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Abstract
This paper introduces SuperRF– which takes radio fre-

quency (RF) signals from an off-the-shelf, low-cost, 77GHz
mmWave radar and produces an enhanced 3D RF represen-
tation of a scene. SuperRF is useful in scenarios where cam-
era and other types of sensors do not work, or not allowed
due to privacy concerns, or their performance is impacted
due to bad lighting conditions and occlusions, or an alter-
nate RF sensing system like synthetic aperture radar (SAR)
is too large, inconvenient, and costly. Applications of Su-
perRF includes navigation and planning of autonomous and
semi-autonomous systems, human-robot interactions and so-
cial robotics, and elderly and/or patient monitoring in-home
healthcare scenarios. We use low-cost, off-the-shelf parts to
capture RF signals and to train SuperRF. The novelty of Su-
perRF lies in its use of deep learning algorithm, followed
by a compressed sensing-based iterative algorithm that fur-
ther enhances the output, to generate a fine-grained 3D rep-
resentation of an RF scene from its sparse RF representation
– which a mmWave radar of the same class cannot achieve
without instrumenting the system with large sized multiple
antennas or physically moving the antenna over a longer pe-
riod in time. We demonstrate the feasibility and effectiveness
through an in-depth evaluation.

1 Introduction
In recent years, many 3D graphics and vision algorithms

have been proposed to model and understand 3D scenes us-
ing off-the-shelf cameras and depth sensors. These algo-
rithms have found their uses in robotics, virtual reality (VR),
augmented reality (AR), and mixed reality (MR) applica-
tions. However, the fundamental limitations of these sys-
tems are that they are practically useless when there are oc-
clusions, non-ideal lighting, and difficult environmental con-
ditions such as fog and rain. Radio Frequency (RF) signals,

on the other hand, can penetrate certain types of obstacles
and are more robust to environmental conditions. Therefore,
RF sensing has emerged as an alternative or a complemen-
tary solution to 3D imaging and vision—leading to inter-
esting applications such as human activity recognition [42],
keystroke detection [9], sign language recognition [23], lip
motion recognition [43], localization [44], 3D tracking [7],
direction finding [21], range estimation [41], heartbeat detec-
tion [8], respiration monitoring [4], emotion detection [52],
sleep apnea detection [4], and fall detection [45], multi-
person gestures [6], and 2D/3D pose estimation [53, 54].

Typically, RF sensing systems work by modeling the
changes in an RF environment when a certain event or an
object of interest is present in the scene versus when they
are not. These systems are trained to identify and learn the
least amount of information from RF signals that are suf-
ficient to distinguish between an event A and an event B,
where A and B are significantly different, e.g., running vs.
standing. When events of interest are similar, these algo-
rithms fail to model their fine-grained differences due to the
lack of enough information in the training data. Placing the
RF transceiver close to the objects is a common leeway to
handle such cases, but in general, there is a lack of research
on creating a rich intermediate representation of an RF scene
that can be used to infer fine-grained gesture or to describe a
scene with minute detail. Such a representation can be used
in a wide range of applications such as monitoring a patient,
describing an open or a concealed scene, and context-aware
navigation of autonomous systems.

Among RF imaging systems, synthetic aperture radar
(SAR) [25] is a well-known technique to generate a rea-
sonably high-resolution representation of a scene. However,
this technique requires us to move the radar linearly over
a sizable distance to simulate a large (synthetic) aperture.
A downside of SAR is the time it takes to move the radar,
and thus, they are not robust to capturing scenes that contain
moving objects. While we can address this issue by building
a gigantic radar, such a system will not be scalable, cost-
effective, computationally-efficient, and practical for use in
indoor mobile environments.

For emerging applications such as augmenting the sens-
ing capability of an indoor social robot, the RF sensor needs
to be small in size to fit on the robot, especially when the size
of the robot can be constrained by the application scenarios.
The ideal size of the sensor should be such that it should be
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easy to fit on most robots. Smaller sensors also allow us to
attach multiple of these on the same robotic platform – which
increases the sensing coverage and helps explore more sur-
rounding area. In order to enable an adequate 3D sensing and
imaging of an indoor environment, the sensor also needs to
have a high-resolution since an indoor environment is often
cluttered with many irregularly shaped objects which pose
additional challenges to high-quality sensing. We also re-
quire that these systems should be able to detect moving ob-
jects, such as humans and pets, and be able to generate a rep-
resentation of the scene in near real-time. Fast sensing and
computation are crucial to safety-critical applications where
a few ms slower response time can be catastrophic.

Inspired by recent works in computer vision domain that
aims at increasing the resolution of images to achieve super-
resolution [27, 22], we propose a framework and an im-
plementation of it, namely the SuperRF, that enables fast
sensing, and generates high-resolution 3D representation of
a scene using mmWave radars – while being low-cost and
small in size. Our two-stage framework enhances the RF
measurements from a low-cost mmWave radar to achieve a
resolution that is close to a SAR’s.

• The first stage of our proposed framework includes a
training phase that helps the low-cost mmWave radar
system learns how to produce SAR-like imagery from
the low-resolution SAR imagery. We collect radar snap-
shots of different objects by sliding the radar linearly
like a SAR system. The collected radar data are syn-
thesized to generate SAR imagery. Using these gener-
ated images, we train a specially-designed deep neural
network that enhances RF images using only two low-
resolution RF raw snapshots. Our approach mimics the
use of an array of radars working simultaneously, which
eliminates the time required to move the radar or the
physical size requirement of a large antenna.

