
CrowdBind: Fairness Enhanced Late Binding Task Scheduling in
Mobile Crowdsensing

Heng Zhang1, Michael A Roth1, Rajesh K. Panta2, He Wang1, and Saurabh Bagchi1

1Purdue University
2AT&T Labs Research

Abstract
Mobile crowdsensing (MCS) is an efficient method to col-

lect sensing data from a large number of mobile devices. Tra-
ditionally, low task coverage and high energy consumption
on mobile devices are two of the main challenges in MCS
and they are extensively studied in the literature. In this
work, we discuss a third factor, scheduling fairness, which
is correlated with the other two factors and has a significant
impact on the success of MCS. We propose a new frame-
work, called CROWDBIND, that takes advantage of the late-
binding characteristic of crowdsensing tasks in addition to
incorporating a trajectory-based mobility prediction model
to schedule tasks. We conducted a survey with 96 partici-
pants to learn about how users react to varying levels of fair-
ness in MCS applications. We designed and implemented a
full-stack MCS system including a scheduling server and an
Android client. We evaluate our system by conducting an
IRB approved user study of 50 people in our college town
for one month as well as running a simulation using Gowalla
dataset of 90K users. CROWDBIND is proved to be effec-
tive in a large population and the results show that CROWD-
BIND achieves the highest scheduling fairness compared to
prior works (Periodic sensing, PCS, Sense-Aid, and Crow-
dRecruiter), improves the average per-device energy effi-
ciency from 18.3% to 91.4%, and improves the task coverage
from 9.7% to 52.1%.
1 Introduction

Mobile crowdsensing (MCS) [2] is a technique by which
sensor data [29] is sourced from a large group of individuals
with mobile devices capable of computing and sensing. This
data can be used to extract information that is of common
interest, such as weather conditions, traffic information, and
social network applications [23]. By leveraging the powerful
sensing capacity and ubiquity of mobile devices, MCS can

provide information about our environment while lowering
the cost of running data collection campaigns.

The application and the user (e.g., smartphones and IoT
devices) are the two main players in the MCS ecosys-
tem [27]. The application issues sensing tasks to users, who
respond with the results after performing the requested ac-
tions. An optional scheduler between the application and the
user can be added to optimize these interactions. The most
common type of task in MCS is the periodic task, in which
the same sensing action is requested at regular intervals over
some longer duration of time. To facilitate scheduling for
these tasks, multiple Task Instances are created for each
task at its interval of periodicity. Prior works focus on how
users can be selected to maximize task coverage under var-
ious constraints (e.g., budget, probabilistic coverage) [4, 6]
as well as how the client-side energy cost of sensing and
uploading data can be reduced [10, 31]. However, we find
there is another important factor for the viability of MCS—
scheduling fairness. This refers to how equitably the overall
task load is divided among all the participating devices. In
the short term, unfairness will deplete the device energy of
some users who frequently receive tasks and cause them to
leave MCS campaign. In the long term it will harm task cov-
erage because of less participants. Therefore, maintaining
scheduling fairness is important to keeping users continu-
ously participating in MCS campaigns. However, the study
of scheduling fairness in MCS task scheduling area is lim-
ited. Some works [11, 13, 14] mention that fairness is a de-
sirable and important property but they do not optimize the
fairness.
Importance of Fairness

To understand if the scheduling fairness affects MCS
users’ willingness to participate in MCS, we surveyed 96 in-
dividuals from 11 countries (51% from the United States,
23% from India, and 16% from China). In the survey, We
hypothesize 3 different payment models. First, the volun-
teer model requires users’ voluntary participation. Users do
not receive a monetary benefit, but they can ask for informa-
tion shared by other volunteers without paying the informa-
tion provider. Second, the subscription model pays partici-
pants a fixed amount of money for every subscription period
no matter how many task instances are assigned to the each
user. Third, the pay-by-work model pays participants based
on their relative contribution in terms of the tasks completed

International Conference on Embedded Wireless Systems and Networks (EWSN) 2020
17–19 February, Lyon, France © 2020 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-4-5

61

or volume of data uploaded. These three payment models
represent our assimilation and supersetting of models pro-
posed in various previous works [12, 21].

For each of the three models, we asked the users the fol-
lowing questions: 1) Do you think it unfair if you receive
more tasks under this payment model and 2) will you drop
MCS because of the unfairness under this payment model.
The results in Figure 1 demonstrate that an unfair task allo-
cation could cause 64.9% of the users to drop out of MCS
campaign in the subscription model and almost half (48.1%)
of the users to drop out of the volunteer model. We were es-
pecially surprised by the results for the pay-by-work model,
in which we hypothesized that unfairness would not be a
problem because a user would receive payment in propor-
tional to their costs. However, more than 1/3 of the users
were likely to leave the MCS campaign because of the unfair
task distribution.

Three crucial MCS criteria (reward, detour, and energy
consumption) have been extensively studied in the literature.
Reward refers to how much the participant can benefit from
MCS (e.g. money or interested information). Detour refers
to that people may be asked to move to a certain area that de-
tours from the user’s original route in order to sense the value
at the detoured area of interest. Energy consumption essen-
tially means how much energy is consumed by the MCS
smartphone applications. We also want to know whether
fairness is a fundamentally important criteria. Therefore, we
further ask the users to rate the importance of each of the
four criteria with 4 options: Very Important, Important, Not
Important, and Do Not Know. The results are summarized
in Figure 2. 47% of the users rate fairness as very important,
which is the highest among all criteria. 80% of users rate
fairness as important or very important. As a comparison,
this number is 83% for the reward, 80% for detour, and 74%
for energy consumption. Understandably, MCS users wish
to be fairly assigned with tasks hence fairness is perceived to
be a crucial criteria.

One may argue that even if fairness is perceived to be im-
portant by end users, how will participants in an MCS cam-
paign know whether it is fair or not. For one, we believe
philosophically that this property is desirable independent of
its observability. Second, unfair allocation can cause users’
mobile devices to run out of energy leading them to leave
the MCS campaign. Third, many campaigns have users that
belong to a cohort or a social group and therefore it is likely
that out-of-band communication can lead users to determine
the fairness (or otherwise) of the task allocation.
Our Design Features

We find a way to optimize the scheduling fairness with-
out degrading two other primary properties—task coverage
and total energy requirement to accomplish a task. In our
design, we model fairness using Gini coefficient [26] and in-
troduce design features that improve the estimated metric.
Five opportunities are utilized to improve the task coverage
and energy efficiency of mobile devices in a fair manner of
MCS task scheduling. First, MCS tasks have a late binding
property. At the instant a task is submitted to our frame-
work, our solution does not need to map all the instances of
this task to the devices right away. Rather CROWDBIND can

Figure 1: Result of survey on attitudes towards fairness in 3 different pay-
ment models. A total of 96 users from 11 countries participated in the sur-
vey.

