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Abstract

The success of the fourth industrial revolution hinges on
the ability to deploy robust cyber-physical systems that mon-
itor and control physical processes. Testbeds are state of the
art tools for evaluating such systems according to the execu-
tion requirements of the application, i.e., evaluating how the
cyber-physical system interacts with the device upon which
it is implemented on. However, the validation of a cyber-
physical system must also consider the reactive requirements
of the application, which define how the cyber-physical sys-
tem interacts with the underlying physical process it is de-
signed to monitor and control. We advocate that a new
testbed infrastructure is needed that facilitates the evaluation
of execution and reaction requirements simultaneously.

We present the design and implementation of VIADUCT,
a novel testbed infrastructure that models the physical pro-
cess under consideration, and injects stimulus into the cyber-
physical system using time synchronized hardware inter-
faces. An experimental evaluation demonstrates how the
testbed simultaneously evaluates execution and reaction re-
quirements with a precision and scalability that surpasses
the capabilities of state of the art testbeds, thereby bringing
testing infrastructure one step closer to evaluating real-world
cyber-physical systems.

Categories and Subject Descriptors

Computer systems organization [Embedded and cyber-
physical systems]: Sensor networks

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Testbed, virtual sensor, virtual actuator, power profiler

Figure 1: A VIADUCT observer with a Nordic nRF52840-
DK target. The observer provides virtual sensors and actu-
ators, which model the underlying physical process that the
cyber-physical system is designed to monitor and control.

1 Introduction
The success of Industry 4.0 hinges on the ability to seam-

lessly integrate devices that are capable of interacting with
real-world processes. These systems, commonly referred
to as cyber-physical systems (CPS), combine computation,
communication, sensing and actuation to monitor and con-
trol an underlying physical process, such as the vibration of
an industrial motor, the temperature of a high-power electri-
cal distribution bus, or the flow rate of a catalyst in a chemi-
cal process. In order to verify the behavior of these complex
systems, rigorous testing infrastructures and methodologies
are needed.

Problem. Testbeds, as surveyed in [24], are the state
of the art tool for testing cyber-physical systems. These
testbeds have facilitated significant research and develop-
ment of cyber-physical systems through the availability of
public testbeds, such as D-Cube [28], Indriya2 [10], and
Flocklab [22], and dependability competitions [7, 27]. How-
ever, the problem is that these testbeds evaluate the device
under test in complete isolation, i.e., the complex interaction
between the device and the physical process is not consid-
ered. The ramifications of this may be severe, as when the
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cyber-physical system is deployed into the real-world, the
intricate interactions with the underlying physical process
being monitored or controlled may adversely affect the per-
formance of the system, e.g., through increased power dis-
sipation, increased latencies or erroneous hardware and/or
software states. We therefore advocate the need to extend
the scope of testing to also include the complex interaction
between the device under test and the physical world.

Challenges. Clearly, it is infeasible to bring a physical pro-
cess, such as the vibration monitoring of industrial machines,
into a laboratory testbed. And similarly, it is impractical to
bring an embedded systems laboratory into a harsh industrial
environment. Instead, we need to model the important char-
acteristics of the physical process under consideration, and
embed the model into the testbed infrastructure.

The first challenge is to define a suitable level of abstrac-
tion, i.e., at what level of abstraction shall we model the
physical process such that it closely resembles the behavior
of a real-world deployment. Once we have a model, we need
to create a testbed architecture that can implement this model
with a high degree of measurement precision, thus enabling
the accurate calculation of performance indicators such as
average power dissipation, end-to-end latency and software
state mapping. Finally, the testbed architecture must scale to
multiple devices, as cyber-physical systems typically contain
networks of devices, while also supporting the testing over
long time scales so to effectively evaluate long-term perfor-
mance characteristics.

These three challenges, i.e., modeling, precision and scal-
ability, are interdependent. For example, a model may in-
corporate a slow moving process, such as daily tempera-
ture variation, and in order to evaluate the performance of
the device under test, precision measurements must be per-
formed over long time scales. As precision measurements
are achieved through high-rate sampling, e.g., of voltage and
current, a large amount of data produced significantly lim-
its the scalability of the testbed infrastructure. We therefore
need to address these challenges by modeling the physical
process using an appropriate level of abstraction, coupled
with an architecture that supports a high degree of precision,
without sacrificing scalability.

Approach. We propose VIADUCT, a new testbed architec-
ture that bridges the gap between modern testing infrastruc-
ture and a real-world deployment of a cyber-physical system.
VIADUCT models the underlying physical process using a
hardware-level abstraction layer, termed virtual sensors and
virtual actuators, based on commonly-used digital interfaces
such as Inter-Integrated Circuit (I2C), Inter-IC Sound (I2S)
and Serial Peripheral Interface (SPI). This unique abstraction
layer makes it possible to inject complex stimuli through-
out the cyber-physical system representative of a real-world
deployment. Using well-established system design princi-
ples [19, 20, 21], we partition VIADUCT into components
with well-defined interfaces, and map them onto appropriate
analog circuits, digital blocks, soft-cores and dedicated pro-
cessors. The unique architecture of VIADUCT ensures that
precision measurements are achieved while supporting long
duration testing of several days for cyber-physical systems
containing scores of devices.

Contributions. The contributions of this paper are as fol-
lows:

• We introduce a new abstraction of physical processes,
termed virtual sensors and virtual actuators, which
make it possible to bring the complex characteristics of
a real-world cyber-physical system into a testbed infras-
tructure.

• We present the architecture of VIADUCT, a new testbed
that closes the gap between modern testbeds and a real-
world deployment of a cyber-physical system.

• We detail the design and implementation of a VIADUCT

testbed with 16 nodes, one of which is depicted in
Fig. 1, and experimentally evaluate its unique features
using a set of representative micro-benchmarks.

• We present a case study that shows how VIADUCT can
be used as a tool to facilitate testing of a cyber-physical
application by providing virtual acoustic signals to the
device under test.

