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Abstract

The EU-funded project WellC aims to develop a mo-
bile app with a virtual coach to encourage the users towards
healthier behaviour choices, healthy nutrition being one of
them. In this paper we propose a method to detect eating
in real time by using a commercially available smartwatch.
The method relies on machine learning, following the estab-
lished activity-recognition paradigm. We developed some
eating-specific features based on auto-correlation, which sig-
nificantly improved the accuracy. We also developed a three-
stage model training procedure, in which we specifically
train eating-detection models on difficult-to-recognize in-
stances, and smooth the final predictions. The training and
test data was collected in real life. We achieved the preci-
sion of 0.7 and recall of 0.83. Being able to detect exact
time of eating gives us information on frequency of eating
and allows us to run algorithms to count intakes, recognize
different eating gestures etc.

1 Introduction

The WellCo project provides a mobile app featuring a vir-
tual coach for behaviour changes. The coach monitors the
user and provides recommendations for a healthier lifestyle.
The app has different monitoring modules - nutrition, physi-
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cal activity, physical health, mental health, social well-being
etc.

This paper describes a method to detect eating in real time
by using a commercial smartwatc This is a part of the nu-
trition monitoring module in the Wellco project and monitors
the quantitative aspect of nutrition. The proposed method
detects periods and duration of eating. This information can
then be used to recognize different meals or frequency of
eating and serves to start methods for counting food intakes,
which we implemented and described in previous work [[14]].
We also developed a Food Frequency Questionnaire to mon-
itor not only the amount but also the type of food eaten [[16]].

The problem of detecting periods of eating has been ad-
dressed before. Mirtchou et al. [15] explored eating detec-
tion by using several sensors and combining real-life and lab-
oratory data. Edison et al. [[18]] proposed a method that rec-
ognizes each intake gesture separately and later the intake
gestures within 60 minutes interval are clustered. The evalu-
ation was done using real-life data. Dong et al. proposed an
algorithm to detect eating in real-life situations [5]. Amft et
al. [1] proposed a method that can accurately detect eating
and drinking using sensors attached on the wrist and upper
arm on both hands. In our previous work we detected eating
among other activities of daily living [2]] by using a smart-
watch.

The work done in this study is significant for the follow-
ing reasons. We developed a method that consists of two
stage training that helps to improve eating recognition and to
reduce the false positives. Additionally, we designed auto-
correlation features that are specific for eating-detection.
The method was evaluated on a real-life recorded data over
the whole day for 10 subjects.

2  Method

The functional diagram of our proposed eating-detection
method is shown in Figure [I| The method is based on ma-
chine learning and consists of the following parts: filtering
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Figure 1. Method pipeline

the accelerometer and gyroscope data coming from a smart-
watch, segmentation of the filtered data, feature extraction,
feature selection, two stages of model training and smooth-
ing the predictions. Each part of the method is described in
the following subsections.

2.1 Data Preprocessing

In the first step, the data was interpolated to a fixed fre-
quency of 100 Hz, in order to handle inconsistencies in the
sampling rate. In the next step, noise was reduced using
a 5™ order median filter. Furthermore, the median filtered
data was additionally filtered with low-pass and band-pass
filters. The low-pass filter was used in order to eliminate
the noise generated by dynamic human motion and to pre-
serve only the gravitational force, which provides informa-
tion about the orientation of the sensor. The band-pass filter
was used to eliminate the low-frequency gravity acceleration
and high-frequency noise. Thus, it preserved the medium
frequency signal components generated by dynamic human
motion. For the low-pass filter we used a 149" order FIR
filter with a cutoff frequency of 1 Hz and for the band-pass
filter we used a 149" order FIR filter with a cutoff frequen-
cies of 5 Hz and 10 Hz. Hence, we ended up with three
different streams of data, median, low-pass and band-pass
filtered data.

The accelerometer and gyroscope data were segmented
using a sliding window of 15 seconds with 3-second overlap,
or slide, between consecutive windows. The reason for the
length of the window is that it needs to contain an entire food
intake gesture [20]].

