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Abstract
Smart ambient sensing applications are built on classifiers

that are trained to detect different events in a physical space.
Training these requires human labeling in controlled experi-
ments. However, controlled experiments only capture spe-
cific experimental settings and application-specific labels.
We aim to build a framework for data collection and active
labeling that 1) reduces the number of labels necessary to
maximize event coverage and 2) continuously learns the un-
derlying distribution of different events. System Maestro is
a data collection and labeling framework that senses the en-
vironment across 5 different ambient sensors producing 18
channel measurements. Maestro includes a web interface
for continuous labeling and applies active learning with label
propagation to minimize the number of necessary labels. We
present the results of an initial deployment in a student apart-
ment, where Maestro continuously learns to count occupants
and progressively learns to identify activities of daily living.
Our preliminary results show that we can achieve accuracy
>95% for these applications, with <10% labeled examples.

1 Introduction
The emergence of the Internet-of-Things (IoT) has made

the vision of smart buildings a reality. A smart building envi-
ronment is equipped with a range of sensors and captures the
dynamics of different activities in the environment. These
data can be used to infer physical context by extracting char-
acteristic properties for a variety of machine learning (ML)
applications, such as occupancy detection [5], activity mon-
itoring [1], and environment control [2].

However, current ML techniques do not generalize well
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Figure 1. Overview of Maestro
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across different spaces as generalization typically requires
a large amount of labeled data across different spaces [6],
which poses several challenges for ubiquitous-computing
based sensing platforms. First, the ML component of such
platforms provides sub-optimal performance without ade-
quate training data and the data is proportional to number
of users in the system. Poor performing systems fail to at-
tract more users, creating a dilemma for system performance.
Second, current dominant ML methods learn in isolation;
given a labeled dataset, it learns to solve a well-defined,
narrow task. However, effective learning takes place over
time and can enable learning with fewer examples by re-
using accumulated knowledge to label novel, unseen exam-
ples. Third, most ML objectives revolve around detecting
and classifying raw sensor streams to physical events be-
tween humans and the environment. Hence, the low-level
sensor data (e.g. vibration) can detect low level events (such
as vibration of paper-towel dispenser) but cannot leverage
this detection to a high-level human-understandable concept
(e.g. 400 dispensing events meaning the dispenser would re-
quire a refill). For IoT systems to find success in ubiquitous
computing, the “Semantic Gap” between raw data streams
and semantic labels must be bridged [7].

Prior work [3], has employed static and mobile sensors to
monitor occupants’ activities. Laput et al. [4] creates a cus-
tom sensor and uses manual training and clustering methods
to obtain synthetic labels for appliance usage. In this work,
we present Maestro, an IoT-system designed for rapid de-
ployment and data collection for ML applications to address
these challenges. Maestro allows data collection from multi-
ple sensor-boxes simultaneously to a centralized server. It of-
fers an user-centric, online labeling capability to the user via
a web application, provides visualization and context of data
streams, to help users assign semantic labels. Thus, Mae-
stro can be a key solution for crowd-sourced label acquisition
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Table 1. Results of occupancy counting
Method Acc. Prec. Rec. F1 score
SV Machine 0.76 0.78 0.76 0.76
Random Forest 0.89 0.90 0.89 0.89
Ensemble 0.75 0.86 0.75 0.77

Table 2. Results of activity recognition
Method Acc. Prec. Rec. F1 score
SV Machine 0.96 0.96 0.96 0.96
Random Forest 0.98 0.98 0.99 0.98
Ensemble 0.97 0.97 0.97 0.97

from many users to build custom ML applications. Further,
it can use active learning, which allows to specifically query
labels for most informative samples, and can thus reduce the
labeling effort.

2 System Overview
As shown in Figure 1, Maestro consists of two main mod-

ules. A sensing module, which is responsible for acquiring
data from the sensors. While the database and web applica-
tion module supports data storage and real-time data visual-
ization via a web-based user interface. A prototype is shown
in Figure 2. Maestro is powered by a Raspberry Pi3©, and
the data collection is enabled through an Arduino Uno© con-
nected to various off-the-shelf sensors (IMU, PIR, color and
illumination sensor, audio sensor, pressure, humidity, and
temperature sensor). This combination of sensors results in
a total of 18 data points per unit time. The device is con-
figured to upload chunks of data to a centralized database
running on our data processing server. A camera is attached
to the Raspberry Pi to help the user while labeling, so that
a video feed can be shown during the active learning phase.
For data storage, we used TimescaleDB to implement our
storage database. We also develop a user interface for data
visualization and label querying for active learning. The vi-
sualizer allows the user to specify a particular box, a start and
end time, and what sensor channels of the box to visualize.
The active learning presents unlabeled examples to the users
and queries the label associated with it. The web interface
then displays the graph of all channels specific to the queried
examples alongside a GIF of the corresponding camera feed
for user reference. The user observes the feed and graph and
submits their label for that example, which feeds back into
the learning algorithm for further training.

3 Experiments and Preliminary Results
• Experiments. We conducted experiments in a typical

household of a family of 5 members. One of the family mem-
bers acted as the experimenter and annotated the data during
the experiment period which we use as ground-truth. We fo-
cus on 2 problems in our experiments: occupancy counting
and activity recognition. Our analysis performed on the raw
sensor data which were transformed to values between (0, 1)
as a pre-processing step. We use 75/25 train/test split. For
occupancy counting, the experimenter annotated the data us-
ing corresponding occupancy labels during the experiment
period. For activity recognition, we select data for 3 activ-
ities that are typical in a household environment: vacuum
cleaning, exercising, and typing on a keyboard.
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Figure 3. Effect of active learning strategy in (a) occu-
pancy counting and (b) activity recognition

• Preliminary Results. We use different ML algorithms
appropriate for multi-class classification (Tables 1 and 2).
We report accuracy, precision, recall, and F1 score to outline
the performance of each classifier. Our results in Table 1
show that Random Forest classifier performs the best in oc-
cupancy counting. However, in activity recognition applica-
tions, both Random Forest and Ensemble classifier achieve
best performance (Table 2). More close observation on the
results reveals that only 2-2.5% were misclassified.

We further report the classification performance on the
same applications when employing active learning. We ex-
plore whether our method can still provide good perfor-
mance if we lower the required number of labeled data for
the classifier. We train initial classifier using a small set of
initial labeled training data (ranges between 10-30 samples).
The later training examples are specifically queried by sam-
pling method from active learning and can thus decrease the
number of labels required and user labeling effort. Based on
the selected query strategy, active learning framework itera-
tively queries for more examples to be labeled and retrains
the classifier. We experimented with various query strategies
used in the literature and margin sampling performs the best.
We allow the framework to query for labeled examples and
retrain until it reaches near-convergence. Figure 3 shows the
results using active learning. The Y-axis shows the accuracy
improvement (with error bar) of the classifier equipped with
active learning, against the number of queries it demanded
(X axis). For both applications, the performance improved
with new labels available from queries.
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