This paper is structured as follows: In Sec. 2, we present
the background and related work of modern testbeds. We
then introduce the virtual sensor and actuator concept in
Sec. 3, detail the architecture of the VIADUCT testbed
in Sec. 4 and present its design and implementation in
Sec. 5. We experimentally evaluate the features of VIADUCT

through a series of micro-benchmarks in Sec. 6 and show
VIADUCT in action for a smart building use case in Sec-
tion Sec. 7, before discussing limitations and future improve-
ments in Sec. 8 and concluding remarks in Sec. 9.

2 Background and Related Work
It is more than 15 years since the first testbed, Mote-

lab [32], was presented in the literature. As illustrated in
Fig. 2a, a testbed consists of one or more target nodes, each
consisting of a microcontroller, a radio module and a col-
lection of sensors and actuators. Attached to each target is
an observer node, which is responsible for (i) programming
the target, (ii) logging the output from the target, e.g., se-
rial logs, GPIO traces, voltage and current measurements,
and (iii) triggering input into the target, e.g., the rising and
falling of selected GPIO lines.

It is important to highlight that the device under test,
i.e., the set of target nodes, are isolated from the underly-
ing physical process that the targets are designed to monitor
and control. Despite this fundamental limitation, the testbed
concept has been widely used in academia. In particular,
testbeds have been extensively used in the research of wire-
less sensor networks, where they have been instrumental in
the performance evaluation of wireless protocols. An exten-
sive range of testbeds have been proposed in the literature
to date, including low-cost testbeds D-Cube [28] and Open-
TestBed [25], large-scale testbeds TWIST [17], Kansei [12],
Indria [10], and Indriya2 [2], the FlockLab [22] testbed hav-
ing multi-target support, a mobility-enabled testbed FIT IoT-
LAB [1], the Minerva [31] testbed providing advanced on-
line debugging tools, the TempLab [9] for emulating envi-
ronmental temperature variations, JamLab [8] and JamLab-
NG [28] for injecting interference into a wireless network,
the Shepherd [16] testbed for transiently-powered targets,
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Figure 2: A graphical representation of a cyber-physical system in a testbed (a), a VIADUCT virtual deployment (b), and a
real-world deployment (c).

and recently, the LinkLab testbed [15] for remote develop-
ment and testing of IoT applications. We acknowledge the
importance of these testbeds and support the ongoing ini-
tiatives to create a set of benchmarks for the evaluation of
wireless sensor networks [11, 5, 4].

Testbeds are primarily designed to evaluate the execu-
tion requirements of a cyber-physical system. These exe-
cution requirements measure the performance of the target
upon which the CPS is built upon. Examples include the
power dissipation of the microcontroller, the end-to-end la-
tency of the wireless protocol, and the tracing of software
state. However, cyber-physical systems not only have ex-
ecution requirements, but they also have reactive require-
ments [18], which are equally important. These reactive re-
quirements measure the performance of the cyber-physical
system in response to interactions with the underlying phys-
ical process.

As illustrated in Fig. 2c, once a cyber-physical system
is deployed into the real-world, each target uses its sensors
and actuators to monitor and control the underlying physi-
cal process. These interactions with the physical process are
complex. The cyber-physical system must react to changes
in the physical process, which may originate from changes
monitored at a single target, or may be attributed to actions
performed by one or more targets within the network. For
example, the adjustment of a solenoid valve at one target in
a chemical process application may influence the flow rate
measured by other targets. This may result in a burst of high-
priority network traffic, leading to collisions and the invoca-
tion of retransmission mechanisms, thus leading to increased
latency and higher power dissipation that may destabilize the
entire cyber-physical system.

This motivates the need to model the underlying physi-
cal process in a local and distributed manner, as illustrated
in Fig. 2b. VIADUCT adopts the features of modern testbeds
while also modeling the physical process found in a real-
world deployment. VIADUCT supports the logging and trig-
gering akin to modern testbeds with high precision and scal-
ability, and through appropriate abstractions, models the un-
derlying physical process such that the reactive requirements

Viaduct Observer Target

VCC_Target

GPIO

UART

I2C/SPIVirtual Sensors & Actuators

Power Supply & Monitoring

Serial Reader & Writer

GPIO Monitoring & Actuation

Programming & Debugging JTAG/SWD

Viaduct
Controller

Figure 3: Blueprint of VIADUCT’s system architecture: Each
observer is connected to a target device for programming &
debugging, GPIO monitoring & actuation, serial logging and
power profiling. Furthermore, we provide virtual sensors and
actuators connected to the target. A network of several ob-
servers is connected to the central testbed controller.

of the cyber-physical system can be fully understood and
evaluated prior to a real-world deployment.

An overview of the VIADUCT architecture is shown in
Fig. 3. Each target device, which we have chosen to be
the Nordic nRF52840 system-on-chip, is connected to a
VIADUCT observer. The VIADUCT observer provides a
range of services, which include supplying the target with
power and measuring its power consumption, monitoring
and actuating GPIO lines, reading from and writing to the
serial interface, and virtualizing sensors and actuators. Mul-
tiple VIADUCT observers may be deployed in a wired and/or
wireless IP network, thus enabling each observer to connect
to a VIADUCT controller. The controller is responsible for
scheduling testbed jobs, as well as storing and visualizing
the output of each job.

3 Virtual Sensors and Actuators
In this section, we describe how VIADUCT’s capabilities

can be utilized for testing embedded software applications
that interact with the physical world using virtual sensors and
actuators.

Cyber-Physical Systems. The key aspect in which CPS dif-
fer from traditional computing systems is the fact that com-
putational tasks are linked with the physical world through
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sensors and actuators. Feedback loops exist between com-
putation and physical systems where the outcome of a soft-
ware task affects the behavior of the real-world environment
and vice versa. For example, the embedded system will ini-
tiate a communication round with other nodes in the network
triggered by an external event observed through its sensors.

Challenges. Due to the tight coupling between computa-
tional and physical parts of the system, testing the embedded
system alone without the physical process in the loop will
not be sufficient to emulate and predict the behavior during
the real-word deployment phase. We argue that exploring
the complex interactions between the physical and computa-
tional components already during the design and implemen-
tation phases by the means of virtual deployments with real-
hardware is an integral part of the overall design process.

