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Abstract
Embedded systems must support regular software up-

dates, due to changes in legal regulations, improved algo-
rithms, bug/security fixes, etc. Currently, most embedded
systems only support updates through full image replace-
ment. This image is a monolithic software statically built,
i.e., all pieces of software are integrated at build time. This
approach has several disadvantages, such as the need to stop
the functionality and reboot the device upon updates, which
is unacceptable on many (safety-)critical applications, e.g.,
in power plants. In this paper, we present the modular archi-
tecture used in MCSmartOS, and how it supports dynamic
updates at module level. This is a first step to enable au-
tomatic integration on embedded devices. However, many
embedded devices are classified as “dependable systems”,
which must satisfy a set of functional and non-functional
properties (FPs/NFPs) w.r.t. real-time, safety, security, and
maintainability. Thus, before integrating a new module into
the software stack, it is necessary to ensure that the tar-
get device still satisfies all required properties after the up-
date. Therefore, the automatic integration must include a
pre-validation, which we named Compatibility Check (CC).
CC performs various operations: from simple ones, such as
checking if a device has enough memory to store the new
software, to complex NFP checks, such as schedulability
analysis and deadlock detection. Due to the wide range of
concepts involved in CC, only some aspects are covered in
this paper; others will be discussed in future work. Since
some of CC’s operations require so much performance or
memory, many embedded devices cannot afford to execute
them. Hence, we also present a client-server update protocol
that distributes update operations between the embedded de-
vices (clients) and high-performance servers that provide the
updates; the more resource-constrained a device is, the more
operations it outsources to the server.

1 Introduction
Embedded systems must support regular software up-

dates, due to changes in legal regulations, improved algo-
rithms, bug/security fixes, etc. Currently, most embedded
systems only support updates through full image replace-
ment. This image is a monolithic software statically built,
i.e., all pieces of software are integrated at build time.

Full image replacement is a very simple update mecha-
nism, but it presents several drawbacks. For example, (i)
even when just one line of code is modified, the full soft-
ware must still be built; (ii) devices must always interrupt
their normal operation and reboot upon updates, which can
be unacceptable on many (safety-)critical applications, e.g.,
in power plants; (iii) a high amount of data (full image) must
be transmitted to devices, which can drain battery-powered
devices and increase the network load.

Furthermore, this approach requires a central trusted
party, which gathers and integrates all necessary pieces of
software. While this is the state of the art, e.g. in the au-
tomotive domain, future embedded systems will offer more
freedom for customization, where system administrators or
users can install software from, e.g., repositories of different
SW providers. In this scenario, two factors complicate the
centralized approach: (i) proprietary software is not made
available to other SW providers. In such cases, it is impos-
sible to test a module against other providers’ software; (ii)
more customization leads to more variants. With billions of
devices out there, it will be unfeasible to build a monolithic
image for every variant.

Therefore, we see the need to develop methods to enable
devices to dependably perform automatic integration of soft-
ware, i.e., the devices must be able to receive a piece of soft-
ware and incorporate it into the system without disrupting its
normal operation or violating any of the dependability prop-
erties. Two requirements must be satisfied to achieve this
goal: the first one is an embedded OS that supports dynamic
updates, so that a device’s software can be partially modi-
fied instead of requiring full image replacement; the second
one is a mechanism to evaluate if an update would lead to
violation of any desired NFP.

To offer support for dynamic updates, we modify MCS-
martOS [6] to add the ability to add/update/remove modules
without interrupting the normal operation of the devices (see
Section 2). There exist general approaches with finer granu-
larity (and consequently higher management overhead), e.g.,
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updating single functions or variables. However, we need
low management overhead, so that our solution is also suit-
able for resource-constrained devices.

MCSmartOS provides basic OS features, including a
timeline, events, resource management and protection, inter-
rupt handling, and a preemptive and priority-based scheduler
for concurrent tasks with different real-time requirements.
While these features provide flexibility for SW development,
they are the reason why automatic integration is so challeng-
ing. For example, an update could disrupt a real-time sys-
tem in case a newly added task uses a shared but exclusive
resource for too long, causing other tasks to miss their dead-
lines. Similarly, an update could introduce a task with high
energy consumption, which would cause a battery-powered
device to die before the planned time.

To evaluate NFPs upon updates, we envision a mechanism
called Compatibility Check (CC), as depicted in Figure 1.
CC is divided in two major operations: pluggability check
and interoperability check (see definitions in Section 1.1).
Pluggability check within modular MCSmartOS is discussed
in Section 3.4; the interoperability check will be addressed
in future work, due to its complexity.

Module
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C/C++
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Figure 1: Ideal concept of independent module development
and automatic integration.

Figure 1 shows an ideal concept, in which modules are in-
dependently developed, and automatically integrated by the
embedded devices. At build time, an analysis step runs in
parallel with the compilation, in order to generate the mod-
ule meta-information. CC requires this meta-information,
plus the meta-information describing the device’s current
characteristics: the catalog, which is a collection of meta-
information of installed modules and HW/OS properties
(CPU frequency, scheduling algorithm, etc). If a module is
compatible, the update is accepted and its meta-information
is added to the catalog. Otherwise, the update is rejected
and the reason of failure is reported. CC is based on meta-
information, because oftentimes software providers do not
share source code with clients/partners, in order to protect
their intellectual property. The meta-information generated
at build-time shall provide enough knowledge for the CC,
without exposing the SW provider’s intellectual property.

It is impossible to implement the described concept for

every embedded device, because many of them are resource-
constrained (and often battery-powered), so (i) they do not
have enough memory to store all the required information to
perform CC, or (ii) they would need too much time or too
much energy to perform CC. Nonetheless, it is still desirable
to develop an unified concept, which covers all embedded
devices. To achieve this goal, we propose a client-server up-
date protocol that distributes the update operations between
clients (devices) and servers (see Section 3.3), which are
high performance computers that act as software reposito-
ries; they can be, e.g., part of the IoT infrastructure, located
in the cloud.

