5 Design of Shuffle Mechanism

Shuffle mechanism contains two steps, model evaluation
followed by model distribution. In the following, we will
illustrate the design details of both steps.

In the model evaluation, we evaluate all the uploaded
models by calculating the UEs’ potential preference to them.
We denote the model form the ith UE as ith model. A pref-
erence matrix E is introduced, where element Ei, j represents
the ith UE’s preference to the jth model. For each Ei, j, we
consider a combination of two metrics, namely, the model
last appearance EMLA

i, j and the model distance EMD
i, j . The

model last appearance (MLA) EMLA
i, j refers to how long from

the the last allocation of jth model to the ith UE. The maxi-
mization of MLA means that UEs prefer models that are not
allocated recently, increasing the models’ mobility over UEs.
As the mobility increases, UEs can access all the models and
thus all the channels. This metric directly contributes to the
fairness issue.

In spite of the above benefit, it is not appropriate to eval-
uate the UE’s preference using MLA only. The reason is

that MLA does not utilize the parameters of the models and
ignores the UEs’ adaptations to different models.

Model distance (MD) EMD
i, j describes the discrepancy be-

tween the ith model uploaded from the ith UE and the jth
model received from the jth UE. We tend to distribute a UE
with the model that is similar to the one uploaded by this UE
via minimizing the MD. The rationale is that UEs that are al-
located with similar models are able to adapt the new models
with fewer time slots, reducing unexpected outputs that may
lead to collisions.

Before calculating MDs, the Model normalization is per-
formed. In our DQN with two FC layers, we only consider
the MD of the last FC layer that converts the features to the
action vector. As presented in Eq. 5, a UE takes the action
with the maximum value in the action vector. This means
we only care about the relative value and deducting the same
row vector from different rows of W and b will not affect
the UE’s decision. Therefore, a zero-mean normalization for
each column of W and b is performed before comparing the
models. The normalization can be defined as:

Ŵ = W− 1
Nrow

 1 · · · 1
...

. . .
...

1 · · · 1

W, (8)

b̂ = b− 1
Nrow

 1 · · · 1
...

. . .
...

1 · · · 1

b. (9)

Based on the normalized Ŵ and b̂, we can define MD by
the Euclidean distance of W and b between two models as:

EMD
i, j = ||Ŵi−Ŵj||2 + ||b̂i− b̂ j||2. (10)

Finally, we calculate the preference Ei, j using the two
metrics EMLA

i, j and EMD
i, j as:

Ei, j = EMLA
i, j −λEMD

i, j , (11)

where λ is a hyper-parameter that balances the weights of the
two metrics.

Based on the estimated UEs’ preference to models, the
shuffler distribute models back to UEs. The model distribu-
tion can be formulated as a weighted bipartite perfect match-
ing 2 problem. The N UEs and the N models are the two
bipartitions and the preference matrix E is the edge weight
matrix between these two bipartitions. The Hungarian algo-
rithm [11] and Kuhn-Munkres (KM) algorithm [18] can be
utilized to find a perfect matching MKM which maximizes
the summation of the matched weights:

MKM = argmax
M

(∑
Ei, j∈M

Ei, j). (12)

However, KM algorithm does not take fairness into ac-
count. In the matching with the maximized summation of

2In bipartite matching problem, perfect matching M is a matching that
matches all vertices of the graph

7

Algorithm 1 Optimized UE-Model Matching Algorithm
Input: E: Preference Matrix
Output: Mopt : The Optimal Perfect Matching

1: Right = max(E),Le f t = min(E)
2: while Right > Le f t do
3: Eth = (Right +Le f t)/2
4: Set Ẽ as empty
5: for i in UE set do
6: for j in model set do
7: if Ei, j > Eth then
8: Append Ei, j to Ẽ
9: end if