Emulating the Physical World. VIADUCT allows to emu-
late the physical part of a complex CPS system in order to
explore the behavior of the embedded system part interact-
ing with it. In order to provide a flexible way to emulate the
physical world part of a CPS, we introduce the concept of
virtual sensors and actuators. While a hardware-based sen-
sor converts an observation of the physical world into a volt-
age signal or digital representation, a virtual sensor provides
measurement values based on a software-based model of the
environment. Following the same principle, a virtual actua-
tor updates the state of a software model of the environment
instead of interacting directly with the physical world.

Virtual Sensors and Actuators. Although our sensors and
actuators have no electrical components to measure or inter-
act with the physical process, we keep the identical electri-
cal interfaces of such hardware components, as for exam-
ple the popular UART, I2C or SPI interfaces. Furthermore,
we can also employ a digital-to-analog converter (DAC) or
an analog-to-digital converter (ADC) to provide analog in-
puts to the target node, as well as to measure analog voltages
produced by the target. Consequently, we can model the in-
terface of virtual sensors and actuators to imitate the behav-
ior of hardware components that will be used in real-word
CPS devices. This has the benefit that the timing behavior of
the embedded system will not differ between virtual and real
hardware, which allows to employ the same binary image
during testing with VIADUCT and for the real-world deploy-
ment.

CPS Models. As detailed in [26], we assume cyber-physical
systems are modeled by multi-dynamical systems, which
have the following properties:

• Discrete events based on the outcome of computation

• Continuous physical processes

• Uncertainty due to:

– Stochastic processes (e.g., noise)

– Non-deterministic processes

– Adversarial behavior (e.g., actuation of one influ-
ences observation of another node)

The VIADUCT testbed architecture provides the capabil-
ities to model the physical process of CPS with the above
mentioned properties. Based on the interactions of the tar-

Target

Device Actuator
(Hardware)

Sensor
(Hardware)

Physical System (Reality)

(a) Real-world Deployment

Target

Device Actuator
(Virtual)

Sensor
(Virtual)

Model
(Local)

Model
(Global)

Physical System (Virtual)

(b) Virtual Deployment

Figure 4: Target devices interact with their environment us-
ing sensor and actuator hardware components (a). VIADUCT

provides virtual sensors and actuators to emulate the behav-
ior of the physical world using models (b).

get device with the virtual actuators, we can update our
continuous model of the physical environment accordingly,
and furthermore, reflect the new model state in the mea-
surements provided by the virtual sensors. Processes with
non-deterministic behavior can also be modeled by emulat-
ing discrete events using interrupts.

Local vs. Global Models. Compared to a real-world de-
ployment, as illustrated in Fig. 4a, we distinguish between
models for local processes, which only take into account the
interactions of a single node with its environment, and mod-
els for global processes, which model the state of the envi-
ronment using a global process, as illustrated in Fig. 4b. The
system architecture of VIADUCT is agnostic of the model of
the environment and supports both local and global models.
VIADUCT’s message broker allows for flexible and scalable
exchange of model state and discrete events between a cen-
tral instance and the observers as well as between distributed
models.

4 Architecture
In this section, we discuss the key requirements for a

testbed architecture providing the capabilities to facilitate
testing of cyber-physical systems, as discussed in the pre-
vious sections.

4.1 Requirements
We derive the following key requirements for the

VIADUCT testbed architecture:

Inspection. The testbed should offer several monitoring and
debugging options such as serial logging, GPIO tracing and
power profiling.

Synchronized Clocks. Collecting measurement data from
several spatially distributed observers and several logging
modalities (GPIO, serial, power) requires that timestamps as-
sociated with the data are aligned to the same time base both
on observer as well as network level. Furthermore, coordina-
tion of actuation between devices will also require synchro-
nized clocks.

Scalability. Increasing the number of devices under test
should not adversely impact the underlying system architec-
ture. Furthermore, the architecture should support to per-
form tests with a long duration, e.g., multiple days or weeks.

Live Operation and Processing. Visibility into the state of
the devices under test should be available as early as possi-
ble, i.e., during the test already instead of only after the test.
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Extensibility and Flexibility. The architecture should al-
low to extend the system with additional functionality while
not requiring to redesign the overall architecture. Further-
more, the observer should be agnostic of the target hardware
as much as possible to support experiments with novel plat-
forms with minimal changes.

Modularity. In order to allow to extend the testbed with ad-
ditional features, the core functionality of the testbed should
be implemented in separate hardware and software modules.

4.2 Design Principles
Designing the VIADUCT testbed architecture is a chal-

lenging endeavor, so we therefore aim to manage the com-
plexity using a set of well-established design principles [19,
20, 21]. We next briefly described the principles, and how
they are applied to the architecture of VIADUCT.

Abstraction. In order to model the behavior of the phys-
ical process in VIADUCT, we must choose an appropriate
abstraction layer. This was motivated by identifying that
the time-domain is a critical property that needs to be pre-
served by the abstraction, since physical processes under-
pinning cyber-physical systems are tightly coupled to time.
Furthermore, since sensors and actuators used in real-world
deployments are typically interfaced by a digital bus, such as
the popular I2C and SPI interfaces, it is natural to define the
physical process abstraction layer at the I2C/SPI digital in-
terface, while preserving the bus clock and the response time
of the sensors and actuators being modeled.

Partitioning. Also referred to as the separation of con-
cerns or spatial isolation, we seek to partition tasks based
on their information flow, i.e., control or data path, and the
real-time deadlines, i.e., soft or hard deadlines. Given the
nature of the analog-domain, precision voltage and current
measurements are performed using custom analog circuits.
As for the digital-domain, data-driven tasks with hard real-
time deadlines are performed in custom hardware blocks,
while control-driven tasks with soft real-time deadlines are
performed in soft-cores or dedicated processors.

