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Abstract
The improvement of software abstractions and frame-

works for programmers is one of the major challenges for
the engineering of reliable and efficient wireless sensing sys-
tems. We address this challenge with X Process Commit
(XPC), an atomic commit protocol framework, and Hybrid,
a Synchronous Transmission (ST) communication approach.
Hybrid exploits the reliability of Glossy and the speed of
Chaos, two Synchronous Transmission primitives, to get
lower latency and higher reliability than either on their own.
Hybrid is a general approach that can provide reliable com-
munication for any round based protocol. We use XPC and
Hybrid to build the classical 2-phase and 3-phase commit
protocols. Through extensive experimentation, we compare
the performance of the 2-phase and 3-phase commit proto-
cols when they use Hybrid, Glossy, and Chaos for commu-
nication. Our results show that Hybrid is more robust than
Chaos to radio interference, with almost 100% reliability in a
network of nodes suffering from moderate radio interference,
13% to 50% faster than Glossy, and has comparable over-
heads to other state of the art ST atomic commit approaches
A2/Synchrotron.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Wire-

less Communication; C.2.2 [Computer-Communication
Networks]: Network Protocols

General Terms
Algorithms,Design,Experimentation,Performance

Keywords
Wireless Sensor Networks; Agreement Protocols; Con-

current Transmission

1 Introduction
Wireless Sensor Networks(WSN) are a key technology

used in environmental and infrastructure monitoring. They
are also being integrated into the Sense-Action control loops
of IoT and Cyber-Physical Systems(CPS) applications for
many sectors of industry, including manufacturing, electric-
ity, gas and water supply, construction and agriculture [6,36].

One of the big challenges with WSN is to improve current
software abstractions and frameworks to create full-featured
WSNs that provide system-level services while ensuring ef-
ficiency and reliability [26, 30]. It is difficult to create soft-
ware abstractions for WSN due to the limited capabilities of
sensor nodes and the (often extreme) physical deployment
environment. These two factors contribute to high rates of
communication and node failure [10].

A commonly required system-level service for WSN used
in IoT and CPS systems is information propagation to all of
the nodes. Examples include parameter changes (e.g. change
channel or sensing rates), transactions (all devices reboot af-
ter code updates), or physical actuation (activating a valve,
turn right).

The distributed systems community have developed many
high-level abstractions for building dependable distributed
systems that provide: reliable broadcast, consensus, group
membership, view-synchronous communication and infor-
mation propagation. The WSN community have mostly as-
sumed an asynchronous model and used simpler abstractions
with eventual consistency guarantees such as Trickle [27]
due to previous difficulties with reliable synchronisation and
communication. Yet, programmers can benefit from higher-
level abstractions with stronger consistency guarantees, such
as the ability to reach agreement, if these abstractions are
efficient and reliable [15, 21].

The need for stronger consistency guarantees in dissemi-
nation has been argued for sensor systems used as part of a
CPS in [15], to enable consistent self-adaptation in WSN [2],
and for the dissemination of distributed data tables for in-
network query processing [23]. Other examples which re-
quire the strong consistency provided by 2PC and 3PC is
communication for UAV Swarms [31]. If the UAVs in a
swarm decide to turn left, transactional primitives must guar-
antee that their neighbour UAVs will turn left at the same
time to avoid collisions. Eventual consistency is not strong
enough. Cyber-Physical Systems and WSAN used in indus-
trial control applications [33] require updates to be consistent
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and time bounded before actuation to ensure system stability.
For example, in the WaterBox test-bed [22], tank water levels
are sensed, and the inflow and outflow valves are controlled.
A new control command must be received and implemented
by all of the controllers at the same time in a strongly consis-
tent manner, otherwise there is a high probability of a tank
overflow or underflow that may cause damage [37]. Unreli-
able wireless communication [38] is one of the biggest chal-
lenges in the provision of strong consistency guarantees. To
address this problem, we investigate the use of Synchronous
Transmission communication to improve reliability.

Synchronous Transmission (ST) is a communication ap-
proach where wireless nodes can synchronise and exchange
data at the same time [20]. It allows us to implement ab-
stractions with stronger guarantees based on the synchronous
model for distributed systems, where there is a known up-
per bound on message transmission and processing time.
Glossy [16] and Chaos [25] are two well-known ST exam-
ples.

This paper makes several contributions. We present XPC
(X Process Commit), a new programming framework for the
implementation of atomic commit protocols. We also intro-
duce Hybrid, a novel ST approach that uses the Glossy one-
to-all ST primitive and the Chaos all-to-all ST primitive to-
gether to achieve better reliability and speed than either on
their own. We acknowledge that no wireless protocol can
provide 100% reliability or latency guarantees for individ-
ual packet delivery. The aim of Hybrid is to achieve im-
proved reliability of strong consistency at a level sufficient
for applications such as [33]. The definition of sufficient
for these applications is dependant on the dynamics of the
phenomenon under control [37]. Hybrid combines ST prim-
itives to improve the reliability and latency of strong consis-
tency by leveraging the massive communication redundancy
of ST, an approach that has been shown to be effective for
the control of multiple pendulums [7].

Hybrid is a general ST communication approach that can
be used for communication for protocols other than those
created with XPC. To achieve good reliability and low la-
tency, Hybrid is required to make decisions on the use of the
appropriate ST primitive with the best parameters at the time.
We provide a detailed evaluation and comparison of Glossy,
Chaos, and Hybrid when used for the two-phase commit [18]
and three-phase commit [35] protocols. Our results show
that in a network of 20 nodes with two sources of high ra-
dio interference Hybrid can provide close to 100% reliabil-
ity when Chaos can not, and latencies that are between 13% -
50% faster than Glossy. We also discuss the performance of
our scheme in light of published results of the state-of-the-art
agreement framework, A2/Synchrotron [3].