• The second stage of our framework employs a com-
pressed sensing-based operation to extract the under-
lying antenna signal for better estimating the desired
high-resolution SAR imagery. This iterative method re-
sults in the best possible high-resolution imagery that
fits the actual measurements we obtain from the limited
number of samples. As this problem is ill-posed, given
the limited amount of measurements we have, there are
numerous possible solutions (RF images) that fits the
actual measurements. By exploiting the sparsity of the
signals and applying the compressed sensing technique,
SuperRF estimates the most likely and a better quality
RF imagery than the one generated by the neural net-
work in the earlier stage.

Using empirical data collected with an off-the-shelf 77
GHz mmWave radar, we demonstrate that SuperRF is able to
generate RF representations of objects using only two snap-
shots to achieve similar-quality imagery produced by SAR
operation that uses as high as 64 snapshots (or 64 antennas
in the SAR direction). This operation is object-invariant and
time-saving as snapshots are taken simultaneously. To the
best of our knowledge, SuperRF is the first system that en-
hances RF sensing to be SAR-like—which is impossible to
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Figure 1: Operational principle of a mmWave radar.

achieve even with existing high resolution angle of arrival
estimation algorithms[36, 21, 29].

The contribution of this paper are as follows:
• We propose a deep neural network architecture to

enhance simultaneously captured two snapshots from
mmWave radars into a high-resolution SAR-like im-
agery which is a low-cost, fast, and software-based al-
ternative to a SAR.

• We propose a second stage of RF signal enhancement
that employs a compressed sensing-based method to
further improve the neural network generated RF im-
agery.

• We implement the proposed framework using off-the-
shelf low-cost mmWave radar and open-source soft-
ware. We collect our own data set for training and eval-
uation.1

2 Background
2.1 FMCW mmWave Radar

In recent years, mmWave radars have become popular in
the automotive industry and currently they are being used in
applications such as advanced cruise control, driver moni-
toring, and autonomous driving. A mmWave radar is a de-
tection and ranging system that operates in the frequency
spectrum between 30GHz and 300GHz. Transmitted sig-
nals from these radars have forms including Continuous
Wave (CW), Frequency Modulated Continuous Waveform
(FMCW), and pulsed. In this paper, we use a commercially
available FMCW mmWave radar from which we obtain ac-
curate range information easily and inexpensively [30].

Figure 1 illustrates an FMCW radar in action. The Tx an-
tenna transmits a sequence of chirps – a frequency ramp over
a short duration. When the signal hits an object, some part
of the reflected signal is captured by the Rx antenna which
have the same characteristics as the transmitted ones but are
delayed in time. As a result, the difference between the trans-
mitted and the received signals of a FMCW radar is a con-
stant frequency – namely the Intermediate-Frequency (IF)
signal. The IF signal has a linear relation with the distance
between the radar and the object. For the radar to distinguish
two closely located objects, the objects need to be separated

1More info about the dataset can be found at https://bitbucket.org/
embedded_intelligence/superrf_dataset/src/master/
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Figure 2: Illustration of a MIMO radar setup.

by an amount larger than the range resolution, dres =
c

2B of
the radar, where c is the speed of light, and B is radar’s band-
width. For a mmWave radar that operates between 77GHz
to 81GHz, the bandwidth is 4GHz, which results in a range
resolution of around 3.8cm.

To distinguish multiple objects, FFT is applied to the IF
signal. For a given number of FFT bins, each bin corre-
sponds to a distance and the index of the bin is called the
range index. Each bin contains information of all the mea-
surements from that distance which can be considered as an
image of a slice in the 3D environment. Multiple such im-
ages can be combined to form a 3D representation of the
scene, be discussed in Section2.4. The higher the range res-
olution, the finer the 3D representation will be.
2.2 MIMO Radar

In order to localize or to image an object, a radar needs to
calculate the angle of arrival (AoA) of the received signals.
This is done by calculating the phase difference across dif-
ferent antennas caused by the difference in traveled distances
from the object to the antennas. The angular resolution of a
radar having N equally spaced antennas is θres =

2
N , where

each antenna is separated by a half wavelength, λ/2.
To increase angular resolution, the most effective way is

to increase the number of receiving antennas. However, in-
stead of only increasing the number of receiving antennas,
one can also add additional transmitting antennas to create
a multiple input multiple output (MIMO) radar, one such
configuration (the same as the radar we use in this paper) is
shown in Figure 2. The top row shows an antenna configura-
tion where two transmitting antennas are separated by 2λ and
four receiving antennas are separated by λ/2. This configu-
ration creates a virtual antenna array, shown in the bottom
row of Figure 2, where the number of receiving antennas
becomes 2× 4 = 8—which effectively doubles the angular
resolution. A more detailed discussion on MIMO radar and
multiplexing strategies can be found in [1]. An in-depth dis-
cussion on mmWave radar, including how the angle of arrival
can be calculated, can be found in [16].