Segmentation. We next explored if there was a need to em-
ploy temporal isolation within the system, that is, are there
segments of the system that can be performed sequentially.
This decision was primarily motivated by the need for high
precision measurements, since the VIADUCT observer must
time stamp events, i.e., measurements, serial logs, changes in
GPIO line states, etc., with a high sampling rate, these com-
ponents operate on a localized high frequency time-base, i.e.,
a 100MHz free-running clock. This time base is only main-
tained within the VIADUCT observer. All other components
that interact with network services towards the VIADUCT

controller are based on the network time-base, i.e., UTC
time. In practice, this means the dedicated data-driven hard-
ware blocks operate on the local clock domain, while all
other software threads executing on soft- and hard-cores op-
erate on the network clock domain.

Interface Semantics. It is important that components be-
ing mapped onto heterogeneous resources, such as software
threads executing on a dedicated processor or a soft-core,
dedicated hardware blocks or analog circuits, must share in-
formation using well-defined interfaces. In particular, ded-

icated dual-port block random access memory, i.e., shared
memory, is used to interface hardware blocks to soft- and
hard-cores, a high-speed bus is used to connect dedicated
hardware blocks, interrupts are used to distribute control be-
tween hardware and software components, while a scalable
message broker is used to interface software components.

Component Reuse. We embrace stable open-source hard-
ware and software components and tools. Specifically, we
use a Linux distribution with Python scripts coupled with an
open source message broker to interface software tasks be-
tween observer and controller.

5 Design and Implementation
In this section, we outline how several components, such

as observers, message broker, and testbed controller, are
composed into the overall system architecture of VIADUCT.

5.1 VIADUCT Observer
The system architecture of the observer is based around

the Xilinx Zynq-7020 system-on-chip platform, which inte-
grates two ARM Cortex-A9 processors with a programmable
logic (FPGA) part. We employ the Digilent Arty Z7 single-
board computer, which hosts the Zynq-7020 and peripherals
such as a Ethernet and USB port. The Zynq platform allows
us to segment our subsystems into time-critical low-level
blocks implemented in the FPGA fabric, while high-level
software tasks can be executed in user-space on the Linux
OS. Data transfer between the programmable logic and the
ARM processors can be achieved using DMA transfers into
the DDR RAM or read-/write operations on the internal high-
speed memory buses. The chosen hardware platform and
software architecture allows us to combine both high-level
scripting languages, such as Python, with time-critical hard-
ware blocks implemented in the logic fabric. We run with the
unmodified Xilinx Linux kernel tree and employ the Linux
user space I/O system (UIO) to provide memory-mapped ac-
cess to our custom logic cores in the FPGA. Furthermore,
user space modules are notified on hardware events using
the Linux interrupt system to avoid polling by software.

Target under Test. The target under test is powered by an
adjustable voltage supply between 1.8V and 3.5V. Dedi-
cated level shifters are employed to ensure the monitoring of
GPIO lines, actuation of GPIO lines and logging of UART
is supported irrespective of the supply voltage selected. The
target may be programmed using standard programming and
debug tools, such as SEGGER J-Link and DAPLINK tools,
serial bootloader or advanced debug probes. These advanta-
geous features ensure the selection of the target is based on
the needs of the cyber-physical system, and is not determined
by the constraints of the testbed infrastructure.

Power Profiling. The power profiling of the target, i.e., the
measurement of the target supply voltage and current drain
over time, is performed in low-side configuration using a
precision analog front-end interfaced to an analog to digi-
tal converter. The current and voltage sense circuits were
adapted from the RocketLogger [30] open source project.
The RocketLogger supports two current channels and four
voltage channels, however, as the VIADUCT observer sup-
ports a single target, only one current and voltage channel are
needed. The current channel consists of two current moni-
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Figure 5: Hardware and software building blocks of the VIADUCT observer: Time-critical operations are handled by dedicated
modules implemented in the programmable logic (FPGA), while control and communication is handled by a companion user
space software module. The observer is connected to the message broker as a producer for monitoring of GPIO, serial and
power. Furthermore, it is a subscriber for messages from the testbed controller to start/stop testbed jobs.

tors in series, one designed for a low range, i.e., between
0mA and 2mA, and the other for a high range, i.e., between
2mA and 500mA. The low range is based on a feedback
ammeter circuit, while the high range is based on a shunt
ammeter circuit. The voltage channel consists of a buffered
non-inverting amplifier circuit with fixed gain. The current
and voltage channels are sampled by an ADS131E08 24-bit
analog to digital converter with a default sampling rate of
1kSPS, but could be configured up to 64kSPS. The detailed
performance metrics of the voltage and current measurement
configuration may be found in [29].

UART and GPIO. We support state-of-the art debugging ca-
pabilities required for testing by logging the target’s serial
output and tracing of GPIO pins. The digital output and in-
put line of the target’s UART transceiver are connected to a
UART transceiver core in the Zynq’s programmable logic.
The serial logging component implemented in Python reads
the target’s serial output and forwards it to the message bro-
ker together with the corresponding timestamp.

We have implemented a custom GPIO logging and time
capture core in VHDL, which supports monitoring transi-
tions in the logical level of up to 16 digital input and output
lines. Each rising or falling edge event of a monitored GPIO
line is timestamped with a free-running 100 MHz counter
and written into a FIFO memory buffer. A companion
Python module continually reads out reported events from
the buffer and forwards them to the message broker. In order
to limit the network bandwidth, we decode the data using the
Google Protocol Buffer binary format and combine multiple
events into a single message to the broker.

Time Synchronization. High-resolution timestamping of
low-level internal and external events is performed using a
free-running 32-bit counter sourced by the 100MHz FPGA
clock of the Zynq system-on-chip, which results in a resolu-
tion of 10 ns per clock tick. The counter value is provided
as input for the GPIO monitoring and power profiling cores.
Since this clock domain is local to the FPGA, we have to
convert the counter value into a global UTC timestamp be-
fore forwarding the data to the testbed controller. In the fol-
lowing, we describe two methods to perform this conversion

from local clock values to UTC timestamps. The first option
is to use the pulse-per-second (PPS) signal of a GPS receiver,
which provides a highly accurate time pulse synchronized to
the start of each UTC second. For our testbed deployment,
we use a GPS module based on the u-blox MAX-8 receiver,
which provides a synchronization accuracy of less than 60
nanoseconds to the GPS time. Thereby, the rising edge of the
PPS signal is captured using the GPIO monitoring module,
which serves as a reference point between the local 100MHz
counter value and UTC time. Using linear regression, we
can estimate the clock drift and offset between the two time
domains, which allows to convert subsequent counter values
into UTC timestamps used by GPS monitoring or power pro-
filing modules. Since GPS-based time synchronization can
be achieved with even a low number of visible satellites, it
is enough to place the GPS antenna close to a window or
use an active GPS antenna with an extension cable. In cases
where observers have to be deployed where GPS signals are
not available, the Linux system clock of the observer can be
synchronized to UTC using the NTP or PTP time synchro-
nization protocols, which only require connectivity to a clock
server. By generating a software-triggered GPIO event based
on the system clock, we can then establish a reference point
between the 100MHz counter and the system clock.