2 Background and Related Work
Atomic Commit Protocols [29] are important to all dis-

tributed systems that need to maintain a consistent global
state across the entire system. Protocols for 2-phase com-
mit (2PC) [18] and 3-phase commit (3PC) [35] are the most
well established and used to ensure that the nodes in a dis-
tributed system agree to commit a transaction. These proto-
cols provide guarantees and have limits that are well under-

stood. 2PC is a fast algorithm that can guarantees liveness
in a network with no failures. The guarantee of liveness for
2PC can be violated in the presence of a coordinator fail-
ure and at least one node failure. 3PC adds an extra com-
munication phase to guarantee liveness in the case of mul-
tiple node failures. It too suffers from the loss of the co-
ordinator and cannot account for partitioned networks [29].
Both 2PC and 3PC assume a fail-restart failure model. In
this work, we assume that fail-restarts are caused only by
communication failures due to time-varying communication
links. These short term communication failures are due to
the environment and common with the use of low power ra-
dios [9]. Node failures could be handled by logging protocol
state to persistent storage like the on-board flash RAM.

2.1 Synchronous Transmission
Synchronous Transmission (ST) communication primi-

tives aim to provide energy and time efficient network-wide
broadcasts by synchronously transmitting packets from mul-
tiple wireless nodes. They depend upon the radio effects
of constructive interference [11], the capture effect [17],
or both. Constructive interference occurs when two identi-
cal radio messages are received within 0.5µseconds of each
other and can be successfully decoded. The Glossy ST com-
munication primitive [16] was one of the first to use con-
structive interference, followed by many others [11]. The re-
quirement that all messages are identical makes constructive
interference based schemes inherently one-to-many.

The Chaos communication primitive [25] was one of the
first examples of the use of the capture effect. The relaxation
of the message similarity requirement of constructive inter-
ference makes communication primitives using the capture
effect all-to-all.

The existence of communication redundancy makes ST
communication very reliable in practice. A notable explo-
ration of this property has been the EWSN (Embedded Wire-
less Systems and Networks conference) Dependability Com-
petition that has been held to assess the reliability of com-
munication primitives, and propose an assessment method-
ology [8] for this purpose. The use of ST protocols is being
explored for many high reliability applications [5].

2.2 A2/Synchrotron
Synchrotron [3] is a transmission kernel inspired by

Chaos and LWB [14]. It operates in time slots which include
the time taken for the reception, processing and transmis-
sion of packets. In Chaos, reception rates degrade quickly
in the presence of network interference and link unreliabil-
ity. Synchrotron addresses this by using time-slotted channel
hopping,

Synchrotron suffers from the same scalability and relia-
bility problems as Chaos. Chaos uses a control message that
uses a single bit per node in the network to keep track of
which nodes have received the latest data. The control mes-
sage size limits the number of nodes that can participate in
a Chaos flood. Chaos is best effort because of its all-to-all
communication and may not terminate, or take an unbounded
amount of time to do so. This poses a problem for applica-
tions like control that require a time bound. We address this
problem in our work by bounding the time of a Chaos flood
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and then using Glossy to reach the remaining network nodes
in a reliable way.

2.3 Baloo
Although several ST communication primitives exist such

as one-to-all (Glossy) and all-to-all (Chaos), they are very
difficult to program because they rely on the low-level con-
trol of timers and radio events. Baloo is a middleware
layer [20] that addresses this problem. Baloo exposes a
well-defined interface to enable the run-time control of ST-
primitives by the network layer and makes it possible to cre-
ate higher level abstractions using ST. XPC uses the ST com-
munication abstractions provided by Baloo in its design and
implementation. Baloo offers a standardised ST layer so that
various ST approaches can be developed in a comparable
way.

In Baloo, the protocol implementation is separated from
the lower level manipulation of data packets, data transfers
and timing model. The underlying ST primitives may be
changed without affecting the protocols themselves. Higher
level protocol logic can then be implemented using callback
functions.

Time Division Multiple Access (TDMA) [34] is used by
Baloo to create execution rounds and requires a fixed execu-
tion time upper time bound for each round. Control packets
are sent by a controller node at the beginning of each round
and contain schedule information and configuration infor-
mation. Nodes that successfully receive and decode control
packets can transmit during subsequent data slots that they
have been allocated. Baloo does not offer any services such
as those required for voting.

3 XPC and Hybrid
In this section, we present XPC and Hybrid. XPC is a

software library that provides abstractions for the implemen-
tation of atomic commit protocols. Hybrid is a way of using
both Glossy and Chaos for fast and reliable flooding. XPC
and Hybrid were implemented on the Contiki-NG operating
system [24] using the Baloo middleware [20] for the TelosB
motes [1] on the FlockLab test-bed [28].

3.1 XPC
XPC is designed to create atomic commit protocols for

WSN. An overview of the layers of XPC can be seen in Fig-
ure 1.

1. Application: Some applications require atomic commit
protocols with strong consistency guarantees and time
bounds.

2. Protocol implementation: XPC is used to implement
an atomic commit protocol that meets the strong guar-
antees and time bounds of the application.

3. Common code: Handles Packet buffers, message pars-
ing, and all retransmission policies for all ST primitives.

4. ST primitives: Abstracts away the requirements of the
ST primitive. Each ST primitive has completely differ-
ent message packet structures and timing requirements.
With XPC, a protocol can specify which ST primitive
to use to exchange messages for each round.

Figure 1: Layered overview of all XPC components. XPC
lives alongside Baloo’s implementation, processing all com-
munication from the application.

XPC assumes that there is a single global host which man-
ages the protocol phases. All of the other nodes act as partic-
ipants. The XPC global host is in charge of the atomic com-
mit protocol’s overall progress from a network wide point of
view. The other nodes either commit or abort a value speci-
fied by the global host.