In addition to module transmission, five operations must
be performed during updates: CC, linking, relocation, instal-
lation, and loading (see definitions in Section 1.1). Installa-
tion and loading are the only two operations that must run
on the embedded devices. All the others can be performed
either by servers or by devices, as long as the required infor-
mation is available, as detailed in Section 3.
1.1 Terms Definitions

In this work, we use some terms that are not unanimously
defined in the literature (e.g., module), and others that are
associated with our envisioned concept (e.g., pluggability).
For the sake of clarity, the relevant terms for this work are
defined below, in alphabetical order.
Application: software that performs a set of tasks to satisfy
the requirements of the end user/customer. It is composed
of one or more modules. The source code of application
modules is HW-independent, but it can make use of HW-
dependent modules, such as drivers.
Compatibility Check (CC): pluggability + interoperability
checks.
Dependencies: OS and other modules (drivers, libraries,
etc.) required by a module, including their corresponding
versions.
Hard Deletion: erasing the content of a portion of memory.
Installation: write an already linked and relocated module
into ROM.
Interoperability Check: it is satisfied if the update does not
violate any NFP. This is key to support dynamic updates on
dependable systems, since dependability is a set of NFPs.
Linking: resolution of a module’s external symbols.
Loading: initialization of a modules’ RAM and OS data
structures for execution.
Module: Piece of software independently developed against
the target system’s interface, but with no information about
its implementation (black box model). A module contains
zero or more tasks. For example, within MCSmartOS,
drivers and libraries have no tasks; services and applications
have one or more tasks. Modules are isolated from each
other, but tasks within a module are not.
OS: in modular MCSmartOS, the OS is the minimal soft-
ware to allow a system to run, and to support partial updates.
It is composed by the kernel, startup code, interrupt vectors
and essential modules (e.g., sysclock and network stack).
Pluggability Check: upon module addition/update, it is sat-
isfied if the device offers enough memory to install the new
module, and if all dependencies (with suitable versions) are
present. Upon module removal, it is satisfied if no remaining
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module depends on the one being removed.
Relocation: resolution of a module’s internal symbols.
ROM: shorter notation for flash/program memory.
Soft Deletion: mark a portion of memory as deleted, without
erasing its content.
Task: MCSmartOS’ basic schedulable unit, analogous to
processes in UNIX systems. Every task has a name, a base
priority, a dedicated stack, and an entry point. MCSmartOS
builds a Task Control Block (TCB) for each task in the sys-
tem.

1.2 Paper Scope and Organization
The scope of this paper is to present a framework (Fig-

ure 1) that prepares an embedded system to support dynamic
updates and perform automatic SW integration for provable
dependable systems. We focus on:

• how MCSmartOS supports dynamic modular updates
(Section 2);

• which operations are performed in our proposed update
mechanism, and how our update protocol copes with
any connected embedded device (Section 3).

A holistic solution also involves many other topics, such
as generation of meta-information, data transmission, au-
thentication, fault-tolerance techniques, etc. We are aware
of the importance of such topics, but we do not discuss them
in this work, since they are orthogonal to the concepts we
present, i.e., they do not influence our design/implementa-
tion decisions.

CC is partially covered in this work. We discuss plugga-
bility check in the context of MCSmartOS, and leave inter-
operability check for future work, due to its complexity and
wide range of involved topics.

The remainder of this paper is organized as follows: in
Section 2 we describe the related OS design decisions and
give an overview of mechanisms used by MCSmartOS to
support partial updates. In Section 3 we show how our up-
date protocol copes with the high variety of embedded de-
vices. In Section 4 we analyze the memory and processing
overhead in devices, during linking, relocation, or pluggabil-
ity check. In Section 5 we present related work and highlight
how our work is different. Finally, in Section 6 we summa-
rize this paper and present open questions and future work.

2 The Architecture
Our proposed architecture supports dynamic updates, i.e.,

it offers mechanisms to update, add or remove modules with-
out interrupting the operation of the remaining system. In
contrast to existing approaches for embedded systems, where
such a re-integration is done offline and mostly manually, our
goal is to enable automatic self-integration by each target
device. However, in order to maintain the dependability of
the resulting system stack, additional management and val-
idation effort is required in the device. This introduces sig-
nificant overhead in comparison with monolithic software,
which is maintained offline.

In this section, we present our architecture memory lay-
out, management mechanisms and data structures. Further-
more, we compare our modular approach with the mono-
lithic one.

2.1 Memory Layout
We partition the memory in logical regions, which are ini-

tially not fully used; the free memory within the regions en-
ables the addition or update of modules at runtime.

Figure 2 shows how MCSmartOS distributes the software
in memory on the monolithic and modular approaches. Gray
areas represent used memory, and white areas represent free
memory. The rectangles represent regions that belong to user
space (e.g., applications and libraries), and the capsules rep-
resent regions that belong to kernel space (e.g., OS scheduler
and data structures). The isolation of kernel and user spaces
is a logical concept of MCSmartOS; effective isolation re-
quires HW support.

Kernel Space 
Code + Read-Only Data

User Space 
Code + Read-Only Data

R
O

M

Kernel Space Data

Kernel Space Stack

User Space Stack

User Space Data

R
A

M

(a) Monolithic layout:
memory regions are full,
and cover part of the
memory space.

OS Data

OS RO

Modules Information 
(MI)

Global RO

Local RO
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(TCB)

Global Data

Local Data

R
O

M

(b) Modular layout:
memory regions are not full,
and cover the complete
memory space.

Figure 2: Comparison of memory layouts in MCSmartOS.

The purpose of each region is described below, and the
way they are populated upon updates is shown in Section 3.

• OS RO: This region stores the read-only part of the
OS (i.e., code and read-only variables), which must
be accessed/executed only in kernel mode. The sched-
uler, Modules Manager (MoM) and Memory Manager
(MeM) are examples of code stored in OS RO.

• Modules Information (MI): Region where MCSmar-
tOS stores the data structure used by MoM to keep track
of the modules in the system.
Details are described in Section 2.2, where the opera-
tion of MoM is explained.

• Global RO: Code and read-only variables that are visi-
ble globally, i.e., that can be accessed by any module in
the system. Libraries and drivers compose this region.

• Local RO: Code and read-only variables accessible
only by the module they belong to. Application mod-
ules compose this region.

• OS Data: Read-write data that belongs to the OS (data,
bss, and stack). This region is only accessible in kernel
mode.
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• TCBs: State of every task in the system, with one TCB
per task. MCSmartOS keeps also other control blocks,
e.g., for resources and events, but they are not depicted
in Figure 2, since they are not crucial to the presented
concept.