Although increasing the number of antennas increase res-
olution, such a method requires the radar system to have a
complex data processing system to handle a large amount of
data. Furthermore, an increased number of transmit anten-
nas means the system requires more time for each transmis-
sion antenna to complete the signal generation and transmit
sequentially. Hence, large antenna arrays are infeasible for
systems that require fast sensing or have limited computa-
tional capability.
2.3 SAR Imaging

Instead of using a large physical radar, one can apply Syn-
thetic Aperture Radar (SAR) principle to create a virtual,
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The number of total intensity images 
is 256 in our system, and only 9
are shown her.

Figure 3: Illustration of 3D representation from intensity images. The
intensity images are arranged in order from near to far from the object
(microwave). By combining the intensities from all intensity images, a
3D intensity map containing the object (microwave) is constructed.

large-aperture radar. SAR works by physically and linearly
moving a small-aperture radar. FFT is applied to the received
signals across synthesized antennas to determine small dif-
ferences in the distance where the reflected signal traveled
back to the receiving antennas.

In the case of a mmWave radar, such as the one we are
using in this paper, we can move the radar in a vertical direc-
tion to perform SAR operation. By moving the radar in the
vertical direction and stopping at 10 positions where consec-
utive stops are separated by λ/2, we form a synthetic aper-
ture radar having 10 by 8 antennas. We first apply FFT on
each column of the measurements from the synthetic anten-
nas, and then apply FFT on each row of the result from the
previous FFT step. By applying the 2D FFT on the mea-
surements, we obtain a 2D matrix where each element cor-
responds to the signal intensity received by the radar from a
specific vertical and horizontal angle. Thus, we obtain the
intensity of the corresponding location in the 3D space.

2.4 3D Representation
As each range bin produces an intensity image, a 3D in-

tensity map is produced by combining all the intensity im-
ages sequentially. For the intensity image, each axis is the
angle defined by the filed of view and FFT bins, for exam-
ple, the azimuth field of view is 120◦, and with 64 FFT bins,
each intensity image pixel in the x-axis represents 1.875◦.
Note that increasing the number of FFT bins does not in-
crease the actual angular resolution of the radar as it is lim-
ited by the number of physical antennas. The intensity in the
3D space is calculated by applying trigonometry using the
distance (derived from the range bin) and the angle (repre-
sented by pixels in the intensity image). An illustration of
the 3D representation is shown in Figure 3.

2.5 Compressed Sensing
In digital signal processing, the Nyquist-Shannon sam-

pling theorem dictates that in order to reconstruct a
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Figure 4: An overview of SuperRF’s two-stage signal processing pipeline. The RF snapshot after each stage shows the intensity of RF signals (the
X and Y axes represent the horizontal and elevation angles, respectively). Pink (darker color) represents a higher intensity. The (x, y) location of
intensity values indicates the angle (horizontal, elevation) where the reflection is coming from.
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Figure 5: RF signal with different number of snapshots. The x-axis denotes the azimuth angle and the y-axis denotes the elevation angle.

continuous-time signal from its sampled discrete values, the
sampling rate has to be at least twice the bandwidth of the
signal. However, when we have prior knowledge about the
signal, a sampling rate lower than the Nyquist rate can be
used to reconstruct the signal. In compressed sensing, the
sparsity of a signal is exploited to reconstruct the signal, ~x,
from a very small number of samples,~y by solving the under-
determined system of linear equations, ~y = D~x, where the
L1-norm of the signal,~x is minimized to impose the sparsity
constraint.

3 SuperRF Overview
An overview of SuperRF’s two-stage RF signal process-

ing pipeline is shown in Figure 4. The goal of SuperRF is
to take low-resolution, sparse RF signals from the mmWave
radar at the input and to generate a higher-resolution, feature-
rich representation of the 3D scene at a near-real-time speed.

Prior to entering the SuperRF’s processing pipeline, sig-
nals undergo the standard preprocessing step of a mmWave
radar. The mmWave radar (hardware) samples the intermedi-
ate frequency (IF) signals and performs FFT on the samples.
This is often called the range FFT since each FFT bin cor-
responds to a range (i.e., distance) from the radar, and a high
value in a bin denotes the presence of one or more objects at
that distance. Signals after the range FFT become the input
to the SuperRF processing pipeline.

RF signals from each range bin is passed through the first
RF enhancement stage of SuperRF– shown as Neural Net-
work Enhancement in Figure 4 – where a generative deep
neural network (DNN) enhances the resolution of the RF sig-
nals. This higher resolution RF signal can be directly used in
applications such as object detection and occupancy detec-
tion. To enhance the output of the DNN further, the second
stage of SuperRF– shown as Iterative Enhancement – em-
ploys an iterative algorithm that takes a compressed sensing-
based approach.

3.1 Stage 1 – Neural Network Enhancement
The goal of the first stage of SuperRF is to increase the

resolution of RF sensor data. This step is necessary since the
angular resolution of the input signals is generally poor when
the number of antennas used in a mmWave radar system is
limited. While a large number of antennas can increase the
angular resolution, SuperRF’s goal is to increase the angu-
lar resolution without requiring additional antennas beyond
what is feasible (space-wise) in the given system.

