
Demo: 6TiSCH on SCµM,
Running a Synchronized Protocol Stack without Crystals

Tengfei Chang, Thomas Watteyne
Inria, France

{tengfei.chang, thomas.watteyne}@inria.fr

Brad Wheeler, Filip Maksimovic, Osama Khan, Sahar Mesri, Lydia Lee, David Burnett, Kris Pister
UC Berkeley, CA, USA

{brad.wheeler, fil, oukhan, smesri, lydia.lee, db, ksjp}@berkeley.edu

Ioana Suciu, Xavier Vilajosana
Univ. Oberta de Catalunya, Spain

{isuciu0,xvilajosana}@uoc.edu

Abstract
We report the first time-synchronized protocol stack run-

ning on a crystal-free device. We use an early prototype of
the Single-Chip micro Mote, SCµM, a single-chip 2×3 mm2

mote-on-a-chip, which features an ARM Cortex-M0 micro-
controller and an IEEE802.15.4 radio. This prototype con-
sists of a FPGA version of the micro-controller, connected
to the SCµM chip which implements the radio front-end. We
port OpenWSN, a reference implementation of a synchro-
nized protocol stack, onto SCµM. we first calibrate the os-
cillators by receiving packets via the on-chip optical receiver
and RF transceiver so that SCµM can send frames to an off-
the-shelf IEEE802.15.4 radio. We then use a digital trim-
ming compensation algorithm based on tick skipping to com-
pensate the frequency converting rounding error. This allows
us to run a full-featured standards-compliant 6TiSCH net-
work between one SCµM and one OpenMote, a firm step to-
ward realizing the smart dust vision of ultra-small and cheap
ubiquitous wireless devices.
Keywords

Crystal-free, 6TiSCH, SCµM, smart dust.

1 6TiSCH and SCµM
Time Synchronized Channel Hopping (TSCH) is at

the core of all main industrial standards, including Wire-
lessHART, ISA100.11a and IEEE802.15.4. 6TiSCH [3] pro-
tocol stack is the latest such standardization efforts, lead
by the Internet Engineering Task Force (IETF). It combines
the industrial performance of IEEE802.15.4 TSCH, with the

Figure 1. The Single Chip Micro-Mote (SCµM) is a
2×3 mm2 mote-on-a-chip. It features an ARM Cortex-
M0 micro-controller, an IEEE802.15.4 radio, and an op-
tical bootloader. While SCµM runs with no external com-
ponents, it is shown here on its development board. In
this setup, we use an FPGA board to implement the digi-
tal part (including the Cortex-M0 micro-controller), and
use the analog front-end of the SCµM chip.

IETF upper stack for IoT devices. As depicted in Fig. 2, this
upper stack includes CoAP, UDP, RPL and 6LoWPAN.

The commercial IEEE802.15.4-compliant chips running
these standards use stable oscillators as a time reference.
Typical those crystal oscillators drift rates, i.e. the inaccu-
racy of the frequency, is in the 10-30 ppm (parts-per-million)
range. The problem of needing a crystal is cost and space.
While the crystal itself might be relatively cheap (in the
USD 0.50 range), using them requires one to make a printed
circuit board to assemble the crystal to the chip, which con-
sumes space and increases cost.

The Single Chip micro-Mote, or SCµM, is a crystal-free

International Conference on Embedded Wireless Systems and Networks (EWSN) 2020 
17–19 February, Lyon, France © 2020 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library 
ISBN: 978-0-9949886-4-5

178



Figure 2. The 6TiSCH stack. The upper stack provides
IPv6 connectivity. The lower stack, through TSCH, pro-
vides industrial-level performance.

chip we taped out in 2019. It is a 2×3 mm2 single-chip
crystal-free mote-on-chip which contains an ARM Cortex-
M0 micro-controller, a 2.4 GHz IEEE802.15.4 radio, and
an optical receiver for optical programming. Fig. 1 shows
SCµM on the board we use to develop/debug it. The digital
part of SCµM is implemented over a FPGA board (indicated
on the left of the figure) and the analog part is implemented
over the chip. Loading code into the chip is done optically
by using an external board which blinks an LED close to the
optical receiver on SCµM.

The goal of this paper is to show a 6TiSCH network com-
posed of one SCµM and one OpenMote [2]. The challenge
is that SCµM does not have an accurate sense of time, and
therefore derives its time reference from OpenMote. The
following section describes how SCµM tunes the frequency
it communicates on, and how we calibrate its clocks.

2 Frequency Synthesis and Clock Calibration
First we need to give SCµM a rough time reference so it

can send frames that OpenMote can receive. The frequency
of each of the oscillators is tunable. We designed the code
running on the optical programmer board in such a way that,
at the end of the bootloading process, the optical programmer
repeatedly sends a sequence that causes an OPTICAL ISR in-
terrupt to be generated on SCµM. This interrupt fires every
100 ms for 2.5 s. While this is happening, on SCµM, all the
clocks are running. By recording the counter value of each
of the clocks, and knowing the interval between interrupts,
SCµM calibrates each of the oscillators.