2.2 Feature Extraction
2.2.1 Time-domain Features

We used time-domain features that were used in our pre-
vious work [3, 4, [10]. Some of them are statistical features
describing the intensity and “shape” of the signal, such as
the mean of the signal, its variance, skewness and kurtosis.
Other are designed using expert knowledge, such as the num-
ber of peaks in the signal and the area under the curve of the

signal. Since these features were designed for accelerome-
ter data, most of them were calculated only on the acceler-
ation data streams. Each feature used the stream that was
best suited for it (e.g., features dealing with orientation used
low-pass filtered data, whereas features dealing with peaks in
the acceleration used band-pass filtered data). Some of the
features were also calculated on the gyroscope data streams.

2.2.2  Auto-correlation Features

Since eating is a repetitive movement in terms of the mo-
tion of the hand, a certain periodicity can be noticed in every
eating activity. However, this periodicity varies between dif-
ferent people and different meals. In order to make the model
aware of the different periodicities and make it more robust,
we introduced a new group of features related to the auto-
correlation. We explored the auto-correlation of the low-pass
filtered accelerometer and gyroscope signals. The length of
the window enabled us to calculate the auto-correlation value
for different lags and to capture if there is repetition of a ges-
ture. These features can be separated in two groups.

The first group of features were calculated as an aggrega-
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tion function over the output values from the auto-correlation
function. The output of the auto-correlation function using
different lags forms a vector on which we performed dif-
ferent calculations such as the mean, standard deviation and
variance. So, the vectors on which we calculated this kind
of features were calculated using consecutive lags from 0 to
400, 0 to 800 and 0 to 1200 samples.

The second group of features were also calculated us-
ing the vector that is formed as the output from the auto-
correlation function, which we again calculated for consec-
utive values of the lag, except that we used all values from
0 to 1200 together. Here we calculated features that repre-
sent the number of repetition of intakes. This group consists
of the following features: the number of peaks, number of
zero-crossings, mean value of the distances between peaks,
mean value of the distances between zero-crossings and the
area under the curve. Figure [2] shows the acceleration along
the z-axis of two different subjects. On this graph we can
see the different shape of the intake gesture. In Figure [3|are
shown the detected peaks over the output values from the
auto-correlation function which is calculated for the signals
shown in Figure 2| The number of detected peaks for both
signals are same, though the two intake gestures of the sub-
jects are quite different.

2.2.3  Frequency-domain Features

The second group of features we used has proven to be ef-
fective in the field of activity recognition (AR) [9,17]. These
features describe the periodicity of the signal and they are
calculated using the signal’s Power Spectral Density (PSD),
which is based on fast Fourier transform. The features were
calculated for all three different streams of accelerometer and
gyroscope data — median filtered, low-pass filtered and band-
pass filtered data. They include: the values of the five high-
est peaks of the PSD magnitude and their corresponding fre-
quencies, energy, entropy, binned distribution using 10 bins
and the first four statistical moments of the PSD.

2.3 Feature Selection

To improve the computational efficiency and to remove
the features that did not contribute to the accuracy, as well as
to reduce the odds of overfitting, we used a feature-selection
algorithm.

In the first step of the algorithm, we calculated the mu-
tual information between each feature and the label. In the
next step, we sorted the features in descending order ac-
cording to the mutual information. Next, we calculated the
Pearson’s correlation coefficient between the features. If the
correlation coefficient between a pair of features was above
the 0.8, we kept only the feature that had a higher ranking
based on the mutual information. When feature selection
was used, the resulting models achieved equal and in some
cases slightly better accuracy than those without feature se-
lection, with a lower computational complexity, since fea-
ture extraction is computationally the most demanding part
of AR.

2.4 Model Training

The proposed method in this study consists of three
stages. The first two aim at training an eating-detection mod-
els on an appropriate amount of representative eating and

non-eating data. The third step smooths the predictions of
the model.