For a mmWave radar that does not have an elevation an-
tenna, the radar can not differentiate two objects with the
same distance to the radar but placed at different heights.
Hence, to capture a scene, either the radar has to move along
the vertical axis to take and stitch multiple readings – which
we call snapshots, or we have to use multiple mmWave
radars placed on the vertical axis to simultaneously capture
multiple snapshots and then stitch them all together to obtain
the SAR-like 3D RF representation.

Examples of RF imaging after SAR operation for a differ-
ent number of snapshots are shown in Figure 5. Consecutive
snapshots are taken by moving the radar upwards by λ/2.
We observe that the quality of RF images increases with the
number of snapshots, and the improvement in RF imaging
quality along the vertical direction is clearly observable.

For a better understanding of the scene, we need high res-
olution RF image. However, to achieve this, we need either
a large number of antennas or SAR operation which means
to physically move the radar.

The study above confirms that for an increased resolu-
tion of RF images, we either need to run the SAR operation
many times by physically moving the radar, or we need to
use multiple radars (or, antennas). Neither of these two op-
tions is preferred as a large number of antennas increase the
radar size and cost, and a SAR operation takes a significant
amount of time due to the need to physically move the radar.
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Figure 6: SuperRF’s neural network architecture. Each box represent a convolutional feature map. The last 2D convolutional layer has only 1 feature
map which generates the enhanced RF intensity matrix. The skip connection model allow global structure being used for later stage reconstruction.

For example, in our experiment, each snapshot takes about
two seconds due to the communication delay between the
radar and the signal processing board along with the delay
due to the mechanical movement of the radar on a slider. For
64 snapshots, the entire process takes nearly two minutes.
Even with faster communication and faster mechanical oper-
ation of the slider, the expected delay in such a SAR system
is typically very long.

In order to generate a high-quality (e.g., similar to 64
snapshots SAR) RF imagery from sparse, low-quality RF in-
put (e.g., only 2 snapshots as input), we employ a generative
DNN – which is described in Section 4. The network en-
ables high-resolution RF imaging using a fast, low-cost, and
compact radar system, and boosts the RF signal resolution
dramatically.

3.2 Stage 2 – Iterative Enhancement
With our deep neural network generated RF images, one

can directly compute the 3D RF intensity of the scene. How-
ever, no deep learning neural network can generate perfect
results even with enough data and training time.

A DNN-based generative approach is several orders of
magnitude faster than the traditional SAR approach. How-
ever, we observe that the output of the DNN is often a noisy
version of the desired high-resolution RF imagery.

To overcome this limitation, we propose to enhance the
DNN’s output by applying an iterative algorithm that is
based on the Griffin-Lim phase recovery algorithm [13] and
compressed sensing. We treat the neural network generated
results as a noisy model of the true signal and iteratively
improves its quality. Given that we have a small number
of actual measurements (e.g., 2 snapshots) which is neither
enough for compressed sensing nor the RF signal is sparse
enough as the radar receives reflected signals from differ-
ent angels, we optimally enhance the output based on our
knowledge of the actual measurements, and then combine
them with the information sampled from the inferred values.
The details of this method are described in Section 5.

We note that the proposed two-stage RF signal process-
ing framework is application agnostic. The enhanced RF
imagery produced by SuperRF can be used in numerous ap-
plications such as occupancy detection, obstacle detect, and

height estimation that achieves better accuracy and robust-
ness than the state-of-the-art RF sensing systems. In Sec-
tion 7.4, we provide an evaluation of SuperRF using object
recognition as an application.

4 Neural Network Enhancement Algorithm
A typical RF sensor generates coarse signals due to

their poor resolution. For high-resolution imaging, one can
choose high-frequency RF sensors that operate in the range
of over 100 GHz. However, such a high-frequency signal
loses its signal power quickly as it propagates through the
medium – which makes them unsuitable in many real-world
applications that require a reasonable range. Furthermore,
due to the propagation loss, high-frequency RF signals nor-
mally do not penetrate objects – which makes them less at-
tractive to our intended application scenarios. Hence, in this
paper, we use a mmWave radar whose operating frequency
is 77 GHz. Algorithms developed in this paper, however, can
be applied to other types of radars.

Recall that one can move the radar to collect multiple
measurements and then apply SAR operation to obtain a
high-resolution RF imagery. However, this operation is both
time- and space- expensive. To address this, we propose
enhancement of the received signals only from a couple of
snapshots to be matched with the ones generated through
SAR operation after a large number of snapshots. In other
words, we generate 64-snapshot SAR-like RF imagery from
only 2 simultaneous snapshots by employing a generative
CNN. We focus on improving the resolution in the vertical
direction where the resolution is the worst (without any SAR
operation). The radar is moved vertically to collect as many
as 64 snapshots for training and testing of the CNN.