• Global Data: Read-write data globally accessible, in
user or kernel mode. Data and bss sections of libraries
and drivers compose this region.

• Local Data: Read-write data accessible only by the
module they belong to. Besides data and bss sections of
applications, this region stores the contexts and stacks
of all tasks in the system.

2.2 Modules Manager
The ability to add or remove software modules at runtime

can potentially generate a huge number of software variants,
especially since each device can contain a different combina-
tion of modules, due to the possibility of high customization.

In order to retain the dependability of a system, updates
are only applied if they are compatible with the target sys-
tem. CC must test properties that depend on the current com-
bination of modules. Therefore, it is necessary to keep track
of the installed modules, and that is the role of the Modules
Manager (MoM).

MoM is part of the operating system, and relies on the
information stored in the MI region, which belongs to the
kernel space. MoM therefore runs in kernel mode.

Figure 3 shows the data structure of the memory region
MI. It starts with a header, consisting of an integer N, stating
the maximal number of modules supported by the system,
and 4N status bits (4 bits/module), storing state information
of the N modules and of their respective Load Information
(LI). Finally, the N LIs complete the MI region. Table 1 lists
and describes the fields of a LI.

..
.

N: Supported Modules
VirginLI (N bits)

EmptyMod (N bits)

ValidLI (N bits)

VirginMod (N bits)

Load Information Module 1

Load Information Module N

...

...

...

...

Figure 3: Data structure of MI region.

Table 1: Load Information (LI) fields

Field Description
Module ID Unique identifier for the module, including its version.
TaskCtr Number of tasks contained in the module.
Base ROM Base address where the module is stored in ROM.
Base RAM Base address where module’s data and bss are loaded.
Size TEXT Number of bytes of text segment.
Size DATA Number of bytes of data segment.
Size BSS Number of bytes of bss segment.

Size Stack Number of bytes required for module stack:
sum of stacks required by every task in the module.

Three of the status bits are modified during installation,

which starts after a module is completely received by the
device, and places it in Base ROM (see Figure 10). Figure
4 shows when VirginLI, VirginMod, and EmptyMod status
bits are modified during installation. These three bits are re-
quired to persistently track the installation process, i.e, keep
the installation status even upon power outage or reboot. The
installation is concluded when EmptyMod is zeroed, indicat-
ing that the module is already in ROM.

With these 3 bits, it possible to identify if an installation
failed on step 1 or 2. This is important for MeM: if there
is a failure on step 1, MeM can immediately mark the the
memory region starting at Base ROM as free again; with a
failure on step 2, the region needs to be erased before it is
marked as free.

VirginLI = 0

VirginMod = 0

[ Step 2 ] 
Store text and data segments

in Base ROM. 

[ Step 1] 
Store Load Information (LI)

in MI Region.

EmptyMod = 0

Figure 4: Module installation.

The remaining status bit, ValidLI, is used to indicate that a
LI must not be used, either because the corresponding mod-
ule was uninstalled, or because the data is corrupted. When
a module is uninstalled, its content is not erased from ROM.
Instead, the corresponding ValidLI is zeroed. When MoM
detects installation failures, it zeroes ValidLI, indicating that
the module is corrupted (see Figure 5).

In other words, when ValidLI is zeroed, a soft deletion
is performed, because the memory is only tagged as invalid,
but the content of the module is not deleted. Soft deletions
avoid the overhead of erasing flash memory.

Table 2 summarizes the meaning of the status bits, and
Table 3 lists all possible states these bits can represent.

Table 2: Modules Information status bits

Bit = 1 = 0
VirginLI LI in initial state. LI modified.
VirginMod Module ROM in initial state. Module ROM modified.
EmptyMod Module not yet in ROM. Module already in ROM.

ValidLI Valid LI.a Corrupted LI or
deleted module.

aEither LI is empty or it refers to a correctly installed module.

Figure 5 shows the startup procedure: MoM iterates over
the status bits to load all correctly installed modules , i.e.,
with ValidLI=1 and EmptyMod=0 (see Figure 12 for loading
procedure). Upon detection of installation failures, MoM ze-
roes ValidLI to mark the module as corrupted, and indicates
that the update must be requested again. Invalid modules
(ValidLI=0) are simply skipped.

The startup procedure finishes when MoM finds the first
virgin LI. Therefore, all subsequent LIs must also be vir-
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0

1ValidLIN = supported mods
i = 0

No

i < N Read status bits 
of module i 1

0

EmptyMod 1

0

VirginMod

0

1VirginLI

i++ Failure on step 2:
Corrupted moduleModule OKInvalid module: 

deleted or corrupted
Failure on step 1:

Corrupted LI

Load module ValidLI = 0Re-request update

Initial state.

Figure 5: MoM procedure on startup.

Table 3: States of a module with
VirginLI-VirginMod-EmptyMod-ValidLI configurations.

Config. State Description
1-1-1-1 Initial state, empty memory (only 1’s).

0-1-1-1 Ongoing installationa: writing to LI;
else: installation failed while writing to LI.

0-0-1-1 Ongoing installation: writing to module ROM;
else: installation failed while writing to module ROM.

0-0-0-1 Installed module.
0-0-0-0 Deleted module.

0-1-1-0 Corrupted LI: MoM detected failure from step 1,
and marked the LI as invalid.

0-0-1-0 Corrupted module: MoM detected failure from
step 2, and marked the LI as invalid.

Others Not applicable.
aInstallation process shown in Figure 4.

gin. MCSmartOS assures this property by updating just one
module at a time, and using LIs sequentially. Additionally,
MI defragmentation assures that all virgin LIs are in the end
of the region (see Figure 6). In case no virgin LI is found,
MoM iterates over all LIs.

To conclude the description of Figure 5, the more mod-
ules are installed, the longer the startup procedure lasts. The
influence of invalid LIs is negligible, since they only increase
the number of iterations necessary to load all modules, but do
not add any extra operation.
2.3 Memory Manager

As shown in Table 1, LIs have a predefined structure, and
consequently the same size. Thus, given the MI region size,
it is easy to calculate how many LIs fit, i.e., how many mod-
ules are supported. Software modules, on the other hand,
have different sizes, and the maximum number of modules
that can be installed in a device depends on their individual
memory requirements. Therefore, more sophisticated pro-
cedures are required, which are performed by the Memory
Manager (MeM).