Virtual Sensors and Actuators. With the VIADUCT archi-
tecture, we introduce the concept of virtual sensors and ac-
tuators to facilitate working with a virtual physical environ-
ment during testing. The key idea is to utilize a virtual sensor
or actuator that has the same electrical interface to the target
device as the real hardware component. Consequently, the
target device is able to execute the same binary image as it
would use with the actual hardware. This is important, as
we will keep the same timing behavior of the original ap-
plication when interacting with the virtual hardware. In this
paper, we present a proof-of-concept implementation using
the I2C interface, which is widely used to interface external
sensors and actuators with microcontrollers. However, the
concept presented here is generic and therefore applicable to
other electrical interfaces, such as SPI, 1-wire, I2S, UART or
GPIO signals.
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Each virtual sensor or actuator is implemented as a com-
bination of logic cores and software modules, as depicted in
Fig. 6. In the example of an I2C-based peripheral, we use a
I2C slave logic core from Xilinx and connect it to a MicroB-
laze soft-core processor deployed to the FPGA fabric. The
MicroBlaze processor handles low-level read/write requests
from the I2C master and emulates the command set and reg-
ister space of the original peripheral. When implementing
the functionality of the virtual peripheral using standard C
programming language on the MicroBlaze processor, care
has to be taken to properly mimic the original behavior of
the device. Both the soft-core processor and the compan-
ion software module implemented in Python running on the
ARM processor have access to a shared block memory in
the FPGA, which allows to exchange state between the two
domains. Signaling of events between the ARM and soft-
core processor is implemented using interrupt signals. Upon
events signaled by the soft-core processor, the Python-based
software module will update the local model of the environ-
ment. For example, updating the state of a virtual actuator
will trigger an update to the state of a virtual sensor and vice
versa. Furthermore, the software module will publish events
to the controller in order to update the global environment
state if necessary and subscribes to updates sent by the con-
troller.

Our proposed approach provides a unified framework to
implement various classes of virtual actuator and sensor de-
vices based on the application requirements. The use of
the MicroBlaze soft-core processor programmed using the
C language and the companion Python module in user-space
facilitates integration of new virtual sensors and actuators for
users with no prior FPGA development experience.
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VCC

SDA

SCL

I2C
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Figure 6: Virtual sensors and actuators combine hardware,
logic cores and software components to emulate the virtual
physical environment of the target under test.

5.2 Message Broker
The message broker is a key component of VIADUCT’s

architecture and takes care of message routing between dif-
ferent system components. We employ RabbitMQ1, which is
a popular open-source message broker implementing multi-
ple messaging protocols, such as for example the Advanced
Message Queueing Protocol (AMQP). Client libraries for
RabbitMQ are available for many different programming
languages, which supports flexibility to implement software
modules using different programming languages and facili-
tates future extensions.

Exchanges and Queues. Messages published to the broker
are delivered to the designated Exchange, which is delivering

1https://www.rabbitmq.com
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Figure 7: Message broker (RabbitMQ) and core components
of the VIADUCT controller.

the message into one or several Queues based on the speci-
fied routing rules. RabbitMQ allows to route messages into
queues based on fields in the message header or based on a
routing key provided together with the message. So called
fanout exchanges further allow to distribute a message, such
as a control command, to all connected subscribers. Soft-
ware components deployed as part of testbed observers or
the controller connect as a subscriber to a particular queue
and/or publish messages to exchanges.

5.3 VIADUCT Controller
The roles of the testbed controller are manifold:

• Orchestration of testbed experiments by programming
the targets, setup and teardown of tests.

• Collection and storage of measurement data.

• Stream and post-processing of measurements into
meaningful results (e.g., energy consumption, analysis
of serial output).

Containers. The VIADUCT controller and message broker
are implemented as a collection of the following Docker con-
tainers running on Linux, as shown in Fig. 7:

• REST API and webserver based on the Flask web ap-
plication framework (Python)

• Message broker (RabbitMQ)

• Database (PostgreSQL)

• Job scheduler (Python)

• Data ingestion and processing modules (Python)

• Dashboard for visualization (Grafana)

• Monitoring of the observer status (Prometheus)

Utilizing a micro-services architecture based on Docker
containers provides flexibility when deploying the controller
to different host machine classes (e.g., virtual machines,
workstations, servers) and allows to scale up when needed.

We offer two methods how users or other systems can
interact with the testbed. First, users can utilize the web
interface to submit a testbed job including binaries for the
targets. Alternatively, the underlying REST API used by
the web interface can also be accessed directly by scripts
or other systems, e.g., continuous integration frameworks,
to submit jobs and retrieve the measurement data and pro-
cessed results. Furthermore, the current operational state of

7



the testbed and information about observers and target de-
vices can be obtained from the REST API.

Test Execution. Submitting a testbed job using the web
frontend or the REST API will insert a new job into the
database. The job scheduler will execute pending jobs in
a first-come first-server manner. First, the binary images are
distributed to the observers participating in the test and are
then programmed to the target’s flash memory. Next, the
software modules on the observers are initialized for logging
serial, tracing GPIO and/or power profiling as requested. All
targets are kept in reset state until the synchronized starting
point of the test. After the specified test duration has elapsed,
the targets are stopped and cleanup phase is performed.