The CNN learns the information contained in the input
signal. We first use the available limited number of snap-
shots to generate an intensity matrix through FFT operation –
which is enhanced by a convolutional neural network (CNN).
The CNN is trained with SAR images having a limited num-
ber of snapshots as the input and high-resolution RF intensity
matrix generated through SAR operation with a large num-
ber of snapshots as desired output.
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4.1 Analytical Model
We denote the desired intensity matrix generated through

SAR operation as ISAR, and the intensity matrix generated by
the CNN as IG. We define the loss function of the CNN as:

L =
1
N
‖ISAR− IG‖2 (1)

The above loss function represents the mean squared er-
ror function where N is the number of intensity pixels. This
loss function is used in numerous super-resolution neural
network models [51, 22], which minimizes the distance be-
tween the generated 2D matrices with the desired ones.
4.2 Network Architecture

The architecture of the proposed deep neural network,
which is similar to U-net [35], is shown in Figure 6. We
choose an encoder-decoder type network which has been
shown to perform well in many super-resolution and de-
noising problems in computer vision literature [47]. The en-
coder is a typical convolutional architecture, which consists
of 3x3 convolutional filters, followed by ReLU [26] layers.
The network is down-sampled with 2x2 max pooling layer
with a stride of 2. The feature channels are doubled every
time down-sampling happens. The decoder consists of up-
sampling the feature map with 2x2 up-convolution, which
also reduces the feature channel. The 3x3 convolutional fil-
ters and ReLU are also employed here. The final layer is a
1x1 convolution which generates the desired high-resolution
intensity matrix. We also incorporate skip connection (resid-
ual layer) which helps avoid the vanishing gradients problem
and reduces the neural network’s size. The residual layers
are concatenated to the network.

In general, more and complex features can be extracted by
deeper convolutional layers. However, a larger neural net-
work causes over-fitting and increases computational com-
plexity. Based on our experiments, we choose five stages
with a kernel size of 3x3. The 3x3 sized kernel has been
proven to be effective in the literature, and multiple 3x3 con-
volutional layers together can be used to substitute other ker-
nel sizes (such as 5x5) which has higher computational cost.
5 Iterative Enhancement Algorithm
5.1 Motivation

A neural network is highly dependent on its training and
its accuracy beyond what it has seen in the training data is not
generally guaranteed. In SuperRF, we observe that while the
DNN is fast, its output is often noisy, and depending on the
amount of noise, the target application’s performance can be
significantly degraded. For applications such as robot nav-
igation, in order to ensure that a robot is able to see and
complement its camera sensors effectively through its RF
imaging capability to safely and efficiently navigate the envi-
ronment, a high degree of accuracy in DNN’s output is nec-
essary. However, with limited antenna measurements, the
method to further enhance the DNN’s output is not straight
forward – as one cannot simply make up data out of nowhere.
To solve this problem, we take a compressed sensing-based
approach in SuperRF. Compressed sensing has recently been
proven useful to show that data can be reconstructed with
a lower sampling rate as long as the underlying signal is
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Figure 7: A flowchart of the iterative enhancement step.

sparse. By treating the number of snapshots as the samples
of a compressed sensing problem and by considering the in-
tensity matrix as the intended signal, SuperRF reconstructs
a less noisy version of the generated angular intensity repre-
sentation.
5.2 Compressed Sensing

We describe the steps to optimize the intensity matrix
generated by the neural network.

Step 1. We estimate the antenna measurements from the
neural network generated intensity matrix by performing the
inverse Fourier transform (iFFT). The result is an estimation
of what the 64-snapshot, full SAR measurement could be.

Step 2. We replace the corresponding antenna measure-
ments with the actual antenna measurements that are avail-
able. In our experiment, the middle two snapshots are re-
placed. This step provides us more accurate antenna mea-
surements.

Step 3. For the newly constructed antenna measurements,
we randomly sample n measurements containing the true an-
tenna measurements to form compressed sensing samples.
For example, the iFFT step gives us 64 measurements (or, 64
snapshots). We replace the middle two measurements that
we have used for the neural network enhancement. The ran-
dom sampling process takes the two real measurements and
samples another n−2 measurements from the remaining 62
snapshots to get n synthetic antenna measurements.

Step 4. For compressed sensing, we optimize Ax = b,
where b denotes the sampled antennas, x denotes the signal
we are trying to estimate, corresponding to the intensity ma-
trix. A is the inverse Fourier transform. This step is based
on the fact that we have two real measurements. As the real
measurements are inserted into the iFFT result, the optimiza-
tion is performed where the real measurements serve as the
constraints.

Step 5. After optimization, we get an estimation of x̂
which is a possible explanation of the signals we sampled
(note that there is a small number of real measurements while
others are estimated from the neural network generated in-
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tensity image). Inspired by Griffin-lim algorithm [13], we
assume that the amplitude of the neural network generated
intensity matrix is correct. Therefore, we replace the ampli-
tude of x̂ while maintaining the angle value of it. With the
newly constructed x̂new, we perform inverse Fourier on it to
estimate new antenna measurements.

At this point, we have finished one iteration of our itera-
tive enhancement. In the subsequent iterations, we start from
step 2 to replace the corresponding measurements with the
real measurements (the middle two snapshots in our exper-
iments), and then randomly sample another n− 2 measure-
ments for the remaining 62 snapshots (which could be the
same position as the previous iteration but the value will be
different due to optimization) for the new optimization step.
A flowchart is shown in Figure 7 where we use the intensity
image and purple box to represent the intermediate results.
The real measurements are shown in orange and the n− 2
random sampled measurements are shown in green.