Eating represents only a small part of the performed activ-
ities in a typical day. Such unbalanced data tends to produce
poor classification models, so the first step in model training
was to undersample the recorded non-eating data. Specifi-
cally, we decided to do this in such a way that we would end
up with 65% of non-eating and 35% of eating data for each
day. We did not create a completely balanced dataset because
people do in fact spend less time eating than not eating, and
because we wanted to include as many different non-eating
activities as possible in the training. The reason for this is
that there are many similar activities in the daily life that can
be mistaken as eating, so including bigger set of non-eating
data enable the models to learn the difference between sim-
ilar non-eating and eating activities. In order to capture a
multitude of different activities that subjects preformed in
their daily life routine, we uniformly sampled 2-minutes seg-
ments from the whole non-eating data. Considering that the
recordings from the subjects did not contain any additional
information about short activities that are similar to eating,
such as brushing teeth or combing hair, we could not select
them and include in the training set. So, in order to tackle
this problem, we included Second-Stage training in our ap-
proach.

After we trained machine learning models on the First-
Stage training data, we produced predictions for the whole
day for each subject. The predictions gave a number of false
positives (non-eating recognized as eating). In order to im-
prove the quality of the predictions, we performed a Second
Stage of training, which included additional non-eating data.
This refers to the instances that were missclassified in the
First Stage of prediction. We included only bursts of more
than 9 consecutive missclassified instances, since adding all
missclassified examples resulted in overfitting of the models.
The number was chosen experimentally. This was done in
the following manner. First of all, before predicting the activ-
ities for a target subject, we performed leave-one-subject-out
(LOSO) evaluation using only the remaining subjects. The
missclassified instances for each subject during the LOSO
evaluation were then added together to the First-Stage train-
ing data for the target subject.

The last part of the method refers to postprocessing of the
final predictions. In all the experiments so far, all the win-
dows were classified independently from one another. This
approach discards all the information on temporal dependen-
cies between them. If a user is currently eating, for exam-
ple, but the next window is classified as “non-eating”, fol-
lowed by another eating classification, it is far more likely
for “non-eating” to be a misclassification than a break be-
tween two meals. This motivated us to use an extra step af-
ter classification, where the temporal information was taken
into account. This was done using an Hidden Markov Model
(HMM). In this model the hidden states represent the actual
activity, while the emissions, represent the classified activi-
ties. The parameters of this models are the transition prob-
abilities between the states and the probabilities of observed
emissions in each state. This information was computed di-
rectly from our training data using LOSO evaluation. The
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former can be calculated from the transition matrix of the
actual activities of the train set (matrix of probabilities that
one activity is followed by another), while the latter from the
confusion matrix between the actual and the predicted activ-
ities of the train set. The HMM smoothing was performed
using the Viterbi algorithm [6] in the hmmlearn library.

3 Experimental Evaluation
3.1 Dataset

For this study, we recorded data from 10 subjects (8 male
and 2 female) ranging in age from 20 to 41 years. The
data was recorded using a commercial smartwatch Mobvoi
TicWatch S running WearOS, providing 3—axis accelerome-
ter and 3—axis gyroscope data sampled at approximately 100
Hz. Our dataset includes recordings from usual daily activ-
ities that were performed by the subjects, as well as record-
ings while they were eating. While the subjects were wearing
the smartwatch, they were using an application that ran on
the smartwatch and enabled them to start or stop the record-
ings and additionally to label the beginning and end of each
meal. All the subjects were wearing the smartwatch on their
dominant hand. Additionally, the subjects were using an ap-
plication on their smartphone where they provided informa-
tion about the type of the meal, the utensils they used and
additional information if they forgot to label a specific meal.
This information was written in the form of standardized
notes which were later used for automatic cleaning of the
data. There were no limitations about the type of meals the
subjects could have during the recording of the data, which
resulted in having 28 different meals recorded. Furthermore,
the subjects were also asked to act naturally while having
their meal, meaning talking, gesticulating, using the smart-
phone etc.

The total data duration is 161 hours and 18 minutes, out
of which 8 hours and 19 minutes corresponded to eating ac-
tivities. Overall, the dataset contains 70 meals of which 28
were eaten only using hands, 18 using fork and knife, 14
using only fork and 10 using spoon, fork and knife.

