
LoRa-Based Localization: Opportunities and Challenges

Chaojie Gu Linshan Jiang Rui Tan
School of Computer Science and Engineering
Nanyang Techonological University, Singapore

gucj@ntu.edu.sg, linshan001@e.ntu.edu.sg, tanrui@ntu.edu.sg

Abstract
Low-power wide-area network (LPWAN) technologies

featuring long-range communication capability and low
power consumption will be important for forming the Inter-
net of Things (IoT) consisting of many geographically dis-
tributed objects. Among various appearing LPWAN tech-
nologies, LoRa has received the most research attention due
to its open specifications and gateway infrastructures unlike
the closed designs and/or managed gateway infrastructures
of other LPWAN technologies. While existing studies on
LoRa has focused on network connectivity and performance,
accurate positioning of LoRa end devices is still largely an
open issue. In this paper, we discuss and analyze the phys-
ical layer features of LoRa that are relevant to localization.
Our discussions and analysis illustrate the opportunities and
challenges in implementing LoRa-based localization.

1 Introduction
Low-power wide-area networks (LPWANs) are an emerg-

ing wireless platform that aims to sustain power-constrained
end devices (e.g., those based on batteries or energy har-
vesting) to operate for years while communicating at low
data rates to gateways several kilometers away. LPWAN
technologies will largely increase the degree of connectiv-
ity of Internet of Things (IoT) and enable deep penetra-
tion of IoT objects into the urban territories. Fig. 1 illus-
trates the comparisons among various wireless technologies
in terms of radio power consumption and communication
ranges. From the figure, LPWANs (e.g., LoRaWAN [2], Sig-
fox [4], Weightless-P [5], and NB-IoT [3]) form an impor-
tant pole in the spectrum of radio power consumption versus
communication range.

Given LPWAN signals’ capability of propagating over
long distances and penetrating civil infrastructures, exploit-
ing LPWAN signals for localizing IoT objects over long dis-
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Figure 1. Power consumption versus communication
range for various radios.

tances and/or in indoor environments has attracted increasing
research interests. In this paper, we discuss the opportunities
and challenges of LoRa-based localization. LoRa is a physi-
cal layer technique that uses a Chirp Spread Spectrum (CSS)
modulation, whereas LoRaWAN is an open data link layer
specification based on LoRa. Our focus of studying LoRa
for localization is due to its use of license-free ISM band
(e.g., EU868 MHz and US916 MHz), low cost (US$15 per
unit [6]), and scalability to support many IoT objects. Com-
pared with other wireless-based solutions, the LoRa-based
localization will offer the following advantages:

• If an infrastructure-based localization approach is con-
sidered, the LoRa infrastructures will be much sim-
pler than other wireless infrastructures. Existing ap-
proaches based on short-range radios, e.g., Wi-Fi, Blue-
tooth, and ultra-wideband (UWB), often require dense
deployment of access points (APs) and beacon nodes,
leading to high installation and maintenance costs. In
contrast, due to LoRa’s long-range communication ca-
pability, a small number of LoRa gateways can cover a
geographic area (e.g., a campus) or a civil construction
(e.g., a building) and act as anchors to support the lo-
calization of LoRa end devices. Thus, the deployment
of the infrastructure will not incur significant overhead.

• Due to LoRa’s low power consumption and good scala-
bility, the LoRa-based localization solutions can be ap-International Conference on Embedded Wireless 

Systems and Networks (EWSN) 2019 
25–27 February, Beijing, China 
© 2019 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library 
ISBN: 978-0-9949886-3-8

413



plied to massive objects (e.g., goods in a warehouse).
High-power radios (e.g., Wi-Fi and cellular) are ill-
suited for such scenarios, since they will drain the bat-
tery energy quickly. The RFID and NFC solutions,
which rely on the reader’s scanning, cannot achieve
real-time object localization.