With each iteration, we find a possible solution that con-
tains the real antenna measurements. At the end of the user-
defined m iterations, we sort the generated x̂ by the order of
the inverse Fourier transform of x̂new that has the minimal
distance to the real measurements. The distance is calcu-
lated as the Euclidean distance between the two snapshots
from the iFFT of x̂new and the two real measurements. From
the top t samples (t is user defined), we find an average of
those samples to get an estimate of the true x – which is the
desired intensity matrix. The ranking of the top t samples is
based on the fact that there are numerous possible explana-
tions during each optimization – some are closer to the real
one while some are going to be far away. We use the distance
as an indicator to find the most likely ones.

6 Implementation
6.1 Data Collection

We use an off-the-shelf, low-cost Ti mmWave AWR1443
EVM [2] to collect radar signals and a Kinect V2 sensor to
record the ground truth. The setup is shown in Figure 8(a).
We build a motorized lead screw linear slide rail that travels
at an interval of λ/2. Both the Kinect and the Ti mmWave
radar are attached to a rigid base support as shown in the fig-
ure. The distance between the origin of the Kinect’s coordi-
nate system and the center of the antennas is 6.4 cm. We
develop necessary control software to automatically move
the slider, collect the data, and save the data. We include
a Kinect sensor to capture high-quality depth images of the
scene which is used as the ground truth for scene reference.

The Ti mmWave radar EVM, as shown in Figure 8(c), has
3 TX antennas (2 TX at the same level for azimuth angle es-
timation and 1 TX for elevation capability) and 4 RX anten-
nas. For SAR operation, we collect data from the mmWave
radar with 2 TX and 4 RX, which gives us 8 receiving anten-
nas in MIMO mode2. The field of view of the radar along
the azimuth and elevation directions are 120◦ and 30◦, re-
spectively. The field of view of the Kinect V2 is 70◦ and
60◦.

2We collect data from all 3 TX and 4 RX antennas, however, in this
paper, we only use data from the 2 azimuth TX antennas.

(a) Data collection Setup

(b) Kinect and radar

(c) Ti mmWave EVM
Figure 8: Data collection system: (a) the full setup where the Kinect
and Ti mmWave radar EVM are attached to the linear slider; (b) both
the Kinect and the mmWave radar are attached to a rigid support; (c)
close up of Ti mmWave radar.

During the data collection phase, we save the color image,
depth image, point cloud, and camera intrinsic parameters of
the Kinect sensor. For the Ti mmWave Radar, we collect raw
RF signals from all antennas for each range index and con-
figurations of the antenna. After saving data for a snapshot,
the system moves up the linear slider by λ/2 and collects
new data. For the Ti mmWave radar, we modify the out-
of-the-box software to expose the full RF data. Due to the
bandwidth constraint of the serial communication between
the radar and PC, we collect RF data from Doppler bin 0
(static objects). Considering indoor environments, the radar
is configured to have approximately 10m maximum working
distance.
6.2 Objects and Environments

We use a total of 11 objects in our experiment. These
objects are made of different materials such as metal, glass,
wood, and fiber. We place these objects at different locations
(1-2 meters away from the radar) within the field of view
of SuperRF and repeat the experiment in different labs and
offices in a typical school building. Some of these objects
are shown in Figure 9.

To experiment with the see-through capability of the
radar, we collect data in non-line-of-sight situations as well.
One such scenario is shown in Figure 10. The mmWave
radar sensor and the object are separated by an office wall.
Although the Kinect is not able to see the object, the RF
signals penetrate the wall and some of the signals are re-
flected back from the object, and thus we are able to image
the non-line-of-sight object. We use different separators such
as walls, closed doors, whiteboards, and wood. We note that
the system may not see anything in the non-line-of-sight sit-
uations when the separators are made of materials such as
metal or thick concrete that block RF signals.
6.3 Data Pre-processing

We combine consecutive 64 snapshots to form a 64x8 ma-
trix. The number 8 denotes the number of antennas we have
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(a) (b) (c)

(d) (e) (f)
Figure 9: Examples of objects used in the experiment: (a) Computer monitor, (b) plants, (c) robot, (d) dummy, (e) chair, and (f) microwave. Note that
the objects are placed in three different indoor environments.

Figure 10: An example of occluded sensing where the radar (on the left)
and the monitor (on the right) are separated by the office wall.

in our radar as described in Section 6.1. With 64 bins on
each axis, 2D FFT is applied on the antenna data – which re-
sults in a 64x64 intensity map where each bin represents an
angle of arrival. The 64x64 dimensions denote the azimuth
and the elevation for the x-axis and the y-axis, respectively.
The generated intensity matrix is used as the desired output
of the DNN. The 2D FFT represents the SAR operation.

Out of the 64 snapshots, we choose the middle two snap-
shots – which is a 2x8 subset of the 64x8 matrix used for the
SAR operation. We calculate the 2D FFT of the 2x8 matrix
after zero padding to generate 64x64 intensity maps. Zero
padding does not increase the angular resolution. The low-
resolution intensity matrix becomes the input to the neural
network.

An illustration of the data pre-processing is shown in Fig-
ure 11. We note that the use of the middle two snapshots does
not affect the system’s performance. The middle two snap-
shots are chosen because they cover most of the area that the
full 64 snapshots cover and they are easier to extract. One
can use any two snapshots as long as they are at the same
relative position across all intensity images.