Like MoM, MeM is part of the operating system and runs
in kernel mode. The memory management is performed with
the following procedures:
Memory tracking: at any point in time, MeM must know
how much ROM and RAM is available in the system as well
as where free memory is located. It does not need to keep

track of which portions of memory are assigned to which
modules, since this information is managed by MoM.
Module memory allocation: upon updates, MeM checks
for free ROM and RAM to store the module. In case there
is enough space, it provides Base ROM and Base RAM
(see Table 1) for the new module, otherwise MeM rejects
the update due to insufficient memory. More specifically,
these base addresses are provided in case there are three
portions of contiguous free memory: in ROM, (i) at least
(Size TEXT + Size DATA) bytes; in RAM, (ii) at least
(Size DATA + Size BSS) bytes, and (iii) at least (Size Stack
+ TaskCtr*Size CTX) bytes. Size CTX is the size of a task’s
context, which is stored in the task’s stack by MCSmartOS.
Garbage collection: every invalid LI and the respective
module ROM are garbage in the system, since they are not
used anymore, but still consume memory. While the RAM of
a deleted module can be immediately reused, its ROM must
first be erased, and only then be used again. MeM is respon-
sible for erasing the ROM of invalid modules. The actual
erasure of ROM is called hard deletion, in contrast with soft
deletion, which only marks a module as invalid, but keeps its
content in memory. An important point is that LI hard dele-
tion must always be performed in conjunction with defrag-
mentation, in order to assure that all virgin LIs are adjacent
in the end of the MI region, otherwise the startup procedure
shown in Figure 5 would fail.
MI defragmentation: a defragmented MI has all virgin LIs
consecutively placed in the end of the region, as shown in
Figures 6(a) and 6(c). It allows both faster startup (stop at
first virgin LI) and efficient search for the next virgin LI
(e.g., with binary search). Figure 6(b) shows a fragmented
MI, where virgin and valid LIs are interleaved. This configu-
ration must never be in ROM; it is shown only for the sake of
illustration, to show that invalid LIs become virgin upon hard
deletion. In fact, based on Figure 6(a), the content of Figure
6(c) must be built in RAM, then written back to ROM.

2.4 Comparison with Monolithic Approach
Both the monolithic and the modular approach divides the

system memory into regions, as shown in Figure 2.
In the monolithic approach, the amount of memory used

by the software is constant during its whole life cycle. Re-
placing the full software with a new monolithic image is the
only way to change the memory configuration and regions.
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 LI2 - Virgin LI2 - Invalid

 LI1 - Valid LI1 - Valid

 LIN - Virgin

...

 LI7 - Virgin

 LI6 - Virgin

 LI5 - Virgin

 LI4 - Virgin

 LI3 - Valid

 LI2 - Valid

 LI1 - Valid

 LI4 - Valid

 LI6 - Valid

(b)(a) (c)

Figure 6: Hard deletion and defragmentation in the MI re-
gion.

In the modular approach, the amount of memory used by
the software changes upon every partial update. Therefore,
regions are dimensioned with free space, to allow the
addition or update of modules, as described in Section 3.
Since such modifications change the memory content in
a non-deterministic way, extra management is required,
namely:
(i) tracking of installed modules, performed by MoM;
(ii) tracking of available memory, performed by MeM.

These two items lead to both memory and processing
overhead. The memory overhead is constant (the larger the
software, the lower the relative overhead), and defined by:

Overheadmem = size(MeM)+ size(MoM)+ size(MI)

where size(X) is the amount of ROM plus the amount of
RAM required by X . The processing overhead, on the other
hand, cannot be easily quantified. During updates, the mod-
ular approach transmits less data (module instead of full im-
age), but it requires the device to perform tasks that are in-
existent in the monolithic approach (see Figure 1). Further-
more, modular code often does not call functions directly,
but through some level of indirection, e.g., jump tables. The
more often code with indirections is executed, the higher the
processing overhead in relation to the monolithic approach
(with direct calls).

3 Update Mechanism
In Section 2, we described the design decisions and gave

an overview of mechanisms to support partial updates. This
section describes the update mechanism in detail, covering
the update protocol, module installation, module loading,
and involved memory regions in each operation.

3.1 Setup Requirements
Our update mechanism requires the availability of

servers, which are resourceful computers acting as software
repositories, providing all modules for download.

Servers have enough resources to keep track of which
modules are installed in all deployed devices. Thus, they
could build new versions of modules without any communi-
cation with the devices. However, if privacy is an issue in
the future, servers might not be allowed to keep track of in-
stalled modules. In this case, a device must provide to the
server the necessary information to build a new module tai-

lored for that device. The server, in turn, must discard the
information after building the module.

The first scenario (servers keeping track of SW config-
uration) is straightforward and does not demand elaborated
protocols. Therefore, our discussion in this section is based
on the second scenario.
3.2 Device Performance Classes (DPCs)

and Supported Operations
In order to perform the operations involved in an update,

a variety of information must be provided, as shown in Table
4. Furthermore, each operation requires different processing
power and amount of memory. Not all embedded devices
are able to store all the required information or to process
the operations in acceptable time intervals. Therefore, we
must adapt the update process to the embedded devices’ ca-
pabilities.

Table 4: Distributable update operations and required infor-
mation. Example: updating module M in device D.

Operation Required Information

Pluggability Check M’s dependencies, modules installed in D
and memory configuration in D

Linking Table of global symbols of modules in D

Relocation M’s base addresses (ROM and RAM)
and M’s symbol and relocation tables

Interoperability Check Interoperab. meta-info of M and catalog of D
(WCET, WCRT, tasks interactions, etc.)

An arbitrary number of categories can be created, depend-
ing on how many operations devices outsource to servers. In
the context of this work, we suggest five Device Performance
Classes (DPCs) to categorize the devices according to their
capability to store the required information and to execute
each of the four operations from Table 4. A summary of
DPCs and their capabilities is shown in Table 5.

• DPC-0 devices are very resource constrained, often bat-
tery powered. They do keep track of installed mod-
ules, but do not implement MeM. Therefore, MoM
must assume MI defragmentation, and the server must
keep track of the memory layout configuration and (op-
tionally) of installed modules. Additionally, the server
provides the base addresses for new modules. DPC-
0 devices receive these addresses together with the bi-
nary, and update the respective LI. Upon updates, they
receive only a module’s content, without any meta-
information (see Figure 8).