XPC provides an API of 28 function calls for the develop-
ment of atomic commit protocols. There are separate func-
tions for the global host and the nodes. Please note that
in Figure 1 Hybrid is depicted at the same level as XPC-
Primitive, but can be used separately. The principle API
functions are shown in Table 1.

XPC API
Name Use

primitive reset schedule Global Host Prepare schedule for ST primitive

primitive update schedule Global Host Update schedule for next round

xpc prepare control message Global Host Application control message

xpc control config next round Global Host Application round configuration

xpc read control message Nodes Read application control message

xpc commit Nodes Application commit

xpc abort Nodes Application abort

Table 1: XPC-Common and XPC-Primitive APIs.

When a new phase begins the XPC global host generates
a transmit schedule for all of the nodes in the network us-
ing primitive reset schedule. It sends the schedule in a con-
trol packet. Each phase may consist of many rounds, de-
pending on how many nodes respond in the first. In a net-
work with no interference and good communication links,
all of the nodes may reply in one round. If some nodes do
not reply, a retransmission round must be scheduled using
primitive update schedule to request communication from
the missing nodes.

Each schedule must be generated one round in advance.
An additional final round is scheduled to handle the potential
retransmissions. Retransmissions to collect lost responses
from the nodes can only occur a maximum number of times,
or transmission limit, so that the protocol does not exceed the
application’s time bound. Exceeding the time bound causes
a time out, and the protocol terminates with an abort if the
global host fails to hear from all of the nodes within the pro-
tocols required time bound.
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Nodes that receive a control packet respond to the XPC
global host with the requested information based on the
phase of the protocol (a vote for the voting phase, or a
haveCommitted for the commit phase). A node may miss
a control packet from the global host due to interference in
the network. A node will timeout and abort the transaction if
it does not receive a control packet after a set time to prevent
deadlock caused by infinitely waiting.
3.2 Baloo Control and Modifications

XPC uses and configures Baloo in the following ways:

1. Single Initiator. Baloo relies on the presence of a
global host. This node is in charge of bootstrapping the
network and sending control packets at the beginning
of each flood. With XPC, the global host is in charge of
the protocol and the protocol state machine.

2. Retransmissions for Reliability. WSN links are very
unreliable, and lose packets due to interference or en-
vironmental conditions. To mitigate this issue XPC
uses retransmissions to execute a phase more than once
should there be missing replies.

3. Additional Final Round. At the beginning of a Baloo
round, we cannot be sure whether the XPC global host
will receive replies from all of the nodes. If it does
not, XPC schedules a “retransmission” round to request
information from the nodes that did not reply. XPC
schedules a final, empty round to handle the potential
for missing replies. In Figure 2, the XPC global host
sends control packet C during rounds 1 to N, and ex-
pects all of the nodes to reply during their scheduled
slots. If all of the nodes successfully reply by round N,
a final empty round (denoted as E) is scheduled to com-
municate protocol termination. If not, the global host
will send another communication schedule. The empty
round was chosen to give the protocol the flexibility to
schedule or cancel retransmission rounds dynamically
based on the number of nodes that respond.

Figure 2: Example X-Phase protocol ported to Baloo’s round
structure.

Several common Baloo configurations are used by all pro-
tocols, regardless of their underlying ST primitive:

• schedule.period. All protocols share the same length
of time allocated for the execution of the application
after a successful iteration of the protocol. Application
execution time can be adapted to the needs of the top-
level application.

• user bytes. All protocol information necessary for a
given round is disseminated in a control packet. The
host assigns two sections of the optional user bytes

configuration parameter: the first holds the message
sent by the host to all nodes in the network, the second
holds the value currently proposed by the host.

3.3 Hybrid Synchronous Transmission
Scheme

2PC and 3PC can be implemented with communication
primitives that support addressing, acknowledgements and
retransmissions. To provide strong consistency guarantees,
they require reliability and latency guarantees from the com-
munication primitive that are as strong as possible. Current
ST communication primitives have been shown to provide
good reliability and latency guarantees [8].

Glossy can provide reliable floods but requires a separate
flood for each node. While very fast, Glossy floods occur se-
quentially, one for each node. The sum of the time for all of
the floods may be greater than the application’s time bound
on decision making. Here the commit should timeout, leav-
ing the complete system in a consistent (old) state as updates
are uncommitted. Chaos implements all-to-all communica-
tion and is faster than Glossy. Chaos can fail to receive in-
formation from specific nodes due to the random nature in
which nodes send and recieve. Loss of information from a
node can cause a commit timeout preventing the commit of
the new state.

A simple sequential combination of Chaos and Glossy
does not yield better performance. Baloo’s Chaos imple-
mentation had to be modified to support time-boundedness
and scheduling to schedule Glossy and Chaos together. Our
adaptation to Chaos controls the interruption of Chaos so that
we can maintain the node information, and pass it to another
scheduled Chaos round, or Glossy flood. We added two new
API functions to Baloo to set and get the list of responding
nodes from the previous Chaos round.

In Hybrid, the first transmission of each phase executes
using a Chaos flood with a slot duration selected to reach as
many nodes as possible (see Figure 3). If the slot duration is
too short, few nodes may reply. If the initial slot duration is
too long, the latency may increase. We show in Section 4.2
our experimental process for the selection of the Chaos slot
duration. If all of the nodes have not responded to the initial
Chaos flood, Glossy is used for reliable retransmissions to
communicate with the remaining nodes. Glossy should be
used for as few nodes as possible because each node requires
a separate flood. The maximum number of retransmissions
using Glossy floods is bounded to preserve the application’s
time bounds. If a reply does not arrive from every node, the
protocol times-out. We leave the question of dynamic slot
sizes that adapt to network conditions for future work.