Data Processing. Measurement data from the observers are
continually streamed to the message broker during the test
execution phase. The ingestion module on the controller
will de-serialized the protocol buffers and insert into the data
into the corresponding database tables. Stream processing
allows to aggregate the data on-the-fly, for example, in order
to obtain an up-to-date estimate of energy consumption or
count certain GPIO events. In addition, we run several post-
processing scripts upon completion of each test with access
to all collected measurements, which can be used to perform
verification of integration tests or similar. Both raw measure-
ment data and processed results are available to the user or
other systems through the REST API.

6 Experimental Evaluation
In this section, we present the results of an experimental

evaluation of VIADUCT in action and show that the imple-
mentation meets our requirements as demonstrated by sev-
eral micro-benchmarks.

Testbed Setup. Our prototype implementation of the
VIADUCT testbed architecture consists of 16 observer nodes
based on the Digilent Arty-Z7 board with the nRF52840-DK
board as our target mounted inside a 26x18 cm plastic en-
closure (see Fig. 1). We have deployed the 16 observers
across two buildings and several floors. All observers are
connected to the local area network using Ethernet cables.
The testbed controller is running on a dedicated server ma-
chine connected to the same network. Clock synchronization
is achieved by connecting the PPS output of a Mikroe GNSS
5 Click module, which features a u-blox NEO-M8N GPS re-
ceiver, to each observer, as described in Sec. 4.

6.1 Latency
In this micro-benchmarking experiment, we evaluate the

latency introduced by software, hardware and networking
components when collecting and distributing status updates
between the broker, controller and observers. Achieving
low-latency for status updates will ensure that observers and
the testbed controller have a consistent view of a shared
global state variable.

Experiment Setup. Two separate test cases are considered
to measure latency, as shown in Fig. 8. In Test A, Target
1 generates an actuation event by modifying a status value,
which is then sent by Observer 1 to the message broker and
then delivered to Observers 2 and 3. In Test B, an actua-
tion event generated by Target 1 is sent through the message
broker to the testbed controller. After updating the global

Viaduct Observer

Message
Broker

Viaduct Observer Viaduct Observer

Target TargetTarget

Virtual Actuator Virtual Sensor Virtual Sensor

1 2 3

(a) Test A:

Obs. 1✙Obs. 2/3

Viaduct Observer

Message
Broker

Controller

Viaduct Observer Viaduct Observer

Target TargetTarget

Virtual Actuator Virtual Sensor Virtual Sensor

1 2 3

(b) Test B:

Obs. 1✙Controller✙Obs. 2/3

Figure 8: Testbed setup and message routing for latency
measurements between virtual actuators and virtual sensors.

model state at the controller, the updated status value is de-
livered to all observers. We timestamp all messages sent to
the RabbitMQ broker at the source and destination using the
synchronized UTC time and calculate the latency as the dif-
ference between the two timestamps. Both broker and ob-
servers are connected to a corporate local area network in-
frastructure which is used by other devices and services at
the same time.

Results. Fig. 9 shows the distribution of the latency mea-
sured by sending 3,000 messages with an interval of 1 sec-
ond for each test case. For test case A, we observed a mean
round-trip time of 5.30ms (Obs. 1✙Obs. 2) and 5.37ms
(Obs. 1✙Obs. 3), respectively. For test case B, where the
message has to pass through the controller first in order to
update a global state variable, the mean round-trip time mea-
sured increased to 7.38ms (Obs. 1✙Controller✙Obs. 2)
and 7.37 ms (Obs. 1✙Controller✙Obs. 3), respectively.
The 95th percentiles of the round-trip time are 7.14 ms and
7.21 ms for test case A, and 9.25 ms and 9.21 ms for test case
B. Consequently, our testbed architecture enables us to prop-
agate changes in global state variables within less than 10
milliseconds in most cases, which is sufficient for many CPS
applications, e.g., condition monitoring, where sensors and
actuators are polled/updated by the target device at a com-
parable or longer time interval. Furthermore, accurate time
synchronization of all observers provided by VIADUCT al-
lows to update the state of virtual sensors precisely at a pre-
defined time in the future, thereby not being affected by jitter
due to communication latency.
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Figure 9: Latency measured between Observer 1✙2 and Ob-
server 1✙3 for both test cases. The dashed line indicates the
average round trip latency measured by ICMP pings.
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Figure 10: Throughput of AMQP connections between ob-
server and controller measured during setup, execution and
teardown of a testbed job. The target is started at t = 29s
and is halted at t = 150s, as indicated by the dashed vertical
lines.

6.2 Throughput
Long-time experiments with CPS and near real-time mon-

itoring of testbed jobs require that measurement data and
events generated during an experiment can be delivered con-
tinuously and with low-latency to the testbed controller. We
demonstrate that streaming measurement data from a large
number of observers is feasible with the available bandwidth
of state-of-the art local area networks. Fig. 10 shows the
throughput of incoming and outgoing AMQP connections
between a single observer and the RabbitMQ message broker
during a short testbed experiment.

Experiment Setup. A job is scheduled for execution on the
testbed at t = 0s, which triggers a series of RPC commands
from the controller to the observer in order to program the
binary image and prepare the observer for the test. Upon
completion of programming, the test is started at t = 29s by
releasing the target’s reset line. The test is completed by as-
serting the reset line of the target at around t = 150s. It can be
observed that streaming the samples from the power profiler
collected at 1,000 samples per second results in a through-
put of approximately 234 kbps. All collected samples are
quickly delivered and throughput drops sharply after the end
of the test. Serial logging contributes to around 1 kbps only,
as the test applications outputs only a few characters once
every second during the testing interval. The throughput of
GPIO events increases from 0.9 kbps to roughly 1.6 kbps, as
we have configured GPIO actuation by toggling an input pin
of the target every 200 ms starting from about 60 seconds
after application startup (t = 89s).

Results. Based on our measurement results we argue that
today’s local area and wide area network architectures pro-
vide the necessary bandwidth for control traffic and collec-
tion of measurement data for a large number of observers.
The bandwidth requirements per observer are in the order of
250 kps, which allows to operate 20 observers at a bandwidth
of 5 Megabits per second, which is equivalent to a single high
quality video stream.