3.2 Experimental Setup

For the evaluation, the LOSO cross-validation technique
was used. In other words, the models were trained on the
whole dataset except for one subject on which we later tested
the performance. The same procedure was repeated for each
subject in the dataset. As we mentioned before in Section
the developed method uses Second-Stage training using
instances missclassified in the First Stage in addition to the
undersampled data. The missclassified instances used in the
Second-Stage training for one subject were produced from
a nested LOSO evaluation using only data from the remain-
ing nine subjects. Using additional missclassified instances
only from the subjects that present training data does not af-
fect the idea of the LOSO evaluation because the data of the
subject used for testing is not mixed with the training data in
any of the stages. The results obtained using this evaluation
approach are more reliable compared to approaches where
the same subject’s data is used for both training and testing,
which show excessively optimistic results.

For this study we used the Random Forrest classifier [S]],
because it has been proven to be effective in the field of AR

[7] as well as in eating detection [18].

We analyzed the following evaluation metrics: recall, pre-
cision and F1 score. These three evaluation metrics are the
most commonly used for this type of problem and give a
realistic estimate of the efficacy of the algorithm. As we
mentioned before, the final results were obtained from the
predictions for the whole day recordings of the subjects (and
not just on undersampled data such as was used for training).
The reason for this is mainly to give a real picture of how
good the developed method is in real-life settings.

3.3 Results

Table[T|shows the results achieved in the conducted exper-
iments. Row-wise comparison between the used evaluation
metrics shows the results obtained by a Baseline method [2]]
and the results after each step of the method proposed in this
paper. The Baseline method is a general AR method that was
previously developed by us and was also used for eating de-
tection. Its results in the first row are not particularly good,
but similar to the results achieved with it in the past work.
The second row presents the results that were achieved us-
ing only the undersampled data for training and without us-
ing postprocessing of the predictions. We can clearly see
that the precision of the used method is relatively low, which
indicates that the proposed method cannot accurately differ-
entiate between activities that are similar to eating. On the
other hand, the recall value of 0.73 shows that the method
can detect most of the meals in the dataset. The third row of
the table shows the results after smoothing the predictions.
Here, both the precision and the recall are significantly im-
proved. However, the value of the precision is only 0.54,
which indicates that further improvement is needed. The
improvement of the precision introduced by the smoothing
suggests that probably only the short bursts of false posi-
tives were removed. Hence, we developed the Second-Stage
training, which we expected to deal with this problem. The
third row presents the results achieved using the Second-
Stage training, where we used additional misclassified in-
stances produced by the First-Stage training. The results for
this method show that the model is capable of learning new
non-eating gestures, which improved the precision. Finally,
in the last row we can see the results that were achieved after
smoothing the predictions from the Second Stage. Again,
the smoothing improved the results remarkably. Here we
can see that the second stage training helped the model to
increase the precision by 0.1 compared to second row, while
the recall was only decreased by 0.02.

Additionally, we made a comparison between results us-
ing different number of selected features shown in Table [2]
Reducing the number of features to 100 resulted in slightly

Method Precision | Recall | F1 score
Baseline 0.29 0.65 0.4
1st Stage 0.47 0.73 0.57
1st Stage + HMM 0.54 0.85 0.66
2nd Stage 0.55 0.64 0.59
2nd Stage + HMM 0.64 0.83 0.72

Table 1. Results achieved at each step



Table 2. Results with different feature set

Number of features | Precision | Recall | F1 score
All (830) 0.64 0.83 0.72
100 0.62 0.82 0.71
60 0.70 0.83 0.76

worse performance, but significantly reduced the computa-
tional complexity. Interestingly, further reducing the number
of features to 60 significantly improved the precision. Also,
it is worth mentioning that the feature-selection algorithm
selected features from all three categories of features from
Sections 2.2.TH2.2.3

The achieved precision of 0.7 and recall of 0.83 are en-
couraging, if we have in mind that we presented results
achieved on real-life recordings without any limitations on
the subjects’ daily activities. If we try to compare our results
to similar studies about eating detection with wrist-mounted
device, we can see that most of the studies achieved quite
good results with F1 score of more than 0.85 [13} [12]]. The
reason for this is that most of the studies used data recorded
in a laboratory with a precise scenario for evaluating their
models, which does not include non-eating activities that
might be recognized as eating gestures. On the other hand,
in [18] the authors showed a real-life evaluation achieving
remarkable results of 0.67 recall and 0.88 precision. In their
work they used very accurately labeled eating gestures for
training, using camera recordings of the subjects while hav-
ing meals. Our method, on the other hand, was trained on
data that is easily recorded and labeled using only a smart-
watch. The advantage of using a method that can work with-
out precise labeled intake gestures is its applicability for per-
sonalization of the model in terms of recording additional
data of each specific user that can be used for training a
person-specific model — something we plan to investigate in
the future.