Figure 2: Result of survey on the relative importance of 4 MCS criteria.

wait till shortly before the starting time of the task instance
to determine which clients can satisfy it. Second, MCS tasks
have some delay tolerance, e.g., the barometer reading at our
campus quad can be taken now or within the next few min-
utes when more people come into the region without sacrific-
ing the accuracy of the aggregate results. Third, MCS tasks
have some spatial tolerance, i.e., a device anywhere within
some radius of the task region can perform the task. Fourth,
regularity exists in human mobility patterns [18]. According
to Thuillier [19], 82.75% of individuals can be clustered into
12 categories of mobility patterns. The mobility pattern can
be utilized to predict potential participants for a task. Last,
building a global view of different task instances in a certain
lookahead window and utilizing the late binding and the de-
lay tolerance properties help improve the three optimization
goals (scheduling fairness, task coverage, and energy effi-
ciency). Because the scheduler knows the requirements of
task instances and the availabilities of more users (task cov-
erage) ahead of time, it can reduce the repeated use of some
users who are eligible for multiple task instances (energy ef-
ficiency and fairness).

We propose CROWDBIND that looks ahead and finds out
potential users for a task within its delay tolerance and task
region. Two variants of greedy algorithms are designed.

62

Greedy-Heuristic (G-Heuristic for short) in Section 3.2.3
achieves fast convergence with relatively high fairness and
task coverage. It can be used in scenarios where fast schedul-
ing is needed. Greedy-Random-X (G-Random-X for short)
in Section 3.2.2 achieves better fairness at the cost of longer
convergence time. This will be the algorithm used in general
MCS campaigns. CROWDBIND is able to estimate the like-
lihood of a user entering the task region based on the user
mobility prediction and builds a fair schedule to determine
which devices should be selected to perform which task in-
stances without some users to be frequently tasked.

We conducted a one-month user study (approved by
IRB) with 50 students on our college campus to evaluate
our framework. We also run simulation using the real-life
Gowalla dataset [17] with 90K users to evaluate the effec-
tiveness of our framework in a large population. We compare
with 3 competing baselines: PCS [10], CrowdRecruiter [28],
Sense-Aid [31], and one naı̈ve baseline: Periodic [3]. We
evaluate CROWDBIND under varying task radii, delay tol-
erance, and MDR (defined in Section 2) of the task. In the
user study, by polling at high frequency, Periodic can achieve
the highest task coverage while CROWDBIND achieves al-
most the same coverage as Periodic but, on average, uses
only 29.3% of the per-device energy. CROWDBIND also has
the best scheduling fairness over all frameworks with an im-
provement from 11.6% to 71.2% and the best average energy
efficiency with an improvement from 18.3% to 91.4% over
the four solutions. The simulation results are consistent with
the user study results which proves the effectiveness of our
framework in a large population use case. Note that in the
rest of the paper, we use the term user, client, and device
synonymously.

Our contributions in this work are summarized as follows:

1. We propose two greedy algorithms to solve the fairness
optimization problem. To the best of our knowledge,
this is the first work to optimize scheduling fairness in
the area of MCS. The two greedy algorithms have their
own distinct advantages to be used in a complementary
manner in real life deployment to satisfy different ap-
plication requirements.

2. Our design leverages 5 insights about the nature of
MCS to improve all 3 MCS metrics: fairness, task cov-
erage, and average energy efficiency. Our framework
follows the event-driven design principle as opposed to
the polling-based approach in order to improve the scal-
ability of the scheduler.

3. We conducted a real-world MCS campaign on our uni-
versity campus over one month with 50 users to evalu-
ate CROWDBIND and the 4 competing solutions. The
collected mobility dataset is available at [30].

The rest of the paper is structured as follows. Section 2
provides the insights that lead to our design. The design de-
tails of CROWDBIND is described in Section 3. We compare
it with the other four solutions in Section 4. Section 5 talks
about the related works. The paper discusses the limitations
in Section 6 and concludes with Section 7.

2 Motivation
To see how the three optimization goals are achieved by

utilizing different properties in MCS, we start with the fol-
lowing definition. We use Minimum Device Requirement
(MDR) to denote the fewest number of users that are re-
quired by a task instance and use Task Coverage to deter-
mine if a task is satisfied. A task is satisfied if its coverage
is greater than a minimal value specified by the task. We use
minimum coverage requirement (MCR) to denote this mini-
mal value (e.g., MCR = 0.8 means the task needs a minimal
task coverage of 80%). Equation 1 is the formula for task
coverage:

Task Coverage =
1
N

N

∑
i=1

min(Si,MDR)
MDR

(1)

where i is the task instance index, N is the total number of
task instances for a given task, and Si is the number of se-
lected devices for task instance i. Task coverage is calcu-
lated as the average coverage of each task instance ranging
from 0 to 1, i.e., a two-instance task with MDR of 4 and
MCR of 0.8 would be satisfied when its task coverage equals
(4/4+4/4)/2 = 1 > 0.8 if each instance finds 4 users, while
the task coverage is reduced to (2/4+4/4)/2 = 0.75 if one
of the two instances finds only 2 users so the task is not sat-
isfied since the task coverage is lower than its MCR.

An Illustrative Example

Mobility prediction and lookahead window can help im-
prove the task coverage, the scheduling fairness, and the av-
erage energy efficiency. In the example of Figure 3, A task
has two instances, T I1 and T I2, each of which has MDR = 2.
By looking ahead and predicting users’ mobilities, CROWD-
BIND can predict U1, U2, and U3 stay in the whole delay
tolerance window of T I1 (from t1 to t2), U2 and U3 leave the
task region at t2, U1 leaves the task region at t4, and U5 walks
into the task region at t4. Therefore, CROWDBIND will as-
sign T I1 to U2 and U3 and T I2 to U1 and U4. Each user is only
selected once. If not using mobility prediction but periodi-
cally polling users’ location, there is no guarantee that a poll
of U4 will happen between t4 and t5 thus T I2 will only have
U1. Therefore the task coverage is hindered. If not looking
ahead, when the scheduler is selecting users for T I1, because
it does not know the future information of T I2, it will ran-
domly choose two users for T I1 and U1 has 2/3 chance to be
selected. Since U1 will definitely be selected for T I2, even-
tually, the final selection decision has 2/3 chance to select
U1 twice, which leads to an overall Gini coefficient of 0.375.
This is not as fair as the selection by CROWDBIND which
gives an overall Gini coefficient of 0 (fairest). Additionally,
given the same amount of total tasks, a fair scheduling de-
cision will evenly distribute the whole workload to a larger
population. Therefore, the average energy cost among the
selected users will be lower in a fair scheduler because more
people are selected to serve the same amount of workload.
For example, U1 has 2/3 chance to work more than others
thus the energy cost of U1 is higher. This will not happen in
the selection by CROWDBIND.

63

Figure 3: Example to show how the MCS properties benefit task coverage,
fairness, and average energy efficiency.

3 Design
In this section, we describe the structure of CROWD-

BIND server, which is the scheduling orchestrator between
the MCS applications and the clients. Figure 4 shows the
architecture of CROWDBIND server as well as its relation-
ship with the MCS applications and the clients. CROWD-
BIND schedules some tasks, which are submitted by MCS
applications, for the clients to perform. The specifications of
these tasks are shown in Table 1. Note that all the parame-
ters except the start time and end time are the same for all
instances of a given task. Once the device receives a task
instance from CROWDBIND, it immediately samples the re-
quested sensors and replies with the sensed data. Once the
tasks have been successfully completed, CROWDBIND will
send crowdsensed results to the MCS application. In our sys-
tem, most of the workload is relegated to the server, while the
mobile client mainly responds to scheduled task instances.

Figure 4: CROWDBIND Architecture. It shows the MCS application, the
mobile client app, and the CROWDBIND server.