10: end for
11: end for
12: M = Hungarian(Ẽ)
13: if M is a perfect matching then
14: Le f t = Eth
15: else
16: Right = Eth
17: end if
18: end while
19: return M as Mopt

weights, the extreme matches with much smaller weights
than others cannot be excluded. To eliminate such circum-
stances, we propose an optimized UE-model matching al-
gorithm. Different from KM algorithm, our matching algo-
rithm aims at maximizing a threshold Eth. All weights within
the matching are greater than or equal to the threshold. In
other words, the minimum weight in the matching is maxi-
mized:

Mopt = argmax
M

(Eth) = argmax
M

(
min

Ei, j∈M
(Ei, j)

)
. (13)

The matching algorithm is presented in Alg. 1. The core
idea of this matching algorithm is trial and error using a
heuristic binary search. We set the upper bound Right and
the lower bound Le f t for Eth. Given the two trial bounds, the
threshold Eth is set as (Right +Le f t)/2. A new unweighted
subgraph is built based on the threshold Eth. An edge from
the ith UE to the jth model is included in the subgraph if
and only if Ei, j is no less than the threshold Eth. Then, the
Hungarian algorithm is performed. If the perfect matching
exists, we reset the lower bound Le f t as Eth. Otherwise, we
reset upper bound Right as Eth. We repeat this loop until the
upper bound Right and the lower bound Le f t converges.

4 Evaluation
4.1 5G Simulation Setups

We implement and evaluate Hermes in 5G network. We
refer to the MATLAB 5G Toolbox [14] for developing the
5G simulation environment.

5G Frequency Domain and Time Domain. We first in-
troduce the 5G’s structure in the frequency domain and time
domain. In the frequency domain, the resource block group

(RBG) is the smallest unit allocated to UEs. Each RBG con-
tains 16 resource blocks (RBs) which consist of 12 subcar-
riers and the subcarrier spacing is 15kHz. The CQI on each
RB can be sensed by UEs and is represented by a positive in-
teger. The CQI value is determined by the distance between
the UE and the gNb and is not greater than 15. It fluctuates
randomly by ±2 every 200 ms.

As for the time domain, ‘frame’ is the unit of simulation
time, each of which lasts 10 ms. Each frame consists of 10
slots, which are the smallest unit that can be allocated to UEs
in the time domain. UEs transmit 14 OFDM symbols within
each slot. The first 2 symbols represent the demodulation
reference signal (DMRS) for channel estimation and the rest
12 symbols express data to transmit.

To calculate UEs’ current data rate in an RBG for a slot,
the mean value of CQI over the 16 RBs in this RBG is
calculated to determine the modulation and coding scheme
(MCS). Then the bit transmitted per symbol per slot is given
by the MCS. Hence, the current transmitted data size in a
RBG per slot can be formulated as:

#Bits = bit/symbol ∗
(
#(symbol)−#(DMRS)

)
∗ #(subcarrier) ∗ #(RB).

(14)

5G Application Configuration. The dynamic change of
UEs’ buffer size depends on the requirement of applications
on them. We simplify the application configuration by mak-
ing three assumptions as follows:

• There is no extra control signals between the gNb and
the UEs. All the throughput is data transmission.

• The host device of all the applications is UE, indicating
that only uplinks from UEs to gNb exist.

• There is no need for retransmission.
Two properties are being considered for each application:

packetInterval in slot and packetSize in byte. Each UE’s
buffer increases by packetSize bytes every packetInterval
slots for all the applications on this UE.
4.2 Evaluation Metrics

Channel Utilization Efficiency. We adopt channel uti-
lization efficiency (CUE) to evaluate Hermes. The traditional
CUE refers to the rate of utilized data rate over the maximum
data rate of a channel. It is not available in Hermes because
a channel’s maximum data rate varies from different UEs.
Therefore, in our experiments, we define CUE as the propor-
tion of used RBGs over all available RBGs. A lower CUE
indicates that there exist collisions or idle channels. In other
words, CUE can also be defined as one minus the proportion
of collisions and idle RBGs:

P(utilized) = 1−P(collided)−P(idle). (15)

Average Throughput. In the wireless network, through-
put is an important metric that evaluates the data rate of wire-
less devices. We use average throughput over UEs as one
evaluation metric in our experiments. With a fixed number
of UEs, the average throughput over UEs is linearly propor-
tional to the total throughput. Unlike CUE, average through-
put measures how much capacity of RBGs are utilized, in-
stead of merely counting the number of used RBGs. In this

8

sense, average throughput can be viewed as the weighted
CUE using RBGs’ data rate.