…

…

8

64

…

…

64

64
2D FFT

Low Resolution Input

Extracted Sensor 
Measurements

…

…

64

64
2D FFT

Desired OutputSensor Measurements

Figure 11: Choosing a subset of the 64 measurements as the input. The
Sensor Measurements are the 64-snapshot radar measurements (the full
SAR operation) and the Desired Output is the target output after apply-
ing the 2D FFT on the 64 snapshots. We retrieve two snapshots and
apply the 2D FFT – which is the input to the neural network.

6.4 Training and Inference
The neural network is trained on a PC having an Nvidia

GTX 1080 GPU. We use PyTorch [28] to implement the
model. During the training, a batch size of 64 and Adam[20]
optimizer are used to optimize the neural network.

During the training, we use only the line-of-sight data and
split the data into two subsets: 80% for training and 20% for
validation. A total of 2,914,048 intensity images are in the
line-of-sight data, of which, 2,331,264 intensity images are
used for training. We train for 50 epochs and each epoch
takes around 2.3 hours. All training data, which are the same
2,331,264 intensity images, are used in each epoch. The
trained model is used for inference in both line-of-sight and
non-line-of-sight scenarios.
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6.5 Iterative Method
As described in Section 5.2, we use an iteration of m =

100 and randomly choose n = 15 samples on the synthetic
antenna value. This means during each iteration, we ran-
domly sample 13 antenna measurements and combined with
the 2 real measurements for optimization. With all the gen-
erated samples (here we have 100 samples), we choose the
t = 5 closest to the real antenna measurements for averag-
ing. With our current non-parallel and non-optimized im-
plementation, the time required to perform SuperRF opera-
tion requires around 3 seconds, whereas SAR operation re-
quires over 30 seconds (excluding the time needed for phys-
ical movement).
7 Evaluation
7.1 Performance of Neural Network Enhance-

ment
To evaluate the performance of the neural network, we

measure the Mean Squared Error (MSE) and the Mean Ab-
solute Error (MAE) of the generated intensity matrix. We
report the average error of randomly chosen 15,000 intensity
images in Table 1. We observe that the neural network gen-
eralizes to both line-of-sight and non-line-of-sight scenarios.

Mean Squared Error
(MSE)

Mean Absolute Error
(MAE)

LOS 31589908.8 1079.2
NLOS 55585840.1 1152.7

Table 1: The MSE and MAE for the neural network model in terms of
the absolute intensity values.

7.2 Performance of Iterative Enhancement
To evaluate the performance of the iterative method, we

measure the MSE and MAE of the neural network only and
the end-to-end SuperRF that includes the iterative method re-
spectively. The results are shown in Table 2. We observe that
the iterative method greatly improves on MAE while reduc-
ing on MSE slightly. This is due to outliers that contribute to
large errors as such errors are squared. Lower MAE means
that the overall difference between the ground truth and the
generated representation is smaller. These results are com-
puted across different types of objects and with different dis-
tances between the object and the radar. The ground truth
that these results compare to is the intensity images produced
by the SAR operation with 64 snapshots.

Mean Squared Error
(MSE)

Mean Absolute
Error (MAE)

NN Only 15112451.54 1159.16
SuperRF 15465346.03 1034.23
Percentage -2.34% 10.78%

Table 2: The MSE and MAE with and without the iterative method.
The percentage denotes the performance gain due to the iterative
method over neural network-only method.

7.3 Generated Images
We present some examples of the generated images in

Figure 12. We observe that SAR operation with only 2 snap-
shots (column (d)) has very poor resolution, whereas Su-
perRF generated ones are closer to the ground truth. Note

(a) (b) (c) (d)

(1)

(2)

(3)

(4)

SuperRF
(NN + Iterative)

SAR With 
64 Snapshots

NN 
Generated

SAR With
2 Snapshots

Figure 12: Examples of generated intensity matrices. Each row detnoes
one example. Column (a) is the SAR operation with 64 snapshots, col-
umn (b) is obtained by the full SuperRF algorithm, column (c) shows
the intensity matrices directly from the neural network, and column (d)
shows the results of SAR operation with only two snapshots.

that instead of using 64 snapshots, we only utilized 2 snap-
shots in SuperRF.

7.4 Evaluation of Application Scenario
To better understand the advantage of SuperRF, we train

a neural network to perform object recognition on the gen-
erated voxelized (3D pixel) representations. The 3D voxel
is generated in two ways, one is directly converting intensity
matrices to occupancy grid representation through a thresh-
old, another is we trained a separate neural network to per-
form the conversion.

We divide the objects in our collection into training and
testing sets and train the same neural network, which is a
standard 3D convolutional neural network (one can use a
more advanced neural network such as [14] for better perfor-
mance), multiple times and measure the object recognition
accuracy for each type of data. For the training and evalua-
tion, we use only the area where the objects are placed (thus,
no background information is used). The result is shown in
Figure 13. Depth denotes the case where the depth sensor
data is used for training and testing. As expected, it shows
the highest accuracy. AI voxel denotes the voxelized rep-
resentation generated a neural network with intensity ma-
trices produced by SuperRF. Its accuracy is very close to
what depth sensor achieves. The AI RF is the non-voxelized
RF representation generated by SuperRF. The SAR denotes
the neural network voxelized RF representation generated
through SAR operation using only 2 snapshots. The AI RF
T and SAR T means to convert the SuperRF generated in-
tensity matrices and SAR generated intensity matrices to the
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Figure 13: Object recognition accuracy for different types of data.
Depth is the object recognition with Kinect depth image, others are Su-
perRF generated or through SAR operation. See Section 7.4 for detail.

occupancy grid respectively.
In this experiment, the SuperRF performance is evaluated

in comparison with Kinect and SAR operation. For different
comparisons, such as AI Voxel vs. SAR and AI RF T vs. SAR
T, SuperRF increases the performance of other applications
by generating higher quality representations.