3.1 CROWDBIND Server
The CROWDBIND server handles incoming tasks from the

MCS applications. It has several components.
3.1.1 Task Handler

The task handler is responsible for parsing the tasks re-
ceived from the MCS applications and replying with the re-
sults. According to the periodicity and time requirement for

Parameters Description
Location The center of the task, specified in ge-

ographic coordinates
Radius The radius of a circle inside which

sensing data is requested
Start Time The starting time of the task
End Time The ending time of the task
Periodicity The time interval between two suc-

cessive task instances
Delay Tolerance The task instance’s results are useful

if received between the start time of
that instance and the start time + the
delay tolerance value

Sensor List The sensors required by the task
Minimum Device Re-
quirement (MDR)

The number of devices required by
each instance of the task

Minimum Battery Re-
quirement (MBR)

The minimum battery level for a de-
vice to be qualified for sensing and
uploading data

Minimum Coverage Re-
quirement (MCR)

The minimum coverage required, av-
eraged over all instances for the task

Table 1: Parameters of a crowdsensing task

each task, the handler will create multiple instances of it and
store them into the task database (Task DB). For example,
the task handler will generate 6 instances of a task starting at
8 a.m. and ending at 9 a.m. with a periodicity of 10 minutes.
After the insertion of new task instances, the task handler
will notify the task instance listener.

3.1.2 Task Instance Listener
The task instance listener monitors new task instances

and deliver them to the task instance scheduler. The listener
maintains a L-minute lookahead window and checks task in-
stances in the Task DB whenever it is notified by the task
handler. If it finds any instances that are within the looka-
head window, it will deliver them to the scheduler and sleep
until it is notified again or until the time of the next task in-
stance that is outside of the current lookahead window. For
example, in Figure 5, the task listener is notified at time ts and
it looks for task instances whose times lie in [ts, ts+L]. There
are three such instances: T I1, T I2, and T I3, which have de-
lay tolerances ∆d1, ∆d2, and ∆d3 respectively. It then delivers
T I1, T I2, and T I3 to the scheduler and goes to sleep until the
time of the next instance or if the task handler notifies it due
to the arrival of new task instances from some MCS appli-
cations. A trade-off exists in determining the value of L. A
larger L includes more task instances and provides CROWD-
BIND with more flexibility to schedule them among available
devices. However, the accuracy of the mobility prediction
suffers with a large L. In our evaluation, we choose L as 20
minutes to best balance these two factors given the perfor-
mance of mobility prediction algorithm.

3.1.3 Task Instance Scheduler
The task instance scheduler is in charge of selecting de-

vices for each task instance and allocating sensing work to
those devices. It consists of three modules: the mobility
module, the device selection module, and the distributor.
The scheduler is idle until it receives task instances from the
task instance listener with the instances being sorted by their
starting times. In the example of Figure 5, the instances are

64

ordered: T I1,T I2,T I3. The scheduler will loop through all
the instances and find the corresponding available devices
by mobility prediction. For example, for T I2, it will popu-
late the list of the users who are expected to appear in the
task region between (t2, t2 +∆d2).

Figure 5: A lookahead window of length L contains three task instances.
The scheduler will use the lookahead and map each instance to the devices
that can potentially satisfy that instance.

The mobility module and the distributor
We adapt a trajectory-based mobility prediction algorithm

from [9] that extrapolates the future locations of a user from
the most similar historical trajectory. The mobility predic-
tion model achieves average 75% accuracy in predicting the
future locations 20 minutes in advance of our users (see Sec-
tion 4 Figure 6).

The distributor will send the scheduling decision to de-
vices at the time of the task instance. It will wake up as
mandated by the scheduler and inform the selected devices,
e.g., for T I2, wakeup will be in (t2, t2 +∆d2). When sending
the task instance, the scheduler will double check the current
location of the selected devices. If a device is not present in
the task region—which will happen if the mobility prediction
is inaccurate—the mobility predictability (Pu in Table 2) of
the device will be decreased and the scheduler will execute
the G-Heuristic algorithm (more details in Section 3.2) to
quickly find the replacements. Because of the late binding
property, the delay tolerance property, and the runtime ef-
ficiency of the G-Heuristic algorithm, the scheduler usually
has enough time to find replacement devices.
Task Coverage and Fairness through Mobility Prediction
and Lookahead Window

We now analyze how the mobility prediction helps im-
prove task coverage as well as how the mobility prediction
together with the lookahead window help improve schedul-
ing fairness. We define Eligibility Ratio (ER) in Equation 2
to aid the following analysis.

ER =
Available devices

MDR
(2)

Analysis for task coverage
If ER < 1, fewer than MDR number of clients can be

found so the task instance is unsatisfied. On the other hand,
when ER >= 1, the larger the ratio is, the easier it is for the
scheduler to satisfy the task instance and the scheduling de-
cisions will be fairer. Mobility prediction fundamentally in-
creases ER because CrowdBind can predict those users who
are currently not in the task region but will appear in the re-
gion within the delay tolerance of the task. The accuracy of
mobility prediction affects the ER because the true number
of available devices is not known to the scheduler. Neverthe-
less, a good predictor will give a number close to the ground
truth and thus increase ER.
Analysis for fairness

The benefits of lookahead come from the ability of
knowing future tasks and their requirements as well as the
knowledge—brought by mobility prediction—of who will
be eligible for which tasks. The lookahead itself cannot help
the task scheduling because even if the scheduler knows that
tasks will be scheduled in the future, it does not know who
can satisfy those tasks therefore it cannot fairly and effi-
ciently distribute tasks. As shown in the example of Fig-
ure 3, suppose the mobility prediction correctly predicts the
locations of those 4 devices, then CROWDBIND can guaran-
tee that the fairest mapping between the instances and the
devices is achieved (as long as all devices have equal condi-
tions for usage, battery, and sensor integrity). CROWDBIND
knows which are the eligible devices that can satisfy the task
instances in the lookahead window and it has the informa-
tion about how many times devices have been selected in the
past. Thus, it can fairly assign task instances to devices.

In comparison, the approach without lookahead cannot
guarantee to achieve the fairest mapping because it does not
know the future and therefore cannot “keep in reserve” U2
and U3 for task T I1 in the example of Figure 3.

Consider a quantitative reasoning of the probability of
achieving perfect fairness. Suppose there are N task in-
stances arriving in the order of instance 1 to N. Each of the
instances requests m clients and the available clients for each
task instance are Nm,(N−1)m,(N−2)m, ...,m respectively.
Thus, task instance 1 is the easiest to satisfy since it has Nm
available users while instance N has to choose exactly the m
available users. The probability of achieving the fairest map-
ping for these task instances by a baseline scheduler, i.e., one
without any lookahead, is given by Equation 3.

Pfairest =
1

∏
N
i=1 C((N− i+1)m,m)

(3)

The insight is that there is only one specific choice to achieve
the perfect fairness. The number of possible ways for task in-
stance 1 to select the m users is C(Nm,m), for instance 2 it is
C((N−1)m,m) and so on till instance N whose C(m,m) = 1.
CROWDBIND can deterministically achieve the perfect fair-
ness, provided that there is no inaccuracy in the prediction
and the task instances are all within the lookahead window.
3.2 Device Selection Module

Searching for a set of MDR users out of all possible com-
binations of K available users under certain constraints (i.e.,
budget and probabilistic coverage) in MCS has been proven
to be NP-hard [7, 15]. The brute-force approach is to try all
possible combinations of user selections and choosing the
fairest selection. However, this approach is not computa-
tionally efficient. Although one task instance may only need
a few devices, the total number of task instances and the to-
tal number of available devices for each task instance could
be huge within a lookahead window, which will lead to a
large number of different combinations. In this work, we
propose two variations of greedy selection algorithms that
consider more comprehensive requirements as summarized
in Table1 to select users for task instances. We call these
two algorithms G-Heuristic and G-Random-X. Before dis-
cussing the details of G-Heuristic and G-Random-X, we first
formulate the selection problem.