• DPC-1 devices are still resource constrained, but they
have their own MeM, so they can perform pluggability
check. Furthermore, they keep a module’s dependency
list after installation. This information is necessary to
perform pluggability check when removing a module:
the device must check if other modules depend on the
one being removed. Upon updates, they receive a mod-
ule’s content and its dependency list.

• DPC-2 devices have more processing power and mem-
ory than DPC-1, so they can also execute tasks that
demand more memory, such as algorithms to relocate
modules. Upon updates, they receive a relocatable ELF
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file already linked with global symbols, so it only needs
to be relocated before being installed.

• DPC-3 devices also offer more memory, so they store
the symbol tables of installed modules. This gives them
the ability to perform linking as well. Upon updates,
they receive a relocatable ELF file, which needs to be
linked and relocated before being installed.

• DPC-4 devices have abundant memory and high pro-
cessing power, so they can afford to store the all the
meta-information required by CC, and to execute the
complex interoperability check. Upon updates, they re-
ceive a relocatable ELF file and its respective interop-
erability meta-information. All operations are executed
at the device’s side before installation. The scenario de-
picted in Figure 1 is possible only with DPC-4 devices.

3.3 Update Protocol
An update can be triggered by the server or by the embed-

ded device. For example, the server can broadcast a module
ID, and all devices that contain an older version of that mod-
ule will request the new one. The devices can also have a
periodic update routine, in which they request updates for all
installed modules, or they can offer an interface that allows
system administrators to manage the modules. For simplic-
ity, in this section we depict the protocol from the the mo-
ment the embedded device sends the first message.

The update protocol was designed to support a wide range
of devices, from resource-constrained IoT gadgets to high
performance systems. This is achieved by performing se-
lected operations in the server when the devices are not able
to perform them. The key idea is to tell the server which op-
erations it must perform, and make the necessary information
available.

During module request, a device informs the server about
its DPC (see Table 5). Thus, the server already knows which
operations it must perform, and how the protocol will follow.
Figure 7 show the update protocol for DPC-1 devices. The
numbered text, above the arrows, identifies the type of mes-
sage. The text within curly brackets, below the the arrows,
shows which information is embedded in the message. Fi-
nally, the text within brackets lists the operations performed
by the respective side. We present below all the steps and
alternative actions in the protocol, using DPC-1 as reference
(Figure 7).
Request Module:
As described in Table 1, the Module ID uniquely identifies
a module, and also encodes the module version. When a
device requests the installation of a new module, it sends
version 0; for updates, the currently installed version is sent.
Thus, the server is able to check if there is a newer version
for the requested module. Architecture informs the server
about the target architecture, and OS Info informs which
OS runs in the device, including its version; the suitable
module is selected according to the architecture and OS.
DPC informs the server which operations will be performed
by the device, and based on this information, the server
knows how to proceed.
Alternative 1: There is a newer version, and the update
protocol continues.

Server Device

2: Module Requirements
{ Memory , Dependencies }

          [ Pluggability Check ]

[ Module Installation ]

1: Request Module
{ Module_ID, Architecture, OS_Info, DPC-1 }

3: Accept
{ System Meta-information }[

Interoperability Check
Linking
Relocation
] 4: Send Module

{ Binary }

5: Success

Figure 7: Update of DPC-1 devices

Alternative 2: The module is already up-to-date, the server
notifies the device and the update protocol ends.
Module Requirements:
This message contains the necessary information for plugga-
bility check. Within Memory, the server informs the device
how many tasks the module contains (devices need to check
if there are enough free TCBs), and the required amount
of RAM and ROM (Size TEXT, Size DATA, Size BSS,
Size Stack). A module usually makes use of the OS and
other modules. Dependencies contain a list of module IDs
and required events and resources, so that the device can
check if they are already present in the system.
Alternative 1: Pluggability check is successful, and the
update protocol continues.
Alternative 2: Pluggability check finds missing dependen-
cies, and, before proceeding with the current update, the
device installs the dependencies.
Alternative 3: Pluggability check fails due to lack of
memory, the device reports the error and ends the update
protocol.
Accept:
If the device can plug the new module in the system, it
informs the server that it accepts and fulfills the module
requirements, and sends the necessary information for the
operations at the server side: the System meta-information.
The exact content depends on the DPC. For DPC-1 de-
vices, the system meta-information contains a list of tuples
(Module ID, Base ROM, Base RAM), used to relocate and
link the modules, and OS parameters (scheduling algorithm,
resource management protocol, etc.) for the interoperability
check.
Alternative 1: Interoperability check is successful. Then,
the module is linked and relocated, and the update protocol
continues.
Alternative 2: Interoperability check fails. Then, the cause
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Table 5: Overheads and operations of different Device Performance Classes (DPCs).

Overhead on Devicesa Operations performed by Binary Transmission Step

DPC MeM Dep. Symbol Interop. Pluggab. Relocation Linking Interop. DataList Table meta-information Check Check
0 No No No No Server Server Server Server Contentb + base addresses
1 Yes Yes No No Device Server Server Server Content

2 Yes Yes No No Device Device Server Server Relocatable ELF linked
with global symbols

3 Yes Yes Yes No Device Device Device Server Relocatable ELF

4 Yes Yes Yes Yes Device Device Device Device Relocatable ELF +
interoperability meta-information

aMeM adds memory and processing overheads; the others add only memory overhead (they must be kept after installation)
bELF headers and meta-information are stripped (see Figure 8). The content is executable, i.e., fully linked and relocated.

is reported, and the update protocol ends.
Send Module:
In this step, the format of the binary file to be transmitted
depends on the DPC. Table 5 lists the binary data for each
DPC.
Alternative 1: Installation is successful, and the update
protocol continues.
Alternative 2: Installation fails because of data integrity
violation (due to, e.g., transmission errors or power outage),
and device requests the same module again.
Success:
End of a successful update; this message informs the server
that the new module was successfully installed. After
receiving it, the server discards the module sent in step 4,
since it was tailored for that device.

...

TaskM Constr

Segment N

Section Header Table
(Optional)

Program Header Table

ELF Header

Segment 1

...

Task1 Constr

Code 
(functions and tasks)

Read-only Data

Data
(RW Initialized data)

Figure 8: Content of a module: tasks constructors, code and
data.