8 Related Work
8.1 RF Based Sensing

RF sensing has been employed for different purposes,
such as localization [21], vital sign monitoring [8], and ges-
ture recognition [34]. They mainly focus on inferring the
desired information for a specific target through RF signal
instead of sensing the entire environment. Some works ex-
plored capture the human body through wall [5] and estimate
human pose [53, 54]. They focus on the human body only
and require movements of the subject. Thus cannot be ap-
plied to static scenes.

In [15], the author explored the possibility of imaging us-
ing WiFi. The result is a low-resolution heatmap and re-
quires the Tx and Rx to be in a different place. 3D voxel gen-
eration using WiFi has also explored in [19, 10]. They use
two WiFi devices to measure the signal attenuation across the
interested area and infer the 3D voxel representation of the
scene. Their work requires time-consuming measurements,
pre-planned paths and separated Tx and Rx antennas which
is undesired. [56] proposed an imaging system with 60GHz
transceivers, however, the Tx and Rx antennas are separated
and only extract 1D information. They improved the sys-
tem with [55] to perform localization and object recogni-
tion using a single networking device. However, this system
requires moving the sensor to generate a 2D map, whereas
our system generates 3D representation and does not require
movement.

There are numerous work on FMCW imaging, such
as [3, 32, 30, 40]. These works focus on sensor design and
signal processing where the quality of the measurements is
limited by the physic sensor. [31, 40] also investigated SAR
operation [25] with FMCW radar to improve imaging reso-
lution. Their SAR operation system requires mechanic com-
ponents to move the radar which is time-consuming and the
subject needs to be still. Our framework generates measure-
ments closer to ones generated through SAR operation but
without the need for the time-consuming mechanic opera-
tion.

8.2 Other Sensing Techniques
For 3D representation generation, the most straightfor-

ward sensor would be depth sensor, and Kinect is one
of such sensors that’s popular among research communi-
ties [17]. Camera is another popular choice for 3D recon-
struction [11, 33] and recently LIDAR for 3D sensing [37].
However, these types of sensors suffer limitations from oc-
clusion, non-idea lighting, and difficult environmental con-
ditions such as fog and rain. Our system can perform better
than these sensors in such scenarios.

There are some other types of sensors that can do imag-
ing, such as acoustic [24, 18, 38]. While acoustic sensing
does not affect by lighting issues, it can be affected by a
noisy environment. To achieve high resolution, this type of
sensors either utilize large microphone array [18, 38] or SAR
operation [24]. In [24], the author demonstrated some see-
through capability but the resolution drops when the distance
between the target and the sensor becomes larger than 60 cm.
Where in our system, the RF sensor has a better penetration
capability and can provide better resolution in the farther dis-
tance.
8.3 Image Enhancement

In the first stage of our framework, we enhance the
RF signal to be closer to the quality of the ones gener-
ated through SAR operation. This is inspired by the recent
achievements in image super-resolution [27, 48, 46, 22]. [46]
uses a deep convolutional neural network to extract features
then increases the resolution. [22] utilized GAN [12] to in-
crease the resolution of the picture. The intensity matrix that
we wanted to generate in our work is similar to images in
which both are 2D matrices. Different from existing super-
resolution work, the intensity matrix does not have a bound
on the values, and there is no low-resolution image exists
to increase resolution. We used a deep convolutional neural
network model but there is no upsampling within the net-
work as image super-resolution normally does.
8.4 Point Cloud Upsampling

Another area of work that can be related to ours is the
point cloud upsampling [50, 49]. Their work focus on in-
creasing point cloud density which can reduce sparseness
and irregularity. Even though the upsampling problem is
related to image super-resolution, the lack of special order
and regular structure makes the problem hard. They choose
a patch-based method to upsampling the point cloud. In our
work, we are solving the problem of low resolution and noisy
RF sensing enhancement. Where RF signal is too coarse to
generate a meaningful point cloud. People also explored the
possibility of generating point cloud based on conditional
distribution [39]. However, such work cannot be directly ap-
plied to ours as they are generating point cloud based on de-
termined category and existing points. For RF signal, there
is no such information available.

9 Conclusion
In this paper, we explore the problem of enhancing

mmWave radar signals to a higher resolution using a
software-based solution. To this end, we propose a two-
stage framework. The first stage generates an intensity ma-
trix from only two RF snapshots using a neural network. The
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second stage further enhances the RF measurements by us-
ing a compressed sensing-based iterative method. From this
work, we achieved super-resolution on mmWave radar sig-
nal for imaging. The enhanced intensity images can improve
performance on different applications such as occupancy de-
tection and object recognition. To the best of our knowledge,
this is the first of its kind system that enhances mmWave sig-
nals to high-quality intensity matrices to represent a scene.
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