65

3.2.1 Problem Formulation
We formulate the problem as a minimization problem

with three constraints. First, the task needs to specify the
MBR, which is the minimum battery level that a device
should have to be eligible for that task. The purpose of
this constraint is to reduce the energy impact of MCS tasks
on the device battery. This is particularly pertinent for the
MCS tasks that are energy hogs such as taking and upload-
ing pictures. Second, the task needs to specify the MDR,
which is the minimum number of devices that are required
for the completion of each instance of this task. The last
constraint is the Minimal Completion Coverage (MCC),
which essentially means the minimum number of devices
that will be involved in the completion of the whole task.
MCC = MDR×MCR×N where MCR is the minimal task
coverage that the task requires and N is the number of in-
stances of a task. For example, a task with MCR = 0.8 ex-
pects that the average task coverage as calculated by Equa-
tion 1 will be greater than or equal to 0.8 after all of its in-
stances are done. If the task has MDR = 4 and 5 instances,
its MCC equals 4× 0.8× 5 = 16. This means the task will
have to select at least 16 devices to satisfy its minimal cov-
erage requirement. By calculating the probability of a task
instance to be completed by a user (PCu(ti) in Equation 5),
the completion coverage (CCt) of a task in Equation 6 is the
expected number of users that will be involved in sensing
activities related to the task, among all of its instances.

The problem is then formulated as follows (notations are
in Table 2):

Minimize Gini(U)

s.t. ∀u∈Uti,ti∈T I u.battery≥MBRti

∀ti∈T I ‖Uti‖== MDRti

∀t∈T CCt ≥MCCt

(4)

Within the lookahead window, CROWDBIND has a global
view of the set of task instances T I and the set of users U
that are predicted to be available for at least one of the task
instances. So it seeks to maximize the fairness of the choice
of users, i.e., minimize the Gini index. The fairness should
have lower priority than task coverage and device energy ef-
ficiency in the optimization. We only optimize the fairness if
we predict that the MCC will be satisfied and that the selected
users will not experience an unacceptable battery drain. For
each task instance ti ∈ T I , its set of available users is de-
noted as Uti. From Uti we attempt to find a subset, Uti ⊆Uti
for task instance ti, such that ‖Uti‖== MDRti ≤ ‖Uti‖. (No
need for optimization if ‖Uti‖ ≤MDRti). The first two con-
straints are directly related to each individual task instance
whereas the last constraint is related to all instances of a
task. Note that the total energy consumption for a crowd-
sensing task is not increased due to CROWDBIND because
for a generic task with N instances and requiring K users for
each instance, there will be a maximum of N×K data up-
loads with or without our protocol. For each data upload, the
client can use any energy saving method (e.g., piggyback-
ing [10] or uploading within cellular tail time [31]) to reduce
the energy cost for the individual upload.

PCu(ti) = Pu · fu(ti) (5)

CCt = ∑
ti∈t.instances

CCti = ∑
ti∈t.instances

∑
u∈Uti

PCu(ti) (6)

Our two variants of greedy algorithms have two stages:
the initialization stage and the optimization stage. As re-
quired by the third constraint, we need to know the expected
number of users in a task (CCt). Therefore, we also need
to know the expected number of users involved in each of
the instances of a task. But because task instances occur se-
quentially and because fairness is based on the utilization
of users—which can only be known after we have some se-
lection decisions—we use an initialization stage to initialize
the selection decisions from which the scheduler can further
optimize the fairness. The two variants only differ in their
initialization stage.

Symbol Meaning
T The set of tasks in the lookahead window
T I The set of different instances of tasks from T
U The set of available users who are available to at least

one task instance from T I
U The set of users who are selected by at least one task

instance from T I (U ⊆U)
t A task from T
t.instances The set of instances generated by task t
Uti The set of available users for task instance ti
Uti The set of selected users for task instance ti. (Uti ⊆

Uti)
u A user
u.battery The battery level of device u
u.s The utilization value of user u. s equals to the number

of times a device has been selected for task instances
Pu The mobility predictability of user u
fu(ti) The sensor integrity score of user u to satisfy the sen-

sor requirement of task instance ti (from 0 to 1)
PCu(ti) The probability of user u to complete task instance ti
Nti

u The number of task instances that user u can satisfy
within the lookahead window

Wu(ti) The effective weight of user u to complete task in-
stance ti (from 0 to 1)

CCt The completion coverage of task t (from 0 to MDRt×
the number of instances of this task)

MCCt The minimal completion coverage of task t (MDRt ×
MCRt× the number of instances of this task)

Table 2: List of notations used in design

3.2.2 Greedy-Random-X
The Greedy-Random-X algorithm (G-Random-X for

short) uses a random initialization method. For each task in-
stance ti in the lookahead window, G-Random-X randomly
initializes a set of selected users Uti from the available users
in Uti that satisfy the MBR. X denotes how many random
seeds are used to initialize the selection decision in the ini-
tialization stage. This initial selection may not satisfy some
of the constraints and the Gini coefficient may not be the
lowest achievable value in the current lookahead window be-
cause the selection may be locally optimal. Therefore, the
optimization stage greedily replaces some users in selection
decisions to satisfy any unsatisfied constraints as well as to
minimize the Gini coefficient. The fact that the selection is
only locally optimal is a consequence of only selecting users
for each task instance individually. A change in the location
of the users within an instance may cause the same users to
be used later in other instances. Therefore, we run the al-
gorithm X times using X different seeds to choose the best

66

selection that gives the lowest Gini Coefficient out of all X
selections.

3.2.3 Greedy-Heuristic
The Greedy-Heuristic algorithm (or G-Heuristic for

short) has a more complex initialization stage. The reason
behind the complexity of this algorithm is that we want it
to reach the optimal selection faster by a smart selection of
initial users.

For the sake of fairness, we record the number of times
that each user has been selected for sensing (u.s in Table 2).
If a user has been selected a high number of times, the user
will be less preferable. To satisfy a task instance, the user
needs to have a high predictability as well as having the re-
quired sensors that can generate reliable data (Pu and fu(ti)).
We calculate fu(ti) using the sensed data history and the
value ∈ [0,1], where 1 denotes perfect reliability. Based
on the predictability of mobility Pu and the sensor integrity
score fu(ti) of a user for a specific task instance, we calculate
the probability of a task instance to be completed by this user
PCu(ti) using Equation 5. The higher the value, the more
likely the user can satisfy the task instance. When choosing
users for each task instance, G-Heuristic prefers users who
can satisfy the least number of task instances (Nti

u) to increase
the chance of a later task instance being satisfied by a user
who has not been tasked already. For example, if a task in-
stance T I1 can be satisfied by users u1 and u2 and T I2 only by
u2, then G-Heuristic will reserve u2 for T I2 and u1 for T I1.
The final decision on which user to choose is based on the
effective device weight Wu(ti) which denotes the weight of
a device bidding for a task instance (Equation 7). The higher
the weight is, the more likely that the scheduler will choose
that device. It means the algorithm prefers a user with high
probability to complete a task instance and low number of
task instances that it can satisfy.