Jain’s Fairness Index. We also apply Jain’s fairness in-
dex (JFI) [10] to evaluate the throughput fairness over UEs.
It is formulated as:

J (x1,x2, ...,xN) =
(∑N

i=1 xi)
2

N ∑
N
i=1 x2

i
, (16)

where xi is the throughput of the ith UE. As we can see in
the equation, one advantage of this metric is that it is only
impacted by the relative throughput of different UEs, but not
the absolute values. As the system is the most fair and the
throughput is even for all users, JFI reaches its maximum
value of 1.

4.3 Baselines
We evaluate Hermes’s performance by comparing it with

the centralized PF method [25] and the decentralized DQSA
method [19].

PF is a traditional scheduling strategy on gNbs in SM.
Compared to other scheduling strategies such as Best CQI
and Round Robin, PF is known for its better performance on
fairness. In the PF approach, UEs need to upload their full
status to the gNb for every scheduling periodicity, includ-
ing buffer status, CQI and historical average data rate. The
historical average data rate describes the previous data rate
for a UE and is updated every time slot. For each RBG, PF
tends to distribute it to the UE with the maximal proportion
of the current data rate over the historical average data rate
until a maximum RBG number (1 in our implementation) is
allocated to this UE.

Besides, the decentralized method DQSA is taken as an-
other baseline for Hermes. It is one of the state-of-the-
art MARL based DSA method that outputs a good DSA
scheduling plan in small-scale UE deployment. However,
as described in Sec. 2.4, DQSA suffers fairness issue and
serious collisions when the number of UEs N is greater than
the number of RBGs M.

4.4 Evaluation of Performance
We first evaluate Hermes under a relatively simple setting,

where only a small number of UEs and RBGs need to be
scheduled in short simulation time. After that, we compare
Hermes’s with two baseline methods based on the aforemen-
tioned evaluation metrics under a more challenging setting
compared to the above setting. In this setting, we increase
the number of UEs and RBGs with the simulation time du-
ration extended. In both settings, we assume that sensory
data across all the UEs are independent and identically dis-
tributed (i.i.d) and only one single shuffler serves all the UEs.
The training of iMARL is performed every 10 slots and the
shuffling is performed every 50 slots.

Fig. 7 shows the results under the relatively simple set-
ting with 10 UEs and 3 RBGs for 100 frames (1 seconds
or 1000 slots). In Fig. 7a, the color yellow, red and black
represent the three channels and the color white represents
that a UE stays silent. The 10 UEs start with random chan-
nel selections and end up with the Nash Equilibrium within
100 frames, where 3 of 10 UEs request channels and the rest

(a) Channel Selection (b) Throughput

Figure 7: The channel selection and throughput heatmaps of
Hermes, where there are 10 UEs sharing 3 RBGs for 100

frames.

of them stay silent. Note that the training of iMARL pro-
ceeds smoothly despite that shuffling takes place every 50
slots. Besides, there are still a small number of stripes after
the DQN converges. It indicates that UEs retains a small ten-
dency to explore different RBGs due to the ε-greedy policy.
Although such tendency leads to collided and idle channels,
it helps the model to adapt to environmental changes. The
model cannot make use of newly available RBGs any longer
if the ε-greedy policy is abandoned once after the DQN con-
verges.