4 Evaluation
In this section, we report experimental results comparing

the latency and reliability of Glossy, Chaos and our Hybrid
approach. Hybrid uses Glossy and Chaos in their primitive
form, without added features, so we compare against Glossy
and Chaos on their own. Glossy and Chaos are used as ST
primitives for many other higher level ST protocols such as
Splash [12], LWB [14], Pando [13], and Mixer [19] that en-
hance ST with many other features such as network coding
or fountain coding. We thought that a comparison against
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Figure 3: Overview of Hybrid execution across multiple
phases. Each phase starts with a Chaos dissemination round,
followed by a variable number of Glossy floods.

Glossy and Chaos on their own would be a better compari-
son for Hybrid.

We also compare XPC/Hybrid with published Syn-
chrotron values running in the same testbed qualitatively
comparing the different protocols operating on networks of
similar density. This experiment will not account for varia-
tions in the network interference or the states of the nodes at
the different times of the experiments, therefore this compar-
ison is not robust.

We used XPC to create two reference atomic commit
protocols for evaluation. We implemented 2-phase com-
mit(2PC) [18] and 3-phase commit(3PC) [35] using XPC
with Glossy only, with Chaos only, and with Hybrid. We
evaluate the agreement outcome and the latency of each of
the atomic commit protocol with each ST primitive. Then we
experimentally evaluate the robustness of the atomic commit
protocols with different degrees of radio interference. Fi-
nally, we qualitatively compare our latency results to the re-
ported results of A2/Synchrotron which uses Chaos [3].

Our analysis was performed on the FlockLab testbed [28]
using the Tmote WSN platform [1] initially on nodes {1-4,
6-8, 10, 11, 13, 14-20, 22-28, 31-33}. All results shown are
the average of 100 transaction runs. Given the inherent scale
limitations of both Glossy and Chaos (scale is an open prob-
lem in ST research), we believe that the FlockLab testbed
provides an adequate network size and network density for
our evaluation.
4.1 XPC using Glossy

XPC with Glossy uses a time-sliced data dissemination
approach. Given a network of k nodes (where one is the
XPC global host), each round a schedule.n slots field
is set to k− 1. All nodes, except the global host, com-
municate in a given schedule.slot (see Figure 4a). The
nodes receive round information from the global host’s con-
trol packet. Nodes reply to the host by broadcasting during
their scheduled slot. The payload exchanged during each
round contains the messages sent by each node as a reply to
the host.

XPC using Glossy keeps track of nodes that do not reply
in their scheduled slots and schedules them to retransmit in
the next round. The retransmission round has a slot for each
node that did not reply. In Figure 4b, node 3 and node 4 did
not successfully send their reply to the host node during the
first round. The retransmission round (i.e. round 2) contains
only two slots.
4.1.1 Two-Phase Commit with Glossy

Our first set of results show that 2PC is unable to reach all
nodes in one round reliably. The introduction of retransmis-

(a) Glossy round execution (b) Glossy retransmission round

Figure 4: Execution of Glossy rounds with XPC. When
nodes do not reply in a given slot they are scheduled to re-
transmit in the subsequent round during the same phase.

sion rounds greatly boosts the overall reliability (Figure 5a).
Note that there are very few timeout aborts with the use of
retransmissions.

The results in Figure 5b show that retransmissions do not
significantly increase the latency of the protocol. With no
retransmissions, the protocol reaches a timeout abort in ap-
proximately 30% of the runs.
4.1.2 Three-Phase Commit with Glossy

The results in Figure 5c show that “timeout commits”
do not change the reliability of 3PC-Glossy when compared
to 2PC-Glossy (Figure 5a). 3PC (Figure 5d) has one more
phase, and a higher latency when compared to 2PC.
4.2 XPC using Chaos

Compared to Glossy, Chaos prioritises latency over reli-
ability. As can be seen in Figure 6 Chaos floods occur in
a “best-effort” fashion with no certainty that a flood is long
enough for communication to reach all of the nodes in the
network.

With XPC the challenge is to bound the maximum com-
munication time of a Chaos flood, the slot duration. Chaos
floods last until all of the nodes cease to receive new infor-
mation from their neighbours. XPC bounds the time of a
Chaos flood and schedules a round of the same slot duration
as the previous round using the same payload (Figure 6).
The Chaos flood resumes exactly from where XPC stops the
previous flood and receives extra time to terminate. Com-
munication ceases when no node sees new information in
the packets being broadcast (as seen in Figure 6).

In our experiments with 2PC-Chaos and 3PC-Chaos, we
explore two parameters: the number of retransmissions and
the Chaos slot duration. The results in Figure 7 validated our
assumptions: a longer slot duration (i.e. 100ms or 200ms)
has near 100% reliability, very similarly to XPC using only
Glossy.
4.2.1 Two-Phase Commit with Chaos

The results show very poor reliability for 25ms slots (Fig-
ure 7a) with improved results for 50ms slots (Figure 7b). For
latency, the results show that 25ms slots (Figure 8a) have
higher latency than 50ms slots (Figure 8b).

We analysed the cause for this unreliability using Flock-
Lab traces of LEDs controlled by the General Purpose In-
put/Output pins. The red LED is the radio turned on, purple

77



(a) 2PC-Glossy transaction out-
come

(b) 2PC-Glossy retransmission
latency

(c) 3PC-Glossy transaction out-
come

(d) 3PC-Glossy retransmission
latency

Figure 5: Evaluation of transaction outcome and latency for XPC 2PC-Glossy and XPC 3PC-Glossy in FlockLab.

Figure 6: Execution of an XPC Chaos round with 1 retrans-
mission. As nodes aggregate their vote into the payload they
set their bits into the packet’s flags bit-field.