Wu(ti) =
1

Nti
u
·PCu(ti) (7)

Eventually, G-Heuristic initializes the set of selected devices
for a task instance ti by choosing MDR number of users
in descending order of the selection weight, SW of each
user which is defined in Equation 9. u′ denotes the same
user as u but the utilization value u.s is incremented by 1.
DI F F in Equation 8 is interpreted as the fairness improve-
ment brought by user u. We want to maximize the fairness
improvement by selecting the user with positive fairness im-
provement. It is also possible that a user has a negative fair-
ness improvement (bottom of Equation 9). If no candidates
can bring positive improvement, we prefer a user u who min-
imizes this negative fairness impact. We also want a user
with high effective weight therefore the negative fairness im-
pact is divided by the user’s effective weight.

DI F F = Gini(U)−Gini(U \u∪{u′}) (8)

SW (u) =

{
DI F F ×Wu(ti) if DI F F > 0
|DI F F

Wu(ti)
|(u worsens fairness) if DI F F < 0

(9)

3.2.4 Optimization Stage

The optimization stage is the same for both G-Random-
X and G-Heuristic algorithms. After the initialization, for
those instances with a number of available devices larger
than MDR (if ||Uti|| = ||Uti|| ≤MDR, there is no degree of
freedom to optimize the fairness), the optimization stage will
be executed. For each task instance, if the parent task of this
task instance has CCt < MCCt , the scheduler will replace the
user u whose PCu(ti) is the lowest in Uti with a user v from
Uti \Uti whose PCv(ti) is highest. PCv(ti) must be greater
than PCu(ti) otherwise there is no point in swapping users u
and v and the optimization will end.

After the CCt ≥MCCt is satisfied and ||Uti \Uti||> 0, we
are ready to optimize the fairness. The scheduler optimizes
the fairness by choosing a user u1 whose u1.s is the lowest
in Uti \Uti to replace a user v ∈Uti whose v.s is the highest
meanwhile this replacement cannot cause CCt < MCCt . It
first iterates over all ui ∈Uti \Uti to see if v can be replaced.
Then it iterates over all v ∈Uti.

Algorithms 1 and 2 present the pseudo code of the two
greedy algorithms. The iterative process dominates the com-
putation. The worst case happens when it has to go through
all available users in Uti to replace all selected users in
Uti for all task instances. The worst case running time is
O(P ·Q ·MDR) where P is the average number of devices in
Uti for all instances, Q is the number of task instances and
MDR is the average number of minimum device requirement
for those instances.

Algorithm 1: G-Random-X Greedy Algorithm
Input : T I : a set of task instances in one lookahead window,

U: a set of users predicted to appear in some regions of
the task instances

Output : A mapping between each ti with its selected devices Uti
Randomly initialize the user selection set Uti for every instance ti

in T I .
The optimization stage happens only when the number of available

users of a task instance ti is larger than MDR.
If the MCC of task is not satisfied, find users with highest

completion coverage CC to replace the user with the lowest CC
in set Uti.

If the MCC is satisfied, find a user u to replace another user p in
Uti such that the selection of u will not cause the MCC to be
unsatisfied, the utilization value of u is the highest among those
available devices who have not been considered, and user p has
the lowest utilization value among those who have been selected.

Repeat the initialization and optimization for X rounds and choose
the fairest result.

return Uti for each ti in T I

Algorithm 2: G-Heuristic Greedy Algorithm
Input : T I : a set of task instances in one lookahead window,

U: a set of users predicted to appear in some regions of
the task instances

Output : A mapping between each ti with its selected devices Uti
Initialize the user selection set Uti for every instance ti in T I .
Initialization selects the users in the descending order of selection

weight, SW of each user. The SW of a user is calculated in
Equation 9.

The optimization stage is the same as that in Algorithm 1.
Repeat until no replacement can be further executed.
return Uti for each ti in T I

67

4 Evaluation
We deployed CROWDBIND server on a machine with an

Intel Xeon E5-2440 CPU with 12 cores each of which has a
cache size of 15360 KB and a clock speed of 1399 MHz. The
memory size is 48 GB. There are three parts in the evalua-
tion. In part A, we discuss the trade-offs among the greedy
algorithms. Part B shows the user study results comparing
with the other 4 baseline solutions. In part C, we run simu-
lation using the real-life Gowalla dataset [17].

The user study (from February 7th to March 7th, 2018) is
conducted over a square area of 10km2 in a college town with
50 students using Android phones with the various MCS
frameworks running on them. All users install five crowd-
sensing applications: the Periodic protocol, PCS, Sense-Aid,
CrowdRecruiter, and CROWDBIND. Users in this study are
undergraduate and graduate students from different majors in
our university. Users move as usual over the one month pe-
riod. Location data is received periodically from each device
every 5 minutes. The energy cost of location data collection
can be optimized by accessing the location information from
production cellular provider but understandably we are not
allowed to do so. For each crowdsensing protocol, we as-
signed a total of 213 tasks and 3,916 task instances. Table 3
summarizes the parameters of those tasks. We set the MBR
and MCR to be 50% and 0.8 respectively for all the tasks. In
all of the task instances, we requested pressure, light, mag-
netic field, and gravity data from the devices. The size of a
single data upload is about 600 bytes.

Figure 6: Accuracy of the mobility prediction model for 50 users. This
prediction is achieved without the need to build a model through training.
Accuracy of above 60% is achieved with only 3 days of historical data.

Figure 6 shows the mobility prediction results for all users
in the user study. When using 1, 2, and 3 weeks of his-
tory to predict the future 5 minutes to 20 minutes location
of the user, the average accuracies over all 50 users are
64.5%, 72.4%, and 74.4% respectively (averaged over the
data points for 5, 10, 15, and 20 minutes lookahead).

The four competing solutions that we compare with are
briefly described here. Periodic sends all the tasks to each
device. At a fixed periodicity, each device returns the re-
sults for any task instance that the device can satisfy [3].
This approach achieves the highest task coverage but suf-
fers from low energy efficiency because the device may wake
up the cellular communication module only to send a small

amount of sensor data. Second, Piggyback CrowdSensing
(PCS) [10] minimizes energy consumption of a device by
piggybacking MCS packet on a regular network packet. PCS
also sends tasks to all devices and each device will decide if it
needs to do the sensing work. Third, CrowdRecruiter [28]
selects the same users for all instances of a task because it
follows a design principle to select the least amount of users
who can satisfy the most amount of task instances. The ratio-
nale behind this principle is that each participant is paid the
same amount of money in one subscription period and choos-
ing less people helps reduce the total incentive payment. Fi-
nally, Sense-Aid [31], selects only a subset of the available
devices in a task region by repeated querying user locations
and does not have an estimation of devices availability in the
future, which leads to an inefficient use of server resources.