So far, we described the protocol for addition or update.
The protocol for module deletion is slightly different, as
shown in Figure 9. There is no need for linking or reloca-
tion, but CC must still be performed to assure (i) that other
modules do not depend on the module being removed (plug-
gability) and (ii) that all remaining tasks in the system still
fulfill their NFPs (interoperability). For the interoperability
check, among other information, the server must receive a
list of modules installed in the device, so that it can load and
combine the corresponding meta-information. This list is all
the pluggability check needs. Therefore, the server is able to
perform full CC for DPC 0-3 devices.

Optionally, DPC 1-3 devices can perform pluggability
check before the Delete Module message, in order to avoid
unnecessary communication with the server in case the plug-

gability check fails. DPC-4 devices can delete modules with-
out any communication with the server.

Server Device

2: Compatibility PASS

1: Delete Module
{ Module_ID, Architecture, DPC, System Meta-information }

[ Soft Deletion ]

[
Pluggability Check
Interoperability Check
]

3: Success

Figure 9: Module deletion on DPCs 0-3

3.4 Pluggability Check
In this section we show what is involved, and which

memory regions must be considered during the pluggability
check. As described in Section 2.1, applications, middle-
ware (drivers, libraries, etc.), and OS (kernel and essential
modules) are placed in different regions. We show how the
pluggability check is performed with an application module
by referring to Figures from previous sections.

As mentioned in Section 3, a new module is pluggable if
there is enough memory to store and load it, and if all the
dependencies are present in the target system.

In Table 6 we show how much memory is necessary to
store a module. Besides the module content, additional man-
agement information must be stored, namely one Load In-
formation (LI) and TaskCtr TCBs. The LI is persistent, and
is used to locate and load a module. The TCBs are used by
MCSmartOS to properly schedule tasks. MoM is responsible
for checking if there is still a virgin LI to store the informa-
tion about the new module. All other checks are performed
by MeM.

Once it is confirmed that the target system fulfills all the
memory requirements to store the new module, it is neces-
sary to check if the system contains the modules required by
the new one: its dependencies. All modules must be present
and their version must be compatible with the ones required
by the new module (including the operating system).
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Table 6: Memory requirements of an application module

Purpose Memory Requirement Affected Memory Region Managed by Visualization
Module ROM Size TEXT + Size DATA Local RO MeM Figure 10

Module RAM Size DATA + Size BSS + Local Data MeM Figure 11Size Stack + TaskCtr*Size CTX
Management ROM 1 Load Information (LI)a Modules Information (MI) MoM Figure 3 and Table 1
Management RAM TaskCtr TCBs Task Control Block (TCB) MeM Figure 11
a Only extra memory requirement in the modular approach. All the others are the same as in the monolithic approach.

The pluggability check is also necessary upon deletion
of common modules (libraries, drivers, OS modules, etc.).
However, the focus is on dependent modules, i.e., modules
that make use of the one being removed. A module cannot be
removed in case other modules make use of it, because that
would put the system in an unplugged state, which would
lead to system crash or undefined behavior. This analysis
is not necessary upon removal of application modules, since
applications cannot be used by other modules.

3.5 Module Installation
After a positive compatibility check, linking and reloca-

tion, a module is ready to be installed. The installation is
straightforward: it consists in transferring the module to the
appropriate region in ROM. Figure 10 shows an installed ap-
plication module; it belongs to the “Local RO” region. A
driver would be installed in the “Global RO” region, for ex-
ample. The base address (Base ROM) and the number of
bytes to be copied (Size TEXT + Size DATA) are stored in
the respective LI.

Task1 Constr
Base_ROM

TaskCtr

TaskM Constr

...

Data
(RW Initialized data)

Code 
(functions and tasks)

Read-only Data

 Base_ROM
+Size_TEXT
+Size_DATA

 Base_ROM
+Size_TEXT

OS RO

Modules Information 
(MI)

Global RO

Local RO

R
O

M

Figure 10: Installed application module

3.6 Module Loading
Every module is loaded on startup, as shown in Figure 5.

Additionally, a module can be loaded immediately after its
installation. Either way, the process is the same: initializing
the module data segment and OS data structures, as depicted
in Figure 12 and described below.
Module data: For this step, the module’s ROM and re-
spective LI are necessary. The initialized data is stored
in ROM (as shown in Figure 10), while the addresses and
sizes are stored in the LI. Size Data bytes are copied from
(Base ROM + Size TEXT) to Base RAM, Size BSS bytes
are zeroed, and (Size Stack + TaskCtr*Size CTX) bytes are
allocated for all tasks’ stacks.
OS data structures: The OS initializes the TCBs and stacks
of all tasks belonging to the module, and schedules all tasks.
As shown in Figure 11, the TCBs are initialized according to

the tasks constructors stored in the beginning of the module’s
ROM.

Figure 11 also shows the RAM content of a loaded appli-
cation module. The TCB region stores one TCB for each task
in the module; the Local Data region stores the data segment
of the module (data common to all tasks) and the stacks of
each of the tasks. The exact addresses can be retrieved from
the corresponding module LI.

Task1 Constr

Base_RAM

   Base_RAM
+ Size_DATA

TaskCtr

TaskM Constr

...

Data
(from ROM)

 Base_RAM
+ Size_DATA
+ Size_BSS
+ Size_Stack
+ TaskCtr*Size_CTX

OS Data

R
A

M

Task Control Blocks 
(TCB)

Global Data

Local Data
BSS

Task1 Stack

TaskM Stack

...

TaskCtr 
TCBs built
based on Task
Constructors.

Figure 11: RAM of a loaded application module

Init Data Init BSS Allocate Stack

Y i < N

 i = 0
 N = LI->TaskCtr

Read Task Constr [i]
(Prio | Entry | StackSize)

Init Task[i] TCB
and Stack

Schedule
Task[i] i++

Module
Data

OS Data Structures

Figure 12: Module loading

4 Analysis and Evaluation
To evaluate our solution, we analyze the update regard-

ing processing time and amount of exchanged data. Further-
more, we compare aspects of the modular and monolithic
approaches.
4.1 Goal and Setup

Figure 14 shows our target SW configuration, and respec-
tive dependencies. LED-App toggles an LED periodically,
and prints a string to the serial port every time the LED is
toggled. LED-Drv uses the OS GPIO functionality to operate
the LEDs. Initially, only the OS is present in the device; the
final state is achieved through an update, which is performed
without disrupting the normal operation of the device.