LED is the reception of a message, and the yellow LED is
message broadcast. Figures 9b and 9a come from the Flock-
lab web visualiser for GPIO outputs. The logs have matching
timestamps for each node. We analysed a GPIO pin trace of
2PC-Chaos with 25ms slots and 1 retransmission because it
was unable to commit without retransmissions (Figure 7a).
Most of the executions present in the GPIO traces aborted
with a time-out due to missing replies. Figure 9a is a repre-
sentation of a successful commit that required 5 retransmis-
sions: 2 retransmissions for Phase 1, 2 retransmissions for
Phase 2, and a final retransmission to communicate the end
of the 2PC round. The XPC Chaos uses 2 rounds for each
communication phase, an indication of a slot duration that is
too short. Multiple retransmissions are required because not
all of the nodes are reached. The FlockLab GPIO trace for a
50ms slot duration was very different. Most of the executions
in the traces were successful. Figure 9b shows a representa-
tion of a successful commit execution with 3 rounds.

The issue is that Chaos needs gap times for its callback
functions. If the slot duration is short, the next round occurs
before the end of the gap times. We see that a 100ms slot
duration has a higher reliability and slightly lower latency
than any number of retransmissions with 25ms slots.

The results for 100ms and 200ms slots in Figure 8 show
that 2PC-Chaos can be reliable and have lower latency than
2PC-Glossy. Chaos floods with 100ms slots achieve above
95% reliability and 325ms latency. With 200ms slots, we see
reliability close to 100% and latency of 525ms, around 40%

less than 2PC-Glossy evaluated on FlockLab. With a longer
Chaos flood duration the number of retransmissions does not
significantly increase the overall latency.
4.2.2 Three-Phase Commit with Chaos

The results show that 3PC-Chaos suffers from the same
reliability and latency concerns as 3PC-Glossy. The relia-
bility of 3PC-Chaos (Figure 10) is worse than 2PC-Chaos,
due to the addition of an extra Chaos round and the “timeout
commit” that is a part of 3PC. Above 90% reliability can be
achieved with 200ms transmission slots, which is similar to
2PC-Chaos.

3PC-Chaos latency increases with the introduction of
an additional communication round, but remain lower than
3PC-Glossy (Figure 11). Chaos is a fast ST primitive with
a low overall protocol execution time. Unfortunately, Chaos
can be unreliable on low-power multi-hop networks.

4.3 XPC using Hybrid
In this section we evaluate XPC with Hybrid.

4.3.1 Hybrid Two-Phase Commit
The Chaos slot duration for 2PC-Hybrid is the same used

for the evaluation of Chaos on its own. The slot duration
only determines the length of the first round of each protocol
phase. The subsequent retransmissions use Glossy.

We can see in Figure 12 that the Glossy retransmissions
increase the protocol reliability to 100% for our experimental
set-up. The latency (Figure 13) is also very close to that of
2PC-Chaos.
4.3.2 Hybrid Three-Phase Commit

The results for 3PC-Hybrid (Figure 14) show that agree-
ment can be reached reliably with 4 or 5 retransmissions for
any slot duration. A 100ms Chaos slot duration can reach
100% reliability with 3 retransmissions. A 200ms Chaos slot
duration has high reliability with no retransmissions.

The latency of 3PC-Hybrid (see Figure 15) is very close to
that of 3PC-Chaos. Our results show that XPC using Hybrid
to schedule ST primitives can realise higher-level abstrac-
tions for use in synchronous WSNs with good performance
and reliability.

4.4 Interference Analysis
We focus our next set of experiments on the reliability of

our Hybrid communication approach under varying amounts
of radio interference. Interference causes nodes to miss
broadcast packets, and potentially desynchronise from the
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(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 7: Agreement outcome of XPC 2PC-Chaos with varying slot duration in FlockLab.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 8: Latency of XPC 2PC-Chaos with varying slot duration in FlockLab.

(a) GPIO trace for 2PC-Chaos with 25ms slots. (b) GPIO trace for 2PC-Chaos with 50ms slots.

Figure 9: Representations of FlockLab Radio LED GPIO tracing for 2PC-Chaos with 25ms and 50ms slots.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 10: Agreement outcome of XPC 3PC-Chaos with varying slot duration in FlockLab.

network and miss transmission slots. We analyse protocol
reliability in the presence of network interference.

We performed our previous experiments during times of
low radio interference (defined below). We established that
Hybrid out-performs both Glossy and Chaos in such con-

ditions. In the next set of experiments we evaluate Chaos,
Glossy and Hybrid with more severe radio interference.

We performed experiments on the Flocklab [28] Tmotes
{2-4, 6, 8, 10, 13, 15, 16, 11, 18-20, 22-28, 31-33}. Between
1 and 8 nodes were used from that group to inject interfer-
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(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 11: Latency of XPC 3PC-Chaos with varying slot duration in FlockLab.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 12: Agreement outcome of XPC 2PC-Hybrid with varying slot duration in FlockLab.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 13: Latency of XPC 2PC-Hybrid with varying slot duration in FlockLab.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 14: Agreement outcome of XPC 3PC-Hybrid with varying slot duration in FlockLab.

ence into the network. We increase the interference by using
different interference models, and different numbers of inter-

fering nodes. The interfering nodes were {31, 20, 27, 28, 8,
6, 4, 3}, selected because they are physically close enough to
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(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 15: Latency of XPC 3PC-Hybrid with varying slot duration in FlockLab.

another node to jam its radio reception. The jamming nodes
use JamLab [9], a customisable off-the-shelf radio interfer-
ence generation library for WSN motes. JamLab provides a
set of interference profiles (explained below), that is becom-
ing an accepted way to comparably evaluate WSN protocols.
All results shown are the average of 150 transaction runs.
The following interference patterns [9] were used to perform
comparisons:

1. Low Interference Background noise on the FlockLab
testbed during night-time hours (9pm-6am). This rep-
resents an ideal network deployment.