Part A: Compare Heuristic Algorithms

In this section, we compare the two proposed algorithms.
G-Random-X is configured with different values of “X”. The
result is shown in Figure 7. There are 9 tasks with different
task regions. For all of them, task radius = 500 meters, delay
tolerance = 10 minutes, periodicity = 10 minutes, 6 instances
per task, MDR = 3, and MCR = 0.8. Due to the difference
in the task locations, the total number of available users are
different. The same 9 tasks are repeated 100 times to draw
statistically valid results. When the search space is small,
the value of X would be low because the convergence will
occur easily. The running times of G-Random-X algorithms
are proportional to X and the running time of G-Heuristic
is similar to G-Random-1. G-Random-10 and G-Random-
20 achieve the best task coverage with less outliers and the
distributions of the their samples are more stable and conver-
gent to their medians. The G-Random-1 has the worst sta-
bility because of the randomness compared to other Xs. The
fairness among all algorithms are comparable since they all
try to swap users to guarantee fairness. G-Random-10 would
be the most practical choice since its high task coverage and
fast convergence. The G-Heuristic algorithm is significantly
faster with relatively stable and high task coverage. Thus, in
a scenario where fast scheduling and task coverage stability
are required (e.g., finding the replacement for mis-predicted
user and reassign the task), G-Heuristic is a good choice.

Figure 7: Performance compared among the G-Heuristic algorithm and G-
Random-X with various values of “X”.

68

Part B: Overall User Study Results
In this section, we compare our framework with prior

works in the user study. G-Random-10 is used in schedul-
ing because it converges fast in the scope of our user study
(50 users) and achieves the higher task coverage and better
fairness than G-Heuristic.

Varying
Parameters

Default Parameters
(MBR = 50%, MCR = 80%)

Task Radius
(100, 250, 500 m)

Locations: 15
Start - End Time: 9 a.m. - 5 p.m.
Periodicity: 10 minutes
Delay Tolerance:15 minutes
MDR: 3

Delay Tolerance
(10, 30, 60 minutes)

Locations: 15
Start - End Time: 9 a.m. - 5 p.m.
Radius: 250 m
Periodicity: 10 minutes
MDR: 3

MDR
(1, 2, 5, 8, 10, 15)

Locations: 15
Start - End Time: 9 a.m. - 5 p.m.
Radius: 1 km
Periodicity: 10 minutes
Delay Tolerance: 15 minutes

of Concurrent
Task Instances
(50, 100, 500)

Locations: 5
Start - End Time: 9 a.m. - 9:10 a.m.
Radius: 1 km
Periodicity: the task does not recur
Delay Tolerance: 10 minutes

Table 3: Settings of Tasks in Part B

Task Coverage
We show the task coverage achieved by various protocols

in Figure 8. The Periodic protocol has perfect task cover-
age because it polls the locations of the devices at a high
frequency (at the expense of energy efficiency) and every
available device is expected to send the sensor data; thus,
it mitigates data loss or devices being switched off. Despite
the significant advantage of CROWDBIND over Periodic in
client energy efficiency, it remains close behind Periodic in
task coverage. The small decrease of CROWDBIND can be
attributed to a mis-prediction of a user’s location. For exam-
ple, if we predict a user will be within the task radius but she
is not, this will negatively affect our task coverage. Sense-
Aid, PCS, and CrowdRecruiter have similar task coverages
because they are all implemented by polling the users at the
same fixed frequency and all three of these frameworks un-
derperform compared to CROWDBIND because they are un-
able to capture high-mobility users.

Consider the Eligibility Ratio (ER) and its bearing on the
ability of CROWDBIND to achieve high task coverage and
fairness. Figures 8(a)–(c) demonstrate that when the ER goes
up (task radius increases, delay tolerance increases, MDR
decreases), the task coverage increases for all frameworks.
CROWDBIND is better than other frameworks because it can
capture more dynamic users. The advantage of CROWD-
BIND relative to the other protocols decreases with the in-
crease of ER as it becomes easier for all protocols to achieve
near-perfect coverage.
Scheduling Fairness

Figure 9(a)–(c) show the results for scheduling fairness
achieved by all four protocols with varying task radii, delay
tolerances, and MDR. Fairness is quantified with the Gini

coefficient [26], which we use to measure the inequality in
the total number of times each device is selected during the
experiment. A lower Gini coefficient indicates greater de-
gree of fairness. Our ability to distribute tasks fairly (as well
as that of Sense-Aid) is positively correlated with ER. This
ratio can increase either due to a decrease in the MDR or an
increase in the number of available devices. CROWDBIND
captures more available users by predicting and including
devices that will enter the task region within the delay tol-
erance of the task.

Figure 9(a)–(c) demonstrates how the task radius, delay
tolerance, and MDR affect scheduling fairness. Task radius
and delay tolerance have positive correlation with fairness.
As the MDR increases, fairness for all protocols converges.
CrowdRecruiter has the greatest inequality because it selects
a fixed set of users that are most likely to satisfy all the task
instances. Sense-Aid and CROWDBIND have an advantage
over other frameworks because they prefer to select devices
that have been selected less often. CROWDBIND further
improves on fairness because of its use of mobility predic-
tion. The difference between CROWDBIND and Sense-Aid
narrows as the ER increases because larger ER gives both
frameworks to find users capable of satisfying the task in-
stance and thus have a greater opportunity to distribute the
task instances equally among this larger set of users.

Figure 9(d) summarizes the result of an experiment with
6 tasks, each of which has a radius of 1 km, requires a single
user, and consists of 16 instances spread over the course of 8
hours. In task 5, CrowdRecruiter has the highest inequality
because it only selects 2 of the 20 available users. One of the
users stays in the task region for 13 instances while another
is available for 5 instances including the 3 task instances in
which the first user is not in the task region. This selection
results in an extremely unfair distribution with a Gini coef-
ficient of 0.922. While Sense-Aid performs better than most
frameworks, it is unable to surpass CROWDBIND in fairness.

Energy Efficiency
Figure 10 shows the effect of the different protocols on

the client energy efficiency. We used the AT&T Video Opti-
mizer [16] tool to compare the energy consumption of differ-
ent protocols when sending one data point to the MCS server.
The average energy consumption for the selected devices
for each framework was calculated as Ed = E

Ns
= 1

Ns
∑i Ni · e

where E is the total amount of energy for completing a
crowdsensing task, Ns is the number of selected devices, Ni
is the number of data points sent by device i, and e is the en-
ergy consumption per data point sent by a device. Regarding
the total energy E for the different frameworks, the following
relation holds: ECROWDBIND = ESense−Aid < ECrowdRecruiter <
EPCS < EPeriodic. However, the energy efficiency metric ex-
poses further differences.

In Figure 10(a), we see that with an increase in the task
radius, both CROWDBIND and Sense-Aid see a decrease in
the average energy consumption Ed . This is the result of a
larger number of available users which increases the denom-
inator Ns because both of these protocols consider fairness.
Still, CROWDBIND wins over Sense-Aid because its Ns term
is greater—a fact stemming from our two design choices:

69

(a) (b) (c)

Figure 8: Task coverage in the user study with changes in (a) task radius, (b) delay tolerance and (c) minimum device requirement. CROWDBIND achieves
near ideal task coverage for all experimental conditions (i.e., same as Periodic).

(a) (b) (c) (d)

Figure 9: Scheduling fairness in the user study for varying (a) task radius, (b) delay tolerance, (c) minimum device requirement, and (d) an experiment with
tasks requiring only one device within a 1 km radius. CROWDBIND achieves the highest fairness among the client devices.

it has the ability to predict the future location of users and
it is able to consider all the devices within this lookahead
window for scheduling. Thus, CROWDBIND anticipates if a
user will be within the task radius and the time window re-
quired by the task instance. Both Periodic and PCS schedule
tasks to all devices capable of satisfying them and see high
average energy usage as a result. CrowdRecruiter also un-
derperforms because it schedules tasks to a minimal number
of users rather than spreading out the tasks equally among
available users.