6.3 Virtual Sensors
In this benchmark, we demonstrate that VIADUCT’s vir-

tual sensor approach enables testing of CPS applications
without having the actual hardware connected to the device

Viaduct Observer Viaduct Observer

Target (#1) Target (#2)

Light Sensor
(TSL2561)

Light Sensor
(Virtual TSL2561)

Model

(Python)

Signal Generator

AFG3102C

Figure 11: Target 1 is connected to a TSL2561 I2C light sen-
sor to measure the light emitted by the bi-color LED, which
is toggled by the AFG3102C signal generator (left). The
observer provides a virtual TSL2561 I2C light sensor con-
nected to Target 2 (right).

under test. Furthermore, no modifications to the binary ap-
plication running on the target are required, as the functional-
ity of the virtual sensor is emulated at the electrical interface
level, as described in Sec. 4.

Experiment Setup. We perform an experiment with two ob-
servers connected to our testbed infrastructure. Observer 1
is connected to the nRF52840 target with a TSL2561 am-
bient dual-channel light sensor attached as a slave to the
I2C bus. While the same target device is used with Ob-
server 2, we have not connected an external light sensor,
but we connected a virtual light sensor to the I2C bus in-
stead. This can be achieved by connecting the I2C bus of
the Nordic nRF52840 to the FPGA fabric of the Zynq-7020,
which serves as a I2C slave in this configuration. Please note
that hardware-based sensors and virtual peripherals can be
combined on the same I2C bus, as long as they have differ-
ent I2C addresses.

At the start of the testbed job, the same binary application
is programmed to both target devices. While the applica-
tion is running on the target, every 500 ms it will read both
channels of the light sensor and convert the result into the
corresponding Lux value. Based on a threshold light value,
we then either switch on the red or green LED of the target.

Results. In the case of Observer 1, we connect a Tektronix
AFG3102C arbitrary waveform generator to a bi-color LED
and alternate between two discrete voltage levels at 1 Hz,
which will emit red or green light. On the other hand, Ob-
server 2 is connected to a virtual light sensor to mimic the
exactly same behavior in software. Therefore, we update
the light value registers of the virtual TSL2561 sensor with
the corresponding values once every second by our custom
Python module. GPIO traces collected during the experi-
ment of the I2C SDA signal and the GPIO signals to the red
and green LEDs are depicted in Fig. 12, which confirms that
the test application running on the target exhibits the similar
behavior regardless of the differences between the hardware-
based and virtual light sensors.

7 VIADUCT in Action
This section demonstrates how VIADUCT can be used to

evaluate the behavior of cyber-physical systems that interact
with complex and spatially distributed physical processes.

Use Case Description. We consider a use case central to
modern smart building applications, namely, the localization
of occupants within a building using acoustic analysis. In
order to achieve this, we assume that each room of the smart
building is equipped with wireless sensor nodes that are ca-
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Figure 12: Timeline of GPIO traces of the I2C data line and
LEDs during experiments with a TSL2561 light sensor (top)
and virtual light sensor (bottom). The bi-color light sources
are toggled every second between red and green light.

pable to synchronize to a global time base over a wireless
network. Each sensor node is equipped with a microphone
to periodically collect audio samples and executes a classi-
fication algorithm to determine if an acoustic event (e.g., an
alarm sound) is detected. If an event is detected, the sensor
node will generate an event containing a timestamp of the
global time base and will proceed to disseminate the event
through the wireless network to a gateway. If the gateway
receives many such events from different wireless nodes, it
can calculate the approximate location of the acoustic emis-
sion by comparing the timestamp encoded in each event.

Challenges of Testing. In a real-world deployment, such a
system is very difficult to evaluate. The key challenge is that
the underlying physical process, i.e., many acoustic signals
from many occupants, becomes infeasible to evaluate as the
number of wireless nodes in the network increases. For ex-
ample, if there is only one sensor node, a signal generator can
be connected to the microphone device to playback represen-
tative acoustic signals. However, as the number of nodes in-
creases, additional signal generators are needed to represent
attenuation, echoing and overhearing characteristics associ-
ated with a real-world acoustic channel, thus making such an
approach financially infeasible and complex to implement.

Testing with VIADUCT. The VIADUCT testbed infrastruc-
ture transforms this infeasible testing problem into a flexi-
ble and scalable solution by modeling the behavior of the
complex acoustic channel as a virtual sensor, i.e., a virtual
microphone. Specifically, the virtual microphone generates
a stream of acoustic samples, i.e., encoded as I2S digital
signals, that are time synchronized to the global time base

Viaduct Observer

Target (nRF52840) 

I2S Microphone
(Virtual  SPH0645LM4H-B)

Local Model

I2S

Viaduct Controller

Global Model

GPIO Monitoring

GPIO Traces

GPIO

Test Execution

& Validation

Figure 13: Experiment setup: A virtual microphone is con-
nected to the target node using the I2S protocol. The target
MCU’s GPIO events are captured by the observer.

maintained by each VIADUCT observer. When the sensor
node detects an event of interest in the acoustic signal, a
GPIO line is triggered, and the VIADUCT observer records a
global timestamp of the event. Attenuation and echoing char-
acteristics of the acoustic channel may be adjusted at each
VIADUCT observer instance in real-time by appropriately
manipulating the audio stream controlled by the local phys-
ical model of the audio channel. The overhearing character-
istic of the acoustic channel may also be reproduced since
all VIADUCT observes are synchronized to the same global
time base. The global physical model is implemented as a
Python module running in the VIADUCT controller, which
publishes location and intensity of sound events to the local
model instances running on the observers. Upon reception of
a new sound event request, the local model overlays the cor-
responding audio file onto the ambient noise and transmits
the resulting audio segments using the I2S stream.