2. High Interference Background noise on the FlockLab
testbed during day-time hours (7am-8pm). It provides
an estimate of average real-world conditions.

3. WiFi Interference Noise generated by JamLab to emu-
late the interference of non-saturated WiFi file transfers
and radio streaming.

4. Microwave Interference Noise generated by JamLab
to emulate the periodic interference caused by mi-
crowave ovens over 802.15.4 transmission channels.

All nodes in the network vote in favour of all proposed
values (100% agreement rate) and protocol phases are al-
lowed up to 9 retransmissions before timing out and abort-
ing. The Chaos slot duration for Chaos and Hybrid is 50ms.
It is important to note that we consider WiFi and Microwave
interference to both represent a high degree of radio inter-
ference. Both types of JamLab injected interference (WiFI
and Microwave) were executed during night-time hours to
minimise other external interference. We present the results
using the following metrics:

• Interference Model. Low, High, WiFi and Microwave
interference models were tested and evaluated individ-
ually for each protocol.

• Average Reliability. Protocol reliability measures the
rate at which all nodes in the network commit the pro-
posed transaction consistently. If even just one node
times out or aborts, the reliability is scored as zero for
the given round.

• Latency. The overall time of an XPC run. It starts
when XPC pre-empts the application and ends when the
application is resumed. Protocol latency is expected to

increase with the interference.

• First Round Coverage. The percentage of network
nodes reached, on average, during the first dissemina-
tion of each phase, denoted as P1, P2 and P3 depending
on the number of phases.

• Average Number of retransmissions. This metric ex-
presses the average number of retransmissions required
for a protocol to switch to a subsequent stage.

4.5 Single Jammer
Low Interference Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC Glossy 100.00 564.43 P1: 99.72 [G] P1: 1.08
P2: 99.81 [G] P2: 1.03

2PC Chaos 95.77 287.00 P1: 96.37 [C] P1: 1.27
P2: 96.36 [C] P2: 1.41

2PC Hybrid 100.00 244.17 P1: 97.98 [C] P1: 1.13
P2: 97.14 [C] P2: 1.21

3PC Hybrid 100.00 409.79
P1: 96.29 [C] P1: 1.41
P2: 97.57 [C] P2: 1.35
P3: 97.28 [C] P3: 1.37

High Interference Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC Glossy 100.00 580.95 P1: 98.95 [G] P1: 1.15
P2: 98.54 [G] P2: 1.25

2PC Chaos 89.09 481.66 P1: 94.77 [C] P1: 2.71
P2: 96.13 [C] P2: 2.46

2PC Hybrid 100.00 284.79 P1: 96.64 [C] P1: 1.63
P2: 97.26 [C] P2: 1.46

3PC Hybrid 100.00 465.52
P1: 94.19 [C] P1: 1.63
P2: 95.57 [C] P2: 1.70
P3: 95.88 [C] P3: 1.68

Wifi Interference Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC Glossy 100.00 628.63 P1: 98.04 [G] P1: 1.60
P2: 98.04 [G] P2: 1.58

2PC Chaos 56.76 875.74 P1: 89.53 [C] P1: 3.94
P2: 87.95 [C] P2: 5.51

2PC Hybrid 100.00 357.29 P1: 91.36 [C] P1: 1.78
P2: 91.18 [C] P2: 1.72

3PC Hybrid 100.00 499.00
P1: 93.72 [C] P1: 1.71
P2: 91.44 [C] P2: 1.62
P3: 93.89 [C] P3: 1.67

Microwave Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC Glossy 100.00 593.33 P1: 98.89 [G] P1: 1.29
P2: 98.96 [G] P2: 1.29

2PC Chaos 70.97 889.92 P1: 86.36 [C] P1: 5.51
P2: 89.18 [C] P2: 4.51

2PC Hybrid 100.00 355.11 P1: 92.99 [C] P1: 1.73
P2: 92.44 [C] P2: 1.86

3PC Hybrid 100.00 507.28
P1: 93.13 [C] P1: 1.69
P2: 91.83 [C] P2: 1.76
P3: 93.07 [C] P3: 1.64

Table 2: Comparisons of XPC protocols for different inter-
ference patterns (1 jamming node).

The results of 2PC-Glossy, 2PC-Chaos, 2PC-Hybrid and
3PC-Hybrid, evaluated under the four interference model
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show in Table 2 the interference caused by one node with
a variety of different interference patterns.

2-PC-Chaos has reduced latency and reliability across all
experiments under challenging conditions. This result has
been observed by others using Chaos based protocols [4].
There is a difference in latency results for Chaos in these
experiments when compared to those in Figure 8. Here we
measure the overall latency of both committed and aborted
(due to timeout) transactions. In Figure 8, we only mea-
sure the latency of the commit transactions. Measuring the
latency of both commits and aborts shows us the potential
benefits of combining Chaos and Glossy in an operational
system in the presence of interference.

We make the following further observations about the
data presented in Table 2. As the interference models in-
crease their disturbance over the channel, the protocol la-
tencies increase linearly. The stronger WiFi and Microwave
radio interference causes longer latency for 3PC-Hybrid. An
increase of retransmissions causes an increase in latency and
reflects the intensity of the channel’s interference. The proto-
cols aside from Chaos across all interference models achieve
a 100% correct outcome, but when combined with Glossy
into Hybrid it reduces latency by reaching over 90% of nodes
during the first 50ms of each phase. Switching to reliable
Glossy broadcasts handles the remaining nodes quickly and
with high reliability.
4.6 Multiple Jammers

We extend our analysis to consider the impact of in-
creased interference in the network. The purpose of this
evaluation is to disrupt the network in degrees until we can
see complete failure. We do this using multiple nodes gen-
erating jamming interference in the network. We select the
microwave oven as an extreme form of interference.