4 Real-time Implementation

We implemented pre-trained machine-learning model on
a smartwatch application using the Android operating sys-
tem, which we plan to demonstrate in the workshop. The
main task of the application is to gather sensor data in a
background service and transmit it to the input of the model,
which can calculate the probability of the user eating at that
moment. If the application detects that the user is eating
at some point, the application sends the information to the
smartphone via Bluetooth.

For reading the sensor data, we used the RxJava library
[L1]. The two main building blocks of that library are:

e Observable: a class that emits a stream of sensor data
from the accelerometer sensor and

e Observer: a class that receives the events from the sen-
sor (Observable).
The Observer class has four interface methods:

e onSubscribe(): is invoked when the Observer is suc-
cessfully subscribed to the Observable,

e onNext(): is invoked when a new senor data is emitted
from the Observable,

onNext(T)

h 4

onComplete()

Observable Observer

7

onError(Throwable)

Figure 4. Observable and Observer class example.

) Bluetooth
Low Energy
Figure 5. Smartwatch Bluetooth connection with the
smartphone.

e onError(): is invoked when an error occurs and

e onComplete(): is invoked when Observable has suc-
cessfully completed emitting all items (in our case this
is never called, because we have an infinite number of
sensor data)ﬂ

The application is listening for accelerometer sensor

changes and puts the sensor data in the Observable class,
which creates a stream of sensor data. On the other side,
a service that runs in the background is observing that data
stream with the Observer class as shown in Figure [d That
service take a window of observed data and puts those data
into the model that calculates the probability of a user eating
at that moment.

4.1 Smartwatch Connection with the Smart-
phone

We have also connected the smartwatch application to an
Android application on the smartphone. The applications
are connected via Bluetooth with the wearable data layer[19]
AP]El The wearable data layer is created for the synchroniza-
tion between the smartwatch and smartphone application. It
creates a layer where one application can send the data to
the other if the two devices are connected via Bluetooth as
shown in Figure 3]

3https://proandroiddev.com/exploring-rxjava-in-android-e52ed7ef32e2
4 Application Programming Interface
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S Conclusions and Future Work

In this paper, we presented a method that can accurately
detect eating moments using 3-axis accelerometer and gy-
roscope sensor data from an off-the-shelf smartwatch. Our
method consists of preprocessing, feature extraction, feature
selection, undersampling the training data, training on addi-
tional misclassified instances and smoothing of the predic-
tions. We evaluated this method using a dataset of 70 meals
from 10 subjects. The results from LOSO evaluation showed
that we are able to recognize eating with precision of 0.7 and
recall of 0.83.

The presented results are significant because both the
training and the evaluation data were recorded in uncon-
trolled real-life conditions. We want to emphasize the real-
life evaluation, since it shows the robustness of the method
while dealing with plenty of different activities that might be
mistaken for eating as well as recognizing meals that were
recorded in many different environments while using many
different utensils. The proposed method can also deal with
interruptions while having meal, such as having conversa-
tion, using the smartphone etc.

The initial results achieved in this study are encouraging
for further work in which we expect further improvement.
One of the biggest challenges that we want to overcome
in the near future is the number of false positives that oc-
cur. For this problem, we believe that a more sophisticated
method for undersampling the data will help to recognize
the problematic activities and directly include them in the
training data. Furthermore, explicitly adding activities such
as touching the face, brushing teeth etc. might also help.
Additionally, including context data might help in reducing
the number of false positives. For example, having informa-
tion about the location via GPS or wi-fi access points might
help in learning where the subjects usually have meals. Also,
our definition and implementation of the proposed method
shows good basis for personalization of the models because
the new subjects can easily record their meals as described
in Section 3.3] and the models can be trained with addi-
tional subject-specific data. We plan to study personalized
models and the practical implementation of self-collection
of person-specific data by users.
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