Despite the above desirable features of LoRa-based local-
ization, we also face the following key technical challenges:
• We aim to develop solutions that use customized gate-

ways to localize off-the-shelf LoRa end devices without
any hardware customization and retrofitting. As most
commercial LoRa end devices do not provide access
to the LoRa physical layer, it is challenging and even
impossible to obtain low-level information that is often
critical to localization.

• After penetrating barriers, the LoRa signals often go be-
low the noise floor. Although the LoRa’s CSS modu-
lation is designed to deal with significant signal atten-
uation, the localization approaches based on received
signal strength (RSS) and RSS indicator (RSSI) will be
vulnerable to low signal-to-noise ratios (SNRs). Thus,
the RSS-based approaches are ill-suited for LoRa-based
localization.

• As the CSS-modulated LoRa signal is a narrowband
signal, it cannot be very sharp in the time domain. Its
smooth time-domain waveform will make accurately
timing the arrivals of the LoRa signals at the gate-
way difficult, rendering the time-of-arrival (TOA) ap-
proaches futile.

• To pursue using phase information of the LoRa signal
for localization, the frequency variation of CSS makes
the estimation of signal phase challenging. In addi-
tion, the low-cost LoRa end devices often have con-
siderable frequency biases, especially when deployed
in the environments with time-varying conditions (e.g.,
varying ambient temperature and humidity). The mul-
tipath propagation of the LoRa signal may also affect
negatively the estimation of the signal phase.

This paper will discuss in detail the challenges faced by
a few possible solutions of localizing LoRa end devices.
We also provide a formulation of the phase-based approach,
which we believe is the most promising solution. The pre-
liminary analysis on the phase-based approach suggests sev-
eral technical challenges that we need to address in our future
work.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 presents the basics
of LoRa. Section 4 discusses and analyzes the challenges
faced by a few possible approaches. Section 5 concludes this
paper.

2 Related Work
Using LPWAN radios such as LoRa to implement local-

ization has received increasing research interest. Existing
studies on LoRa-based localization can be broadly divided
into two classes of time-difference-of-arrivals (TDOA)-
based and RSSI-based approaches.

2.1 TDOA-Based Approaches
TDOA determines the position of a certain device by the

differences among the time instants that the same signal ar-
rives at multiple gateways. Fargas et al. [11] used times-
tamps provided by the LoRa gateways to implement a TDOA
system. Carvalho et al. [9] evaluated the feasibility of im-
plementing mobile sensing and tracking applications using
LoRa radios. Podevijn et al. [16] also implemented a TDOA
system based on the timestamps extracted from the LoRa
gateways to evaluate the tracking performance of a LoRa net-
work. The approaches developed in the above three studies
have poor localization performance. This is mainly because
that current LoRa hardware implementation and the software
stack have a timestamp resolution of one microsecond (µs)
only. As radio signals travel about 300 meters in free space
over a time duration of 1µs, the timing resolution of current
off-the-shelf LoRa products is not sufficient for implement-
ing accurate localization [10]. Although there are several
signal processing approaches [8,17] such as Kalman filter to
improve the robustness against random noises, the timestamp
resolution is still the determining factor for the localization
performance of TDOA systems.

Rajalakshmi et al. [15] designed a multi-band backscatter
device based on CSS modulation for three-dimensional lo-
calization. The backscatter device is in sub-centimeter form
factor and only consumes 93µW power. The projected life-
time of the device is up to ten years on button cell batteries.
The above study achieves meter-level localization accuracy
with highly customized LoRa devices. In contrast, we aim to
develop localization approaches for off-the-shelf LoRa de-
vices.

2.2 RSSI-Based Approaches
Another research thread has focused on RSSI-based lo-

calization. Different from TDOA, in an RSSI-based rang-
ing algorithm, a node uses RSSI measurements to estimate
its distance from the signal source by using a known sig-
nal propagation model that characterizes the relationship be-
tween RSSI and distance. Lam et al. [13] described an RSSI-
based LoRa localization algorithm in noisy outdoor envi-
ronments. Accounting for the possible errors in the RSSI
measurements, their approach selects the best distance esti-
mate among all estimates. Furthermore, they tried to exclude
noisy nodes and select the nodes experiencing lower levels
of noises for localization [14]. Machine learning approaches
have been studied recently. Aernouts et al. [7] proposed to
apply k-Nearest-Neighbor (kNN) algorithm on the collected
RSSI measurements to estimate the object location. Zhe et
al. [12] modeled the RSSI in both indoor and outdoor en-
vironments using Gaussian process and then applied maxi-
mum likelihood estimation (MLE) to develop a localization
approach.