By increasing the number of nodes generating microwave
oven interference, we create a more challenging communica-
tion environment for the evaluation of the robustness of the
protocol. It is important to note that all of the degrees of in-
terference represented in this experiment are high. We con-
sider that beyond three jamming nodes represents extreme
interference beyond that of a normal operational environ-
ment. Tables 3 and 4 report the results of executions with
between 2 and 8 interfering nodes.

The results in Tables 3 and 4 show that 2PC-Hybrid is
faster than 2PC-Glossy for small amounts of interference. At
one to two interfering nodes, 2PC-Glossy has higher latency
than 2PC-Hybrid because it does not have the initial Chaos
flood used by Hybrid to efficiently flood the network with
data. Glossy does have a higher first transmission coverage
and lower average retransmissions.

At three interfering nodes, the reliability of 2PC-Glossy
and 2PC-Hybrid begin to degrade. We still see very sim-
ilar reliability for both. The initial Chaos round reaches
fewer nodes than before, and both protocols rely on Glossy
floods. With four interfering nodes, 2PC-Glossy is more re-
liable than 2PC-Hybrid. Both are now reliant upon Glossy,
and 2PC-Glossy has 10 glossy retransmissions while 2PC-
Hybrid has 9 glossy retransmissions. This trend continues
as the number of interfering nodes increases. With six inter-
fering nodes, the protocols have mostly failed. None have

reliability above 10%.
The unreliability of Chaos is seen with the performance

of 2PC-Chaos. At four interfering nodes, 2PC-Chaos has
completely failed. We also see that Chaos has a very high
count of average retransmissions.

3PC-Hybrid behaves similarly to 2PC-Hybrid, with a
50% extra latency due to the extra phase. From the experi-
ment traces, we can see that the 1st dissemination phase usu-
ally has the highest retransmissions. This is probably caused
by nodes finding it harder to capture the control packet for
the next round while under interference. At 8 jamming nodes
we note that 3PC-Hybrid completely fails to receive any
packets for the first Chaos transmit of the second and third
phases. We also see the total number of retransmissions at
their maximum value.

We see that Hybrid managed to achieve 100% reliability
at or under 508ms for only 1 jamming node. This result sug-
gests that Hybrid could be used for control applications [33]
for low to moderate levels of interference, but high levels of
interference may still cause failure. We leave investigation
into the use of channel diversity for further resilience as an
extension to this work.

4.7 Comparison with A2 implementations
We qualitatively compare the latency of XPC to the exe-

cution times reported by A2 in 2017 and 2019 [3,32] In both
cases, tests are executed on Flocklab using all of the nodes.

In our analysis of XPC, we present the latency of com-

1 Jamming Node Reliability (%) Latency (ms) 1st Tx Coverage (%) Avg. Retr.

2PC Glossy 100.00 593.33 P1: 98.89 [G] P1: 1.29
P2: 98.96 [G] P2: 1.29

2PC Chaos 70.97 889.92 P1: 86.36 [C] P1: 5.51
P2: 89.18 [C] P2: 4.51

2PC Hybrid 100.00 355.11 P1: 92.99 [C] P1: 1.73
P2: 92.44 [C] P2: 1.86

3PC Hybrid 100.00 507.28 P1: 93.13 [C] P1: 1.69
P2: 91.83 [C] P2: 1.76
P3: 93.07 [C] P3: 1.64

2 Jamming Nodes Reliability (%) Latency (ms) 1st Tx Coverage (%) Avg. Retr.

2PC Glossy 100.00 787.45 P1: 91.28 [G] P1: 2.56
P2: 91.28 [G] P2: 2.85

2PC Chaos 49.59 1030.10 P1: 60.64 [C] P1: 6.30
P2: 80.71 [C] P2: 5.89

2PC Hybrid 100.00 648.85 P1: 82.67 [C] P1: 3.05
P2: 82.87 [C] P2: 3.05

3PC Hybrid 100.00 976.25 P1: 77.43 [C] P1: 3.37
P2: 81.66 [C] P2: 3.09
P3: 81.29 [C] P3: 2.96

3 Jamming Nodes Reliability (%) Latency (ms) 1st Tx Coverage (%) Avg. Retr.

2PC Glossy 94.14 969.45 P1: 85.62 [G] P1: 3.77
P2: 86.50 [G] P2: 3.60

2PC Chaos 34.31 987.03 P1: 73.75 [C] P1: 6.45
P2: 78.16 [C] P2: 5.39

2PC Hybrid 95.00 841.74 P1: 78.28 [C] P1: 4.07
P2: 79.62 [C] P2: 3.87

3PC Hybrid 97.79 1270.12 P1: 78.95 [C] P1: 3.95
P2: 77.60 [C] P2: 4.05
P3: 77.79 [C] P3: 3.85

4 Jamming Nodes Reliability (%) Latency (ms) 1st Tx Coverage (%) Avg. Retr.

2PC Glossy 52.10 1123.97 P1: 84.66 [G] P1: 6.37
P2: 86.39 [G] P2: 5.68

2PC Chaos 0.20 1066.59 P1: 56.12 [C] P1: 8.96
P2: 67.55 [C] P2: 7.94

2PC Hybrid 46.94 1134.01 P1: 76.71 [C] P1: 7.27
P2: 78.82 [C] P2: 6.34

3PC Hybrid 40.63 1480.84 P1: 74.22 [C] P1: 7.23
P2: 78.95 [C] P2: 5.58
P3: 75.60 [C] P3: 5.80

Table 3: Comparisons of XPC protocols with multiple jam-
ming nodes (Microwave Interference).
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mit only and abort only transactions. Aborted transactions
complete in a shorter time. The inclusion of aborted trans-
actions into the reported results lowers the upper-bound of
protocol execution times. We see that Hybrid outperforms
Glossy and Chaos for 2PC implementations. 2PC-Hybrid is
able to match the 2019 A2 latencies for commit-only transac-
tions (Figure 16a), and is faster in the case of network-wide
aborts (Figure 16b).