When delay tolerance increases as in Figure 10(b),
CROWDBIND has more users to select and therefore the en-
ergy efficiency is better. The other protocols stay relatively
the same: the delay tolerance will not affect the average en-
ergy cost per device because they do not use the degree of
freedom enabled by higher delay tolerance in their schedul-
ing schemes. Sense-Aid, despite having some scheduling in-
telligence, chooses a device whenever the device can cover
an instance. This means that a longer delay tolerance only
gives it more chances to cover the task instance, but will not
benefit the average energy efficiency. Periodic and PCS will
schedule whenever there are users in the region. Longer de-
lay tolerance will cause them to choose more users but the
average energy will not change much. CrowdRecruiter picks
the optimal k users independent of the delay tolerance and
hence, its performance is not affected by the delay tolerance.

Figure 10(c) shows the impact of minimum device re-
quirement (MDR) on Ed . CROWDBIND has the lowest en-

ergy cost for the entire range of MDR values and its ben-
efit compared to Sense-Aid is 7.1%–66% and compared to
CrowdRecruiter is 43%–95%. As MDR goes up, the relative
benefit due to CROWDBIND goes down. PCS and Periodic
do not consider MDR and use all the available devices. With
CrowdRecruiter, the number of available devices (15 for our
experimental setup) is always ≥ MDR and hence, a device
is never called upon to serve multiple task instances, result-
ing in a flat curve. For CROWDBIND and Sense-Aid, as the
MDR increases, ER decreases and therefore the energy cost
goes up. To expand on this, with increasing MDR, the same
device may be called upon to serve multiple task instances
causing an increase in energy.

Part C: Simulation: CROWDBIND in Large
Population

In this section, we evaluate the scalability of the two
greedy algorithms (G-Random-10 and G-Heuristic) when
applied to a large trace dataset. We compare them with the
four prior works as those in Part B. Gowalla dataset [17]
is used in this evaluation. Gowalla dataset has around 90K
checked-in users. The trace for each user is an array of <user
id, timestamp, latitude, longitude, location id>. The dataset
starts from Feb. 2009 to Oct. 2010. We randomly choose
one-month trace and iterate through all the location points to
generate tasks. If a location point is outside of the circular
area with R-meter radius of any existing tasks, a new task is
generated. Otherwise, that location point is ignored. There
are 112,920 tasks generated when task radius is 500 meters

70

(a) (b) (c)

Figure 10: Average energy consumption in the user study on selected devices with changes in (a) task radius, (b) delay tolerance, and (c) minimum device
requirement. CROWDBIND achieves the highest energy efficiency due to the selection of the largest number of devices for the crowdsensing tasks.

(a) (b) (c)

Figure 11: Results from Gowalla dataset simulation with the change of task radius. (a) Both greedy algorithms achieve near ideal task coverage; (b) G-
Random-10 achieves the best scheduling fairness among devices and G-Heuristic is close to the performance of G-Random-10; (c) G-Random-10 achieves the
best energy efficiency due to the selection of the largest number of devices for the crowdsensing tasks. G-Heuristic is slightly higher than G-Random-10 but is
still better than the other baseline solutions.

while that number is 79,500 meters when task radius is 1,000
meters. The initial usages of all users are zero. The default
values are task radius = 1000 meters, MDR = 4, MCR =
80%, delay tolerance = 20 minutes, periodicity = 20 min-
utes, and the duration of a single task = 1 hour. Since the
battery information is not included in the dataset, we assume
all users have sufficient battery levels. With the change of
task radius, Figures 11a, 11b, 11c shows the corresponding
change of task coverage, scheduling fairness, and average
energy cost. When calculating the average device energy,
because different protocols have different task coverage, we
only consider the commonly satisfied task instances to keep
the total number of satisfied task instances the same. As we
can see, the results are consistent with those in Part B. This
evaluation shows that the insights from the user study carry
over to a completely distinct and larger trace. We also ran ex-
periments with the change of delay tolerance and MDR but
they tell the same story as in user study and so we remove
them for saving space.

5 Related Work
MCS task allocation is a popular topic in the literature.

The works in [5, 12, 22] are all multi-task-oriented task allo-
cation mechanisms with different optimization goals such as
minimal travel distance, minimal incentive cost, and max-
imum task coverage. In the recent work, PSTasker [20]

studies a heterogeneous task allocation problem in partici-
patory MCS considering several different participant factors
since participatory MCS is more dependant to participants.
CrowdTasker and CrowdMind [24, 25] select a minimal sub-
set of users to reduce the incentive cost. These frameworks
predict when phone calls will occur and send data concur-
rently to save energy. CrowdWatch [8] is a distributed en-
ergy saving technique. The Probabilistic Registration frame-
work [6] uses a mobility-aware approach to find a mini-
mal subset of users that are expected to cover a certain ra-
tio of the task instances. Chen et al. [1] study the task
allocation considering the uncertainty in user movement in
participatory MCS. Compared to the task allocation works
above, CROWDBIND focuses on the optimization of the task
scheduling fairness in opportunistic sensing and since the
cost in our model is the energy consumption, we try to avoid
repeatedly using the same user for different task instances
in order to reduce the energy cost while some of the works
above try to select the same user for different task instances
in order to reduce the incentive cost. Ni et al. [13] propose
that scheduling fairness is important in vehicle crowdsens-
ing in order to avoid drivers as well as customes being dis-
appointed. Liu et al. [11] study the social fairness in spatial
crowdsourcing among workers.

Periodic, PCS, and Probabilistic Registration frameworks
are device-centric in the sense that the devices, after re-

71

ceiving the tasks from the server, are responsible for de-
termining when to collect and when to transmit the data.
CrowdRecruiter, CrowdMind, and CrowdTasker are net-
work-centric because the server is responsible for scheduling
the data collection among available devices, which are pas-
sive entities providing data according to a server-determined
schedule. Sense-Aid and this work combine these two ap-
proaches. However, Sense-Aid, relies on repeated querying
of user location and does not perform any estimation of de-
vice availability over a window of time.
6 Discussion

The pre-knowledge of user location is helpful for MCS
task scheduling. It will be significantly beneficial to integrate
CROWDBIND with the cellular infrastructure. The location
information at the granularity of base station is already avail-
able. Besides, the integration resolves users’ privacy concern
because the location data can stay with the cellular provider
without sharing to third party.
7 Conclusion

In this paper, we uncover that the population values fair-
ness in the domain of MCS. Our solution CROWDBIND for-
mulates an objective function to maximize fairness, while
not degrading the task coverage. We leverage the obser-
vation that MCS tasks are typically delay-tolerant and de-
sign a lookahead protocol that considers the allocation of
task instances within the window and predicts the mobility
of users in that lookahead window. CROWDBIND is able
to achieve high fairness without impacting task coverage or
energy efficiency. We show that CROWDBIND is able to
satisfy more number of tasks (18.3% to 91.4% — range is
across the 4 prior protocols) and distributing the tasks more
fairly among available users (11.6% to 71.2%). Our simu-
lation with Gowalla dataset shows the relative advantage of
CROWDBIND is maintained.
8 References
[1] S.-F. Cheng, C. Chen, T. Kandappu, H. C. Lau, A. Misra, N. Jaiman,

R. Tandriansyah, and D. Koh. Scalable urban mobile crowdsourcing:
Handling uncertainty in worker movement. ACM Transactions on In-
telligent Systems and Technology (TIST), 9(3):26, 2018.