2.3 Summary
The existing TDOA-based and RSSI-based approaches

have several limitations. Most TDOA approaches based on
commodity LoRa devices can only achieve sub-kilometer ac-
curacy. Such accuracy is insufficient for a range of applica-
tions, such as unmanned aerial vehicle (UAV) tracking and
navigation. Several TDOA approaches require pre-trained
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Figure 2. Spectrogram of an up chirp.

Figure 3. I and Q data (θ = 0) of an up chirp.

models and/or highly customized devices, leading to over-
head and high cost in deploying these approaches. The RSSI-
based approaches are susceptible to strong signal attenuation
and cannot achieve three-dimensional localization well due
to the multipath effect.
3 LoRa Primer

LoRa is a physical layer technique that uses a Chirp
Spread Spectrum (CSS) modulation and operates in sub-
GHz ISM bands (e.g., 868MHz in Europe). In LoRa’s CSS,
a chirp is a finite-time signal with time-varying instantaneous
frequency that swaps the whole bandwidth of the communi-
cation channel in a linear manner. Given a certain central
frequency, denoted by fc, an up chirp’s instantaneous fre-
quency increases from fc− BW

2 to fc +
BW

2 , whereas a down
chirp’s instantaneous frequency decreases from fc +

BW
2 to

fc− BW
2 . The time duration of a chirp is determined by the

spreading factor and bandwidth, which are denoted by SF
and BW , respectively. Specifically, the chirp time is given by

t =
2SF

BW
. (1)

For the EU868 frequency band, there are six spreading fac-
tors, ranging from 7 to 12. For example, with SF = 7,
BW = 125kHz, fc = 869.75MHz and initial phase θ = 0,
an up chirp’s spectrogram is shown in Fig. 2. Fig. 3 presents
the in-phase (I) and quadrature (Q) data of this chirp in the
time domain.

The LoRaWAN specification defines three classes of end
devices, Class-A, -B, and -C. Class-A devices are the most
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Figure 4. Fluctuations of RSSI within 10 minutes.

energy efficient because each communication session must
be initialized by an end device rather than the gateway.
Therefore, the end devices can follow their own communi-
cation schedules with low duty cycles. After an uplink initi-
ated by an end device, there are two optional downlink win-
dows for the gateway to transmit a frame to the end device.
A Class-B device will synchronize its internal clock using
beacons emitted by the gateway. During the synchronization
process, the gateway can schedule the data transmissions and
synchronization interval with the end devices. Thus, each
Class-B device will use the allocated time slots to transmit
uplink frames. Class-C devices will listen to the gateway
continuously, which is power-consuming. All off-the-shelf
LoRa end devices support the Class-A specification. Class-
A operation, though energy efficient, may have a chance of
frame collision if two end devices using the same spreading
factor transmit at the same time. However, since the duty
cycle is generally low, the frame collisions are of low proba-
bility. Class-B and -C are free of frame collisions.

We aim to develop an approach that localizes an end de-
vice based on its uplink transmissions. The approach will be
applicable to all three classes, assuming there are no frame
collisions.

4 Approaches to LoRa-Based Localization
and Challenges

Various techniques have been developed for localization
using radio signals. In this section, we discuss the challenges
of implementing several main techniques for LoRa-based lo-
calization.
4.1 RSSI-Based Approach

RSSI-based approach builds a path-loss model according
to the measured RSSIs at different distances from the signal
source. With the model, the distance between the transmitter
and the receiver can be estimated. For a static environment,
the RSSI-based localization approach can achieve accuracy
of hundreds of meters and down to tens of meters. How-
ever, radio channels are often subjected to various stochastic
and unpredictable factors, especially in the indoor environ-
ments. It is generally hard to build an effective path-loss
model when the signal travels through walls and floors con-
structed with diverse materials. Moreover, after penetrating
the walls and floors, the LoRa signal strength may go be-
low the noise floor, leading to large errors of the RSSI-based
approach.