In terms of throughput, as Fig. 7b shows, the darker
the color stripe is, the higher the throughput UEs achieve.
Generally, a channel can achieve a data rate of 3 Mbps to
6 Mbps. In the first 10 frames when models are not con-
verged and collisions occur frequently, the throughput over
all the UEs remains to a low extent. When the Nash Equi-
librium is reached, the throughput heatmap looks similar to
the channel selection heatmap, which indicates that almost
all the requests for channels can successfully transmit data
without collisions.

(a) Channel Utilization Efficiency (b) Average Throughput

Figure 8: The CUE and average throughput over time,
where there are 20 UEs sharing 6 RBGs for 500 frames.

Then we compare Hermes with two baselines in a more
challenging environment, where 20 UEs share 6 RBGs for
500 frames. Their performance is shown in Fig. 8 and Table
2.

Fig. 8a shows the CUE of Hermes. The DQN model con-
verges around the 100th frame. After that, the CUE slightly
fluctuates around the maximum and the collision probability
is reduced to the minimal value. The probability of occur-

9

Table 2: Comparison of JFI between Hermes, DQSA and
PF.

Methods Jain’s Fairness Index
Hermes 0.9619
PF 0.9274
DQSA 0.4902

ring idle channels keeps a small value all the time. The CUE
cannot reach 100% due to the ε-greedy policy.

The average throughput of Hermes, DQSA and PF is
shown in Fig. 8b. The average throughput of Hermes is
slightly lower than that of PF. The reason is that Hermes
cannot fully utilize all available RBGs owing to the ε-greedy
policy. Yet, its average throughput is much higher than that
of DQSA due to the properly designed reward.

We also evaluate JFI on all the three methods and report
the evaluation results in Table 2. Hermes is slightly better
than PF and these two methods are significantly better than
the DQSA without shuffling in terms of fairness.
4.5 Evaluation of Robustness

In addition to performance evaluation, we evaluate Her-
mes’s robustness with different numbers of UEs, RBGs and
varied deployment intervals between UEs. Since the average
throughput is strongly correlated to the number of RBGs, the
trend of the average throughput as RBGs increase tells little
about the system’s robustness with respect to the number of
RBGs. Hence, we only use the other two metrics in this sec-
tion.

(a) impact of #UE (b) impact of #RBG

Figure 9: The impact of #UE numbers (a) and #RBG (b) on
CUE and JFI.

We first evaluate Hermes’s robustness with a varied num-
ber of UEs and RBGs. In this experiment, the simulation is
conducted for 500 frames and we calculate the correspond-
ing evaluation metrics based on the last 100 frames. In Fig.
9a, we vary the number of UEs from 11 to 30 with 6 RBGs
shared. The CUE slightly decreases with a larger number
of UEs. It is because the probability of colliding with other
UEs when taking random choices increases, as we include
more UEs. Then, we vary the number of RBGs from 1 to 15
with a fixed 20 UEs. As Fig. 9b presents, Hermes achieves
higher CUE when the number of RBGs is between 2 to 11,
but there is a significant performance drop in extremely com-
petitive situations where the number of RBGs is too small.
In addition, performance is also degraded when there are too

many RBGs. The reason is that the DQN model converges
so slowly that it has not converged at the end of 500 frames
and hence the CUE remains low. With regard to fairness,
Hermes maintains a high JFI no matter how the number of
UEs and RBGs are changed.

(a) deployment (b) deployment interval d

Figure 10: The impact of deployment interval on CUE and
JFI.

We also evaluate how the deployment interval between
UEs affects the CUE and JFI. Here the deployment interval
is defined as the distance between UEs. In this experiment,
as shown in Fig. 10a, we deploy all the UEs with the same
interval d in a line from the gNb, and the UE in the mid-
dle is always 500 meters away from the gNb. As Fig. 10b
shows, the CUE is not impacted by the deployment interval.
Meanwhile, the fairness can always be guaranteed even in
the extreme situation, where the deployment interval d is 50
meters. In that circumstance, the closest UE to the gNb is
only 50 meters away and the farthest UE is at the edge of the
gNb’s coverage.
4.6 Runtime Performance

Finally, we evaluate Hermes runtime performance in a dy-
namic environment, where the numbers of available RBGs
and UEs keep changing over time. In addition, multiple shuf-
flers are deployed and each shuffler is responsible for shuf-
fling the models among a random subset of the UEs. We
apply the throughput to the evaluation of the runtime perfor-
mance.