Our proof of concept was implemented on an
MSP430F5529 LaunchPad [16], configured as DPC-1,
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Table 7: Transmitted bytes and elapsed time during the update shown in Figure 13

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total
Bytes 7 - 13 - 7 - 11 - 5 - 91 - 1 - 11 - 162 - 1 309

Time (ms) 81.60 0.02 578.86 0.18 81.60 0.002 522 69.6 6.23 18.03 608.11 2.08 0.13 69.58 15.49 22.93 1116.09 3.35 0.13 3195.83

Server Device

1: Request LED-App [1]
{ Module_ID[2], Architecture[1], OS_Info[2], DPC[1] }

10:	[ LED-Drv Linking and Relocation ]

3: LED-App Requirements [1]
{ Memory[10] , Dependencies[2] }

         4: [ Pluggability Check Part 1 (Dependencies) ]

12: [ Module Installation ]

2:	[	LED-App	Requirements	Fetch	]

18: [ Module Installation ]

5: Request LED-Drv [1]
{ Module_ID[2], Architecture[1], OS_Info[2], DPC[1] }

7: LED-Drv Requirements [1]
{ Memory[10] , Dependencies[0] }

         8: [ Pluggability Check ]

6:	[	LED-Drv	Requirements	Fetch	]

         14: [ Pluggability Check Part 2 (Memory) ]

9: Accept  LED-Drv [1]
{ System Meta-information [4] }

11: Send Module [1]
{ Binary [90] }

13: Success [1]

16:	[ LED-App Linking and Relocation ]

15: Accept  LED-App [1]
{ System Meta-information [10] }

17: Send Module [1]
{ Binary [161] }

19: Success [1]

Figure 13: Updating the device with LED-App

 -- sleepUntil

 -- LEDtoggle
CALLS:

 -- getCurrentTime
 -- printfx

LED-App

 -- io_togglePin
CALLS:

DEFINES:
 -- LEDtoggle

LED-Drv

 -- printfx

DEFINES:
 -- io_togglePin
 -- getCurrentTime

 -- sleepUntil

OS

Figure 14: Dependencies between modules and OS

and driven by a 24MHz CPU clock. It offers 128KB of
ROM and 8KB of RAM. Our server was an Arch Linux
x86 64 machine with an Intel(R) Core(TM) i7-4750HQ
CPU @ 2.00GHz and 8 GB of RAM. The MSP and the
server communicate via RS232 9600/8-N-1. We compiled
the software with msp430-gcc 7.3.2.154, optimized for
size and without debug information (flags -g0 -Os).

4.2 Update
Figure 13 depicts the complete update process. The num-

bers within brackets describe how many bytes are used to
represent the information, e.g, 2 bytes for Module ID on
step 1 (Request LED-App); message types are always rep-
resented with 1 byte. In summary, the device requests the in-
stallation of LED-App (step 1), but because the dependency
“LED-Drv” is not installed (detected in step 4), the device
first installs it (steps 7 to 13), and only then proceeds with
LED-App installation (from step 14).

On steps 3 and 7 (module requirements), the memory re-
quirements are sent in 5 parts of 2 bytes each: Size TEXT,
Size DATA, Size BSS, Size Stack and TaskCtr. Thus, the
device already starts building the LI for the coming mod-
ule. The module IDs of each dependency are also sent within
these steps, i.e., 2 bytes per dependency are sent.

On steps 9 and 15 (Accept), the system meta-information
is composed by Base RAM and Base ROM of the module
being installed (4 bytes, used for relocation), plus 6 bytes
per dependency (Module ID, Base ROM, Base RAM), used
for linking. Because we do not perform the interoperability
check yet, no extra information is needed.
4.2.1 Data Exchange and Timing Analysis

The amount of bytes exchanged and the time spent during
the update are shown in Table 7.

The code and data from LED-App and LED-Drv sum up
to 251 bytes. During the update, 309 bytes were exchanged.
In other words, for our proof of concept, our protocol data
transmission overhead was only 57 bytes, or 18.4%.

Table 8 shows that the modular update time was 62.5%
faster than the baseline update (3195.83ms against 8537ms).
The baseline measures the time the server needs to link all
object files to create the monolithic image, plus the time re-
quired to flash this image into the device. Since communi-
cation is responsible for 94.2% of the modular update time,
we could achieve even better results with faster transmission
protocols, but this is not the focus of this work. Without
the interoperability check, there is nothing to evaluate at the
server side, since it performs only basic operations. There-
fore, we focus on the device side.

As shown in Table 7, the most time-demanding operations
were the pluggability checks (steps 8 and 14). In these steps,
MeM allocates memory for the modules. In its current im-
plementation, MeM stores the allocated addresses in ROM,
so that nothing is lost in case of reboot. When memory is
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allocated, these addresses must be updated, which requires
flash erasure before writing. With a MeM that does not re-
quire flash erasure, steps 8 and 14 run in less than 2.5 ms each
(similar to step 12). With such a MeM, the device would re-
duce its processing time from 144.61 ms to around 11 ms.

Step 4 is fast because there are no flash writes; MoM sim-
ply checks if the dependencies are present. Steps 12 and 18
install the modules by writing into flash memory 91 and 161
bytes, respectively.

Table 8: Time spent on data transmission and processing
(server and device sides) compared with the baseline

Time (ms) % of Total Involved StepsUpdate Time
Communication 3010.24 94.2 1,3,5,7,9,11,13,15,17,19

Server 40.98 1.3 2, 6, 10, 16
Device 144.61 4.5 4, 8, 12, 14, 18
Total 3195.83 100 1 to 19

Baseline (ms) Total Flashing Linking
8537 8507 30

4.3 Loading Time
After a module installation and before its execution, it

needs to be loaded, as depicted in Figures 11 and 12. The
load time depends on the RAM requirements, described in
Table 6. The load times and memory requirements for our
proof of concept are shown in Table 9.

Table 9: Loading time (in µs) and memory requirements (in
bytes)

LED-App LED-Drv
Loading Time 115.6 8.4
Module ROM 161 90
Module RAM 438 0

Management ROM 15.5 (1 LI + 4 status bits) 15.5
Management RAM 29 (1 TCB) 0

4.4 Comparison with Monolithic Updates
Besides the update time (see Table 8), we compare the

startup time (from resetting to scheduling the first task) and
data transmission of the modular and monolithic approaches.
The reference to our modular software is a monolithic image
containing MCSmartOS, LED-App, and LED-Drv.