Experimental Setup. For this use case, we employ a vir-
tual microphone, which emulates a I2S microphone sensor
(e.g., the Knowles SPH0645LM4H-B), by instantiating a
I2S transmitter core in the programmable logic of the Zynq
system-on-chip. Using the ALSA subsystem, the I2S trans-
mitter is made available as a regular sound device in Linux.
Transmitting an I2S output stream can be initiated by writing
the corresponding audio samples encoded with Pulse-code
modulation (PCM) to the sound device. The I2S signal lines
are passed through a level shifter and connected to the I2S
input pins of the nRF52840 microcontroller. The setup of
the experiment is depicted in Figure 13. We implemented
a test application running on the nRF52840 that is continu-
ously sampling the I2S input and writes the data to one of
several memory buffers. Once a buffer is full, we execute a
peak detection algorithm on the audio samples to determine
if the acoustic signal exceeds a defined threshold in order
to distinguish from ambient noise. To demonstrate the use
of the virtual microphone for detection of acoustic events,
we trigger a GPIO output pin, which is monitored by the
observer. Implementation of further signal processing steps
and sound classification algorithms (e.g., based on machine
learning methods) are beyond the scope of this case study.
However, we emulate the increase in power consumption of
the MCU due to the additional processing cycles required for
sound classification by busy waiting.
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(a) High amplitude alarm signal starting at 4 seconds.
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(b) Low amplitude alarm signal starting at 12 seconds.

Figure 14: Experiment with VIADUCT’s virtual microphone sensor: An alarm signal at high (left) or low amplitude (right) is
mixed onto the background noise. The resulting sound signal is transmitted to the target node using the I2S interface to emulate
a microphone sensor. As the signal exceeds the threshold value for the high amplitude alarm, the application running on the
target MCU detects the alarm signal and starts the classification algorithm. As the amplitude of the mixed signal is below the
threshold for a low amplitude alarm, the classification algorithm is not activated by the signal.

Results. We performed two test cases using the virtual sen-
sor capabilities of the VIADUCT testbed. In the first experi-
ment, we generate an acoustic alarm signal at high amplitude
and add it on top of a sound file representing common office
noise. The superposition of the two signals is then sent using
the virtual I2S microphone to the target node. In the sec-
ond case, we keep the original background noise, but add
an alarm signal with a lower amplitude at a different posi-
tion in time. In both cases, the application binary executed
on the target MCU will continually sample the incoming I2S
data and perform peak detection by comparing the maximum
value within a data block with a predefined threshold value.
It can be observed that sampling the I2S data and period-
ically checking the acquired samples against the threshold
value will result in a current drain of roughly 1 mA, as mea-
sured by the VIADUCT’s power profiler. In case the thresh-
old value is exceeded during the current audio block, a GPIO
output pin is set to logic high, otherwise it is set to logic low.
We report the sound samples generated by the virtual micro-
phone as well as power and GPIO traces from the two experi-
ments in Figure 14. As expected, the target node has detected
the high amplitude alarm signal in the first test case, as indi-
cated by the signal level of the output pin. Furthermore, we
can observe that the current drawn by the target increased to
roughly 6-7 mA, which can be attributed to the busy wait op-
eration. In the second test case, the detection threshold for
the sound input signal has not been exceeded, as indicated
by the output pin remaining low. While existing testbed in-
frastructures provide capabilities such as serial port logging,
GPIO monitoring and power profiling, VIADUCT provides in
addition to that also fine-grained control of the sensor input
to the target nodes during a testbed experiment and allows
to reproduce the exact same test scenarios when validating
different implementations of the target application.

8 Discussion
We next discuss some limitations of VIADUCT and possi-

ble future improvements.

Time Synchronization. The network time synchronization
used by VIADUCT is based on GPS synchronization. Since
GPS has severe performance limitations in an indoor envi-
ronment, which is where a VIADUCT testbed would typically
be installed, i.e., in a laboratory of industrial environment,
one could instead employ the IEEE 1588 Precision Time
Protocol (PTP) over Ethernet. Alternatively, a custom time
synchronization protocol based on constructive wireless in-
terference, e.g., such as the Glossy [13] primitive, may be
used for sub-microsecond time synchronization between the
VIADUCT controller and observers, as shown in [23].

Power Profiler. The voltage and current measurement cir-
cuits used in VIADUCT are extremely sensitive, and due to
poor ESD protection, there exists a small 50Hz interferer.
This may be mitigated using appropriate ESD materials, e.g.,
ferromagnetic shielding between the measurement circuits
and the power supply. It is duly noted that the front-end
analog circuits for voltage and current measurement are sus-
ceptible to temperature variation of the passive components,
however, this has been minimized through the use of low-
tolerance components and appropriate calibration.

Extensibility. The VIADUCT testbed presented in this work
does not emulate environmental conditions that may be ex-
pected in a harsh environment, which is typically where
cyber-physical systems for industrial applications would be
deployed. For example, the adverse effects of temperature
variation and wireless interference are well known, as de-
tailed in [6] and [3], respectively. However, the flexibility of
the VIADUCT architecture enables the extension of features
that can emulate such environmental conditions, for exam-
ple through integrating suitable components from the Tem-
pLab [9] and JamLab [8] testbeds.
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Outlook. Despite the aforementioned limitations, we be-
lieve that the VIADUCT testbed architecture is an important
step toward addressing the challenges of dependable cyber-
physical systems, as recently surveyed in [14]. Since the
costs and difficulty associated with troubleshooting cyber-
physical systems in the field are extreme, as exemplified
in [33], there is a need for new methods and tools such as
VIADUCT, to ensure the complex interactions of a real-world
deployment are exposed to the cyber-physical system prior to
deployment. The unique characteristics of VIADUCT make
it possible to quantify metrics of dependability that better
resemble a real-world deployment, and thus move one step
closer to realizing dependable systems in practice.

9 Conclusion
We have argued that state of the art testbeds are not suf-

ficient to effectively evaluate cyber-physical systems, since
they do not capture the complex reactive requirements im-
posed by real-world physical processes. We therefore pro-
pose, VIADUCT, a scalable and high-precision testbed ar-
chitecture that abstracts the underlying physical process of a
cyber-physical system and thus making it possible to inject
stimulus comparable to a real-world deployment.

In this paper, we have presented the design and imple-
mentation of a 16-node VIADUCT testbed based on well-
established system design principles. We experimentally
evaluated the VIADUCT testbed using several case studies.
The results have shown that the proposed VIADUCT archi-
tecture supports real-world reactive requirement evaluation
through the virtual sensor and actuator abstraction and scales
well with the size of the cyber-physical system under test.
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