We simulate the dynamic environment for 1000 frames.
There are 10 UEs and 2 RBGs at the beginning, and new
UEs and RBGs are gradually added in the first 500 frames.
Specifically, ten more UEs become available at the 250th
frame and one more RBG is added every 100 frames from
the 100th frame. In the next 500 frames, as shown in Fig.
11, some of the RBGs and UEs exit sequentially.

The results are presented in Fig. 11. When a new RBG
becomes available, the throughput on this RBG increases
slowly and reaches its full capacity in 0.5 seconds. On
the contrary, when an RBG becomes unavailable, the corre-
sponding throughput drops to zero immediately. The emer-
gence of new UEs introduces a throughput drop within 0.5
seconds to all the UEs, because their untrained models bring
collisions and are taken into the shuffle process and dis-
tributed to other UEs. When UEs exit, some of the RBGs
become idle. The total throughput drops rapidly, but quickly

10

(a) Total throughput

(b) Throughput over UEs

(c) Throughput over RBGs

Figure 11: The runtime performance of Hermes in the
dynamic environment.

recovers within around 0.5 seconds. To summarize, Hermes
is capable of adapting to the environmental changes in no
more than 0.5 seconds.
5 Related Work

The key challenge of designing a DSA protocol is to ef-
fectively and efficiently handle the multi-channel structure
and highly dynamic network resources [2]. Many DSA tech-
niques have been proposed to address this challenge based
on classical mathematical algorithms [4]. Among these tech-
niques, the auction-based approach is a promising DSA tech-
nique. The auction-based techniques dynamically allocate
the spectrum to SUs based on their best bid that is sub-
mitted to the PU. The bid can be expressed in many rep-
resentations, e.g., money, relaying services, etc. For exam-
ple, Wang et al. [27] designed a DSA approach based on
bandwidth auctions, where SUs submit a bid for the spec-
trum and PUs allocate the spectrum among the SUs with-
out affecting their own performance. Game theory is also
adopted to optimize performance related to spectrum shar-
ing. Maskery et al. [13] proposed a DSA method from an
adaptive game theory perspective. When a channel is avail-
able, SUs compete for it to fulfill their own demands while
minimizing interference with their peers. Huang et al. [9]
presented a non-cooperative game theory method for LTE-A
networks, where femtocells compete for sharing the primary
macrocell spectrum. On the contrary, Gharehshiran et al. [8]

designed a cooperative game theory method for LTE-A net-
works. Niyato et al. [23] proposed a comprehensive solu-
tion via combining cooperative and non-cooperative game
theory approaches. Multiple PUs sell spectrum to multiple
SUs, where the competition among PUs is modeled as a non-
cooperative game and the competition among SUs is treated
as an evolutionary game. Vamvakas et al. [26] introduced
prospect theory to allocate the transmission power as PUs or
SUs. However, the dynamic interaction cannot be fully de-
scribed using a game theory approach [24], and such an issue
has been addressed by applying Markov Chains. Akbar and
Tranter [1] proposed a Markov-based Channel Prediction Al-
gorithm (MCPA), allowing SUs to dynamically select differ-
ent licensed bands while significantly reducing the interfer-
ence from and to PUs. Thao et al. [20] utilized the Hidden
Markov Process to model the utilization state of each spec-
trum band at each time slot, and such a state can be approxi-
mated from the power spectral density measurements. Based
on the occupancy state, the available bands are assigned ac-
cordingly.