We measured the startup time of the monolithic software
(Monolithic SW), and of the modular SW in its initial state
(Modular OS), and after the modules were installed. As
shown in Table 11, the startup time in the modular approach
is slightly higher than in the monolithic. This overhead is
due to the initialization of three items absent in the mono-
lithic version: update task, MeM, and MoM. Nonetheless,
the startup time of “Modular OS + LED Modules” is only
0.9% (0.41 ms) slower than “Monolithic SW”. Furthermore,
the more modules are installed, the lower the relative over-
head, since they must be loaded in both approaches; the only
difference is that in the modular approach MoM loads the
modules (after the OS is already loaded), and in the mono-
lithic approach, OS and modules are loaded by the same
startup routine.

Regarding data transmission, a full image replacement
would require the transmission of at least 20136 bytes
(stripped monolithic image from Table 10). As shown in
Table 7, our protocol exchanged 309 bytes, i.e., only 1.5%
of the stripped monolithic image size. Besides not disrupt-
ing the normal operation of the device during updates, our
modular approach for DPC-0 and DPC-1 devices transmits
very little data in comparison with the monolithic approach.
This feature can, e.g., enable a higher update frequency on
battery-powered devices, since the data transmission and
flash operations involve less data, and consequently consume
less energy.

Table 10 shows that an ELF file has high meta-
information overhead, which is more than 80% of our mod-
ules, even for the stripped versions. Therefore, by not send-
ing this meta-information during updates, as proposed for
DPC-0 and DPC-1 devices, we transmit much less data dur-
ing the update.

5 Related Work
The idea of performing modular updates in embedded de-

vices is not new. However, most of the solutions tackle the
application layer. In 2002, Maté [8] built a virtual machine
solution on top of TinyOS [9]. In 2005, SOS [7] was pro-
posed, supporting modular updates at application level us-
ing Position Independent Code (PIC) modules. In 2006, [4]
added dynamic linking capability into Contiki [5], which en-
abled modular updates, also at application level, but with
no PIC. In the same year, FlexCup [10] was built on top
TinyOS. It supports modular updates by splitting the update
process in two phases: code generation (at compile time, rel-
evant information is generated) and linking (modified mod-
ules are combined with other modules in the devices at run-
time). In 2008, FiGaRo [11] and OpenCom[2] were pro-
posed. FiGaRo is implemented on top of Contiki, to handle
dependencies checking, version control, and code distribu-
tion strategies. OpenCom proposes an extensions layer on
top of a minimal kernel layer, to achieve tailorability and ex-
tensibility. In 2010, Dynamic TinyOS [12] was proposed. It
is similar to Flexcup, but it allows multiple components into
a single object. In 2016, GITAR[13] went a step further, and
enabled dynamic updates also at network layer.

Our update protocol was partially inspired in SenSpireOS
[3], which sends ROM and RAM base addresses to the up-
date server, so that a module can be relocated before it is
transmitted. In our protocol, the DPC is used to decide what
information must be exchanged and which operations will be
performed at the server side.

The works mentioned so far cannot assure dependability,
since they offer no mechanism to check if NFPs would hold
after the update. Real-time, a subset of dependability, is at
least tackled in [15]: upon every update, there is a schedu-
lability test and the update process is assured to be finished
within two hyper-periods. However, the target system is re-
quired to use rate-monotonic scheduling.

We aim to tackle dependability properties during the in-
teroperability check, which requires the generation and pro-
cessing of extra meta-information, e.g., Atomic Basic Blocks
(ABBs) [14] and COntrol Flow and Interaction Expression
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Table 10: Sizes in bytes of monolithic image and modules, and respective meta-information overhead

Standard Compilation (-g0 -Os) Symbols Removed (--strip-all)
OS only LED-App LED-Drv Mon. Image OS only LED-App LED-Drv Mon. Image

ELFa 123048 6088 5840 92452 23468 836 784 20136
Content-only 20848 161 90 17578 20848 161 90 17578

Meta-information 83.06 97.36 98.44 80.99 11.16 80.74 88.39 12.70overhead (%)
a Linked and relocated.

Table 11: Startup time in ms

Monolithic SW Modular OS Modular OS +
(OS + LED SW) (Without Modules) LED Modules

46.09 46.37 46.50

(COFIE) [1]. ABBs describe the dependencies within a real-
time system; COFIEs describe interactions among tasks and
their control flow regarding the interaction primitives.
6 Summary and Future Work

In this paper, we showed an overview of our envisioned
concept for module-contained development and automatic
integration in dependable embedded systems. We presented
how MCSmartOS supports dynamic updates and how our
update protocol copes with the high diversity of embedded
devices. However, the concepts are not restricted to MCS-
martOS. Any OS can add our modular update support, and
use our update protocol to perform Compatibility Check
(CC), alone or in conjunction with an update server, thus
achieving the same goal.

The key idea of the update mechanism is that embed-
ded devices outsource selected operations to servers, accord-
ing to their Device Performance Class (DPC). The lower
the DPC, the more resource-constrained the device, and the
more operations are performed by the server.

We showed that the meta-information of ELF files takes
a considerable portion of a module (97% in our LED appli-
cation module), and that we can reduce data transmission by
not sending this meta-information, since it is not required
by MCSmartOS to load modules. Furthermore, we showed
that the startup time in the modular approach is only 0.1%
higher than the monolithic approach, showing that the extra
code required by the modular approach introduces almost no
processing overhead on startup.

Regarding improvements, our future work can be divided
in two parts: (i) support the update of the OS or shared mod-
ules (drivers, libraries and services) without requiring the
modification of dependent modules, and (ii) achieving the
concept depicted in Figure 1. Our goal is to offer a solution
that does not rely on specific HW or compiler features. Fur-
thermore, we will work on efficient mechanisms to handle
updates of events and shared resources, and tackle security
aspects.

We will also run a detailed comparison between MCS-
martOS and other OSs that support partial updates, regard-
ing, e.g., energy consumption and memory footprint.

For the overall concept, we will focus on the interoper-
ability check and further meta-information generation and

processing.
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