Following this coarse calibration using the optical pro-
grammer, SCµM can also calibrate against the OpenMote.
We do this offline, i.e. this calibration is done once, the re-
sult of which is reused the next time SCµM is programmed.
For this calibration, SCµM sends frames on channel 11
(2.405 GHz) to OpenMote. OpenMote is programmed to lis-
ten on that channel, and prints over its serial port the value
of its XREG FREQEST register, which indicates the frequency
offset of the incoming signal. According to that value, we
manually tune the 2.4GHz oscillator of SCµM, to minimize
that frequency offset. This procedure is repeated for each
SCµM board, as each has slightly different tuning parame-
ters. This is illustrated in Fig. 3.

Figure 3. Setup for tuning the communication frequency
of SCµM. SCµM transmits frames to OpenMote, which
logs the frequency offset for each frame it receives. These
offsets are then used to manually tune the 2.4GHz oscil-
lator of SCµM, which is used to select the transmit fre-
quency, to minimize the mean frequency offset.

While SCµM is running the 6TiSCH stack, it keeps syn-
chronized to the OpenMote. Part of that is making sure the
boundaries of its TSCH slots are aligned in time with that
of OpenMote. The frequency of the timer used for imple-
menting TSCH slot state machine runs at 32 kHz. However,
RFTimer, the timer SCµM used for the same purpose, runs at
500 kHz. This means the OpenWSN port to SCµM divides
down the 500 kHz RFTimer so it appears as a 32 kHz clock
source to the otherwise unmodified OpenWSN stack imple-
mentation. Since 500/32 = 15.625, the integer division ap-
plied in the port results in a rounding error. This means the
slot length on SCµM is slightly different than the slot length
of OpenMote. As is, this difference in slot length results in
an apparent relative drift between OpenMote and SCµM. We
therefore implement a digital trimming (tick skipping) com-
pensation algorithm, explained in [1].
3 Conclusion

This paper provides the first example of a synchronized
network protocol (6TiSCH) running on a crystal-free device,
the Single Chip micro-Mote (SCµM), a 2×3 mm2 crystal-
free mote-on-a-chip. SCµM features an ARM Cortex-M0
micro-controller and an IEEE802.15.4 radio. It first listens
to a blinking LED to provide coarse calibration of its os-
cillators. Then using an OpenMote, which report the fre-
quency offset, provides a second level of more precise tun-
ing. Finally, as SCµM and OpenMote are communicating,
the OpenWSN port on SCµM uses a digital trimming com-
pensation algorithm based on tick skipping to counteract a
rounding error caused by frequency converting. This allows
a synchronized fully functional 6TiSCH network to form be-
tween SCµM and OpenMote.
4 References
[1] T. Chang, T. Watteyne, K. Pister, and Q. Wang. Adaptive synchroniza-

tion in multi-hop TSCH networks. Computer Networks, pages 165–
176, 15 January 2015.

[2] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister. OpenMote: Open-
Source Prototyping Platform for the Industrial IoT. In International
Conference on Ad Hoc Networks, San Remo, Italy, 2015. Springer.

[3] X. Vilajosana, T. Watteyne, M. Vučinić, T. Chang, and K. Pister.
6TiSCH: Industrial Performance for IPv6 Internet-of-Things Networks.
Proceedings of the IEEE, pages 1–13, 11 April 2019.

179



Figure 4. 6TiSCH on SCµM demo setup. SCµM is programmed by an optical programmer controlled by a Teensy board,
which flashes an LED to load each bit of the OpenWSN binary onto SCµM. SCµM then synchronizes to an OpenMote B
acting as root, and forms a 6TiSCH network. Frames exchanged are captured by a second OpenMote B which acts as
a sniffer, and dissected in Wireshark. The demo also shows a close-up view of the 2x3 mm2 SCµM chip, using a macro
camera.

A Appendix: Demo Setup and Requirement
A.1 Demo Setup

For the demo, we will show two version of SCµM boards:
SCµM 3B with an FPGA, and SCµM 3C. In this demo,
we will demonstrate the bootloading process, which uses a
Teensy-based optical programmer that converts the Open-
WSN binary into LED flashes which SCµM’s on-chip optical
receiver receives. SCµM, now programmed, synchronizes
to an OpenMote B acting as the root of a 6TiSCH network.
Frames exchanged between SCµM and the OpenMote B are
captured by a second OpenMote B programmed as a sniffer.
Those frames are dissected in Wireshark and visible in real
time of an external screen. A second screen shows the SCµM
chip, using a macro camera. The setup of the demo is shown
in Fig. 4.
A.2 Requirement

This demo requires the following equipment:

• a table large enough to put a laptop, two external
screens and an area equivalent to a A3 sheet of paper
for the SCµM boards,

• two external monitors, which could be standing on the
table, or on a foot

• each monitor will be connected to a laptop, ideally over
HDMI

A.3 Summary
Smart Dust is becoming a hot topic (again) as it appears

at the very beginning of the Gartner 2017 hype cycle. Run-
ning standardized protocols over SCµM is an important first
step to realizing this vision. We are convinced this demo
will draw a lot of attention and trigger a lot of conversations
during the conference.

180