Besides the mathematical approaches, RL has become
an emerging state-of-the-art technique for DSA. The most
widely applied RL algorithm in wireless communication ap-
plications is Q-learning [29]. Therefore, most of RL-based
DSA approaches focus on Q-learning [16, 6, 21]. Morozs
et al. [16, 17] presented a centralized RL method for DSA,
and the RL model is deployed on the base station or a single
SU. In this method, the interactions among multiple SUs are
ignored, which is not reasonable in practice. Naparstek and
Cohen [19] proposed a distributed RL approach for DSA,
where an MARL algorithm is introduced with considering
the interference among multiple SUs. Although RL-based
techniques such as Q-learning have demonstrated good per-
formance on DSA, a critical challenge is it fails as the user
number increases. In this paper, our proposed method sig-
nificantly improves the performance with massive users.

6 Conclusion
In this paper, we present Hermes– a decentralized DSA

method in 5G with the consideration of massive UEs. In
Hermes, we design an improved MARL algorithm for train-
ing local models at UEs in order to achieve better resource
utilization. A novel shuffle mechanism is also proposed to
exchange trained models among UEs to realize better fair-
ness. Comprehensive simulation experiments demonstrate
that Hermes performs better than the compared baseline
methods, achieving 84 % channel utilization efficiency and
over 0.96 in JFI. Furthermore, it takes only 0.5 seconds for
adapting to the real-time changes in the dynamic environ-
ment. We believe our work can facilitate the large-scale de-
ployment of mobile devices in 5G, and the idea of shuffling
can be easily extended to more decentralized applications.

Acknowledgement
This work was supported in part by National Key R&D

Program of China (2018YFB0105000); and in part by Na-
tional Natural Science Foundation of China (No. U19B2019,
61832007, 61621091); and in part by Tsinghua EE Xilinx
AI Research Fund; and in part by Beijing National Research
Center for Information Science and Technology (BNRist);

11

and in part by Beijing Innovation Center for Future Chips.
7 References

[1] I. A. Akbar and W. H. Tranter. Dynamic spectrum allocation in cog-
nitive radio using hidden markov models: Poisson distributed case. In
Proceedings 2007 IEEE SoutheastCon, pages 196–201. IEEE, 2007.

[2] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. Next gener-
ation/dynamic spectrum access/cognitive radio wireless networks: A
survey. Computer networks, 50(13):2127–2159, 2006.

[3] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. A survey on
spectrum management in cognitive radio networks. IEEE Communi-
cations magazine, 46(4):40–48, 2008.

[4] A. O. Arafat, A. Al-Hourani, N. S. Nafi, and M. A. Gregory. A sur-
vey on dynamic spectrum access for lte-advanced. Wireless Personal
Communications, 97(3):3921–3941, 2017.

[5] P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based
user location and tracking system. In Proceedings IEEE INFOCOM
2000. Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties (Cat. No. 00CH37064), volume 2, pages 775–784. Ieee, 2000.

[6] X. Chen, Z. Zhao, and H. Zhang. Stochastic power adaptation with
multiagent reinforcement learning for cognitive wireless mesh net-
works. IEEE transactions on mobile computing, 12(11):2155–2166,
2012.

[7] K. George and K. Kevin. Minneapolis are first in the world to get 5G-
enabled smartphones connected to a 5G network, 04.03.2019. http:
//engineering.purdue.edu/˜mark/puthesis.

[8] O. N. Gharehshiran, A. Attar, and V. Krishnamurthy. Collaborative
sub-channel allocation in cognitive lte femto-cells: A cooperative
game-theoretic approach. IEEE Transactions on Communications,
61(1):325–334, 2012.

[9] J. W. Huang and V. Krishnamurthy. Cognitive base stations in lte/3gpp
femtocells: A correlated equilibrium game-theoretic approach. IEEE
transactions on communications, 59(12):3485–3493, 2011.

[10] R. Jain, A. Durresi, and G. Babic. Throughput fairness index: An
explanation. In ATM Forum contribution, volume 99, 1999.

[11] H. W. Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[12] N. Lindsay. 5G - Connection Density — Massive IoT and So
Much More, 2017. https://www.cio.com/article/3235971/
5g-connection-density-massive-iot-and-so-much-more.
html#:˜:text=5G.