Hybrid also has the lowest latency among all implementa-
tions for 3PC (see Figure 16). Similarly to 2PC, 3PC-Hybrid
matches A2’s 2019 implementation for transaction commits
(Figure 16c) and provides improvement over aborts (Figure
16d). Please note that this comparison made using published
results only, and does not account for variations in the net-
work interference or the states of the nodes at different times
of the experiments. A more robust comparison is left for fu-
ture work.

5 Limitations and Further Work
The limitations of this work are typical of those in this

field. It is difficult to control the radio environment of a re-
mote WSN testbed. We hold that our experiments with the
injection of radio interference do tell us something useful
about the resilience of the hybrid use of Glossy and Chaos.
A more controlled environment could have given us more
precise results.

Hybrid also suffers from the same issues of scale shared
by Glossy and Chaos. Glossy needs an individual network-

5 Jamming Nodes Reliability (%) Latency (ms) 1st Tx Coverage (%) Avg. Retr.

2PC Glossy 23.01 1274.33 P1: 77.07 [G] P1: 8.13
P2: 83.22 [G] P2: 7.33

2PC Chaos 0.00 1061.64 P1: 56.47 [C] P1: 9.13
P2: 68.99 [C] P2: 7.10

2PC Hybrid 14.94 1291.59 P1: 68.35 [C] P1: 8.87
P2: 75.47 [C] P2: 7.41

3PC Hybrid 13.79 1506.73 P1: 63.49 [C] P1: 8.74
P2: 79.80 [C] P2: 7.52
P3: 77.68 [C] P3: 6.67

6 Jamming Nodes Reliability (%) Latency (ms) 1st Tx Coverage (%) Avg. Retr.

2PC Glossy 2.66 1192.78 P1: 72.24 [G] P1: 8.87
P2: 83.31 [G] P2: 7.61

2PC Chaos 0.00 1041.92 P1: 53.16 [C] P1: 9.27
P2: 63.65 [C] P2: 7.67

2PC Hybrid 1.56 1169.43 P1: 68.55 [C] P1: 8.78
P2: 78.62 [C] P2: 7.11

3PC Hybrid 1.94 1277.95 P1: 67.54 [C] P1: 9.14
P2: 76.36 [C] P2: 7.64
P3: 78.38 [C] P3: 7.14

7 Jamming Nodes Reliability (%) Latency (ms) 1st Tx Coverage (%) Avg. Retr.

2PC Glossy 1.15 1231.18 P1: 66.15 [G] P1: 9.62
P2: 76.99 [G] P2: 8.35

2PC Chaos 0.00 1054.03 P1: 46.10 [C] P1: 9.80
P2: 60.00 [C] P2: 10.00

2PC Hybrid 0.39 1230.55 P1: 61.19 [C] P1: 9.59
P2: 74.45 [C] P2: 8.30

3PC Hybrid 0.80 1293.27 P1: 59.80 [C] P1: 9.66
P2: 73.67 [C] P2: 8.82
P3: 76.30 [C] P3: 8.52

8 Jamming Nodes Reliability (%) Latency (ms) 1st Tx Coverage (%) Avg. Retr.

2PC Glossy 0.00 1252.55 P1: 58.79 [G] P1: 9.74
P2: 76.40 [G] P2: 7.00

2PC Chaos 0.00 1048.42 P1: 41.44 [C] P1: 9.82
P2: 37.33 [C] P2: nan

2PC Hybrid 0.00 1336.88 P1: 51.40 [C] P1: 9.75
P2: 68.26 [C] P2: 8.00

3PC Hybrid 0.00 1300.07 P1: 50.49 [C] P1: 10.00
P2: 0.00 [C] P2: 10.00
P3: 0.00 [C] P3: 10.00

Table 4: Comparisons of XPC protocols with multiple jam-
ming nodes (Microwave Interference).

wide flood for each node. Chaos uses a control frame that
contains one bit for each node in the network. Both of these
limit the size of the network on which each can be used.

For further work, we would like to find a way to determine
and adapt to the best Chaos slot duration at runtime based on
the network conditions. We would also like to extend the
use of XPC and the Hybrid ST approach to see what further
communication protocols could be supported, or what new
ones could be developed. We would also like to explore a
way to incorporate the use of multiple channels to increase
resilience.

6 Conclusion
In this paper, we present X-Phase Commit (XPC) for

the implementation of atomic commit protocols using Syn-
chronous Transmissions and Hybrid. We describe the design
of XPC and reference implementations of two-phase com-
mit and three-phase commit using Glossy and Chaos. We
also present Hybrid, a way to use both Glossy and Chaos to
provide fast and reliable flooding. We used XPC and our ref-
erence implementations to assess the latency and reliability
of Glossy, Chaos, and Hybrid for both the two-phase commit
and three-phase commit transactional protocols.

Our testbed evaluation showed that Hybrid enabled by
XPC has lower latency than Glossy on its own, and is
more reliable than Chaos on its own. We evaluated
Glossy, Chaos, and Hybrid with increasing levels of net-
work radio interference and saw that under low to mod-
erate interference, Hybrid was as reliable as Glossy but
with lower latency. The XPC library is available online at
https://gitlab.doc.ic.ac.uk/xpc.
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