[2] R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: current state and
future challenges. IEEE Communications Magazine, 49(11), 2011.

[3] N. Gohring. App feeds scientists atmospheric data from thousands of
smartphones., 2013.

[4] J. Goncalves, S. Hosio, N. Van Berkel, F. Ahmed, and V. Kostakos.
Crowdpickup: Crowdsourcing task pickup in the wild. volume 1,
page 51. ACM, 2017.

[5] B. Guo, Y. Liu, W. Wu, Z. Yu, and Q. Han. Activecrowd: A frame-
work for optimized multitask allocation in mobile crowdsensing sys-
tems. IEEE Transactions on Human-Machine Systems, 47(3):392–
403, 2017.

[6] S. Hachem, A. Pathak, and V. Issarny. Probabilistic registration for
large-scale mobile participatory sensing. In Pervasive Computing and
Communications (PerCom), pages 132–140. IEEE, 2013.

[7] M. Karaliopoulos, O. Telelis, and I. Koutsopoulos. User recruitment
for mobile crowdsensing over opportunistic networks. In Computer
Communications (INFOCOM), pages 2254–2262. IEEE, 2015.

[8] R. Kravets, H. Alkaff, A. Campbell, K. Karahalios, and K. Nahrstedt.
Crowdwatch: enabling in-network crowd-sourcing. In Proceedings of
the second ACM SIGCOMM workshop on Mobile cloud computing,
pages 57–62. ACM, 2013.

[9] J. Krumm and E. Horvitz. Predestination: Inferring destinations from
partial trajectories. In International Conference on Ubiquitous Com-
puting, pages 243–260. Springer, 2006.

[10] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding,
F. Zhao, and H. Cha. Piggyback crowdsensing (pcs): energy efficient
crowdsourcing of mobile sensor data by exploiting smartphone app
opportunities. In Proceedings of the 11th ACM Conference on Em-
bedded Networked Sensor Systems (Sensys), pages 1–14. ACM, 2013.

[11] Q. Liu, T. Abdessalem, H. Wu, Z. Yuan, and S. Bressan. Cost mini-
mization and social fairness for spatial crowdsourcing tasks. In Inter-
national Conference on Database Systems for Advanced Applications,
pages 3–17. Springer, 2016.

[12] Y. Liu, B. Guo, Y. Wang, W. Wu, Z. Yu, and D. Zhang. Taskme:
multi-task allocation in mobile crowd sensing. In Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiqui-
tous Computing, pages 403–414. ACM, 2016.

[13] J. Ni, A. Zhang, X. Lin, and X. S. Shen. Security, privacy, and fairness
in fog-based vehicular crowdsensing. IEEE Communications Maga-
zine, 55(6):146–152, 2017.

[14] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. S. Shen. Providing task alloca-
tion and secure deduplication for mobile crowdsensing via fog com-
puting. IEEE Transactions on Dependable and Secure Computing,
2018.

[15] L. Pu, X. Chen, J. Xu, and X. Fu. Crowdlet: Optimal worker recruit-
ment for self-organized mobile crowdsourcing. Network, 4:5, 2016.

[16] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
Characterizing radio resource allocation for 3g networks. In Proceed-
ings of the 10th ACM SIGCOMM conference on Internet measure-
ment, pages 137–150. ACM, 2010.

[17] S. Scellato, A. Noulas, and C. Mascolo. Exploiting place features
in link prediction on location-based social networks. In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’11, pages 1046–1054, New York,
NY, USA, 2011. ACM.

[18] H. Si, Y. Wang, J. Yuan, and X. Shan. Mobility prediction in cellular
network using hidden markov model. In Consumer Communications
and Networking Conference (CCNC), pages 1–5. IEEE, 2010.

[19] E. Thuillier, L. Moalic, S. Lamrous, and A. Caminada. Clustering
weekly patterns of human mobility through mobile phone data. IEEE
Transactions on Mobile Computing, 17(4):817–830, 2018.

[20] J. Wang, F. Wang, Y. Wang, D. Zhang, B. Y. Lim, and L. Wang.
Allocating heterogeneous tasks in participatory sensing with diverse
participant-side factors. IEEE Transactions on Mobile Computing,
2018.

[21] J. Wang, L. Wang, Y. Wang, D. Zhang, and L. Kong. Task allocation in
mobile crowd sensing: State of the art and future opportunities. arXiv
preprint arXiv:1805.08418, 2018.

[22] J. Wang, Y. Wang, D. Zhang, F. Wang, H. Xiong, C. Chen, Q. Lv, and
Z. Qiu. Multi-task allocation in mobile crowd sensing with individ-
ual task quality assurance. IEEE Transactions on Mobile Computing,
2018.

[23] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren. Real-
time and spatio-temporal crowd-sourced social network data publish-
ing with differential privacy. IEEE Transactions on Dependable and
Secure Computing, 15(4):591–606, 2018.

[24] H. Xiong, D. Zhang, G. Chen, L. Wang, and V. Gauthier. Crowd-
tasker: Maximizing coverage quality in piggyback crowdsensing un-
der budget constraint. In Pervasive Computing and Communications
(PerCom), pages 55–62. IEEE, 2015.

[25] H. Xiong, D. Zhang, Z. Guo, G. Chen, and L. E. Barnes. Near-optimal
incentive allocation for piggyback crowdsensing. IEEE Communica-
tions Magazine, 55(6):120–125, 2017.

[26] S. Yitzhaki. Relative deprivation and the gini coefficient. The quar-
terly journal of economics, pages 321–324, 1979.

[27] D. Zhang, L. Wang, H. Xiong, and B. Guo. 4w1h in mobile crowd
sensing. IEEE Communications Magazine, 52(8):42–48, 2014.

[28] D. Zhang, H. Xiong, L. Wang, and G. Chen. Crowdrecruiter: select-
ing participants for piggyback crowdsensing under probabilistic cov-
erage constraint. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pages 703–714.
ACM, 2014.

[29] H. Zhang, S. Bagchi, and H. Wang. Integrity of data in a mobile
crowdsensing campaign: A case study. In Proceedings of the First
ACM Workshop on Mobile Crowdsensing Systems and Applications,
pages 50–55. ACM, 2017.

[30] H. Zhang and M. A. Roth. One month mobilty trace.
https://github.com/LLADzhang/CrowdBind/blob/master/trace.npy.gz,
2018.

[31] H. Zhang, N. Theera-Ampornpunt, H. Wang, S. Bagchi, and R. K.
Panta. Sense-aid: A framework for enabling network as a service
for participatory sensing. In Middleware ’17: Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, pages 68–80, New York,
NY, USA, 2017. ACM.72

	Introduction
	Motivation
	Design
	CrowdBind Server
	Task Handler
	Task Instance Listener
	Task Instance Scheduler

	Device Selection Module
	Problem Formulation
	Greedy-Random-X
	Greedy-Heuristic
	Optimization Stage

	Evaluation
	Related Work
	Discussion
	Conclusion
	References