[13] M. Maskery, V. Krishnamurthy, and Q. Zhao. Decentralized dy-
namic spectrum access for cognitive radios: Cooperative design of
a non-cooperative game. IEEE Transactions on Communications,
57(2):459–469, 2009.

[14] Matlab 5g toolbox, 2020. The MathWorks, Natick, MA, USA.
[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. na-
ture, 518(7540):529–533, 2015.

[16] N. Morozs, T. Clarke, and D. Grace. Distributed heuristically acceler-
ated q-learning for robust cognitive spectrum management in lte cel-
lular systems. IEEE Transactions on Mobile Computing, 15(4):817–
825, 2015.

[17] N. Morozs, T. Clarke, and D. Grace. Heuristically accelerated rein-
forcement learning for dynamic secondary spectrum sharing. IEEE
Access, 3:2771–2783, 2015.

[18] J. Munkres. Algorithms for the assignment and transportation prob-
lems. Journal of the society for industrial and applied mathematics,
5(1):32–38, 1957.

[19] O. Naparstek and K. Cohen. Deep multi-user reinforcement learn-
ing for distributed dynamic spectrum access. IEEE Transactions on
Wireless Communications, 18(1):310–323, 2018.

[20] T. Nguyeny, B. L. Mark, and Y. Ephraim. Hidden markov process
based dynamic spectrum access for cognitive radio. In 2011 45th
Annual Conference on Information Sciences and Systems, pages 1–6.
IEEE, 2011.

[21] J. Nie and S. Haykin. A q-learning-based dynamic channel assignment
technique for mobile communication systems. IEEE Transactions on
Vehicular Technology, 48(5):1676–1687, 1999.

[22] S. Niknam, H. S. Dhillon, and J. H. Reed. Federated learning for
wireless communications: Motivation, opportunities, and challenges.
IEEE Communications Magazine, 58(6):46–51, 2020.

[23] D. Niyato, E. Hossain, and Z. Han. Dynamics of multiple-seller and
multiple-buyer spectrum trading in cognitive radio networks: A game-
theoretic modeling approach. IEEE Transactions on Mobile Comput-
ing, 8(8):1009–1022, 2008.

[24] W. Saad, Z. Han, R. Zheng, A. Hjorungnes, T. Basar, and H. V. Poor.
Coalitional games in partition form for joint spectrum sensing and ac-
cess in cognitive radio networks. IEEE Journal of Selected Topics in
Signal Processing, 6(2):195–209, 2011.

[25] S. Tiwari. Long term evolution (lte) protocol verification of mac
scheduling algorithms in netsim, 2014.

[26] P. Vamvakas, E. E. Tsiropoulou, and S. Papavassiliou. Dynamic spec-
trum management in 5g wireless networks: A real-life modeling ap-
proach. In IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pages 2134–2142. IEEE, 2019.

[27] X. Wang, Z. Li, P. Xu, Y. Xu, X. Gao, and H.-H. Chen. Spectrum shar-
ing in cognitive radio networks—an auction-based approach. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics), 40(3):587–596, 2009.

[28] Y. Wang, Z. Ye, P. Wan, and J. Zhao. A survey of dynamic spectrum
allocation based on reinforcement learning algorithms in cognitive ra-
dio networks. Artificial Intelligence Review, 51(3):493–506, 2019.

[29] C. J. C. H. Watkins. Learning from delayed rewards. 1989.
[30] Q. Zhao and B. M. Sadler. A survey of dynamic spectrum access.

IEEE signal processing magazine, 24(3):79–89, 2007.
[31] Y. Zhu, Z. Xiao, Y. Chen, Z. Li, M. Liu, B. Y. Zhao, and H. Zheng. Et

tu alexa? when commodity wifi devices turn into adversarial motion
sensors. arXiv preprint arXiv:1810.10109, 2018.

12