According to the datasheet of Semtech SX1276, which
is a major commodity LoRa chip on the current market, the
RSSI reading is an average value of multiple instantaneous
RSSIs. This average RSSI is saved in a register that can be
read at any time. We conduct an experiment to show the vari-

415



ation of this average RSSI over time. We set up two nodes
as the transmitter and the receiver respectively in an office.
Each node consists of an Arduino UNO and an SX1276-
based inAir9b LoRa chip. The distance between the trans-
mitter and the receiver is about 10m. Both of them use
SF = 12 and fc = 859.75MHz. The transmitter randomly
chooses a transmitting interval within 2 to 3 seconds. Fig. 4
shows the average RSSI readings of the receiver over 10 min-
utes. We can see that the RSSI fluctuates even when both
nodes stay still. Such fluctuations challenge the design of
the RSSI-based localization approaches.

4.2 TDOA-Based Approach
A TDOA-based localization system has multiple base sta-

tions with known locations. We also assume that the clocks
of the base stations are tightly synchronized. A transmitter
transmits a signal that will be captured by all base stations.
For each two base stations, the difference between their sig-
nal arrival times can be measured. Now, our discussion fo-
cuses on two base stations. With the product of the signal
propagation speed and the time difference as the real axis,
we can get a hyperbola. The location of the transmitter is
at the intersection point of the hyperbolas. Thus, the accu-
racy of timestamping the signal’s arrival time is critical to
TDOA-based localization approach.

There are mainly three existing approaches to extract the
timestamp of an incoming LoRa signal, including reading
the timestamp provided by the LoRaWAN gateway, esti-
mating the arrival time in the spectrogram domain and es-
timating the arrival time in the time domain. All three ap-
proaches achieve microsecond level timestamping accuracy
only, which is insufficient for meter-level ranging and lo-
calization. To achieve meter-level ranging and localization,
nanosecond timestamping accuracy will be needed. We now
discuss the details of the three possible timestamping meth-
ods for LoRa.

• Timestamp given by LoRaWAN gateway: When a
gateway receives a LoRa frame, it will forward it to
the LoRaWAN software server with a timestamp. The
timestamp is the value of the gateway’s internal time
counter at the time instant when the LoRa frame was
received. However, most commodity LoRaWAN gate-
ways provide time counters with microsecond granular-
ity only [1]. Thus, the frame arrival timestamping will
have microsecond-level accuracy only.

• Spectrogram domain timestamping: As the up chirp
exhibits a clear time-frequency pattern as shown in
Fig. 2, a possible approach to locating the signal ar-
rival time is to analyze the spectrogram of the received
I and Q data. However, the spectrogram inevitably has
reduced time resolution. For instance, the time resolu-
tion of the spectrogram in Fig. 2 is 1024µs/20≈ 50µs,
which is beyond the ns-accurate timestamping. Note
that the data chirps are decoded by analyzing their spec-
trograms, because the up and down chirps can be easily
differentiated. Differently, preamble onset time estima-
tion imposes more challenges than data decoding.

• Time domain timestamping: Matched filter has been
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Figure 5. I and Q data of an up chirp under different θ

settings. Note that θ is the difference between the initial
phases of the carrier signals generated by the transmitter
and the receiver.

widely adopted for signal arrival time detection. The
matched filter requires that the phase of an incoming
signal is known to achieve the best detection accuracy.
However, as LoRa adopts CSS modulation, the fre-
quency will change with time, it is difficult for a re-
ceiver to lock the phase of an incoming signal. Fig. 5
shows the ideal I and Q traces of two up chirps when the
difference between the initial phases of the carrier sig-
nals at the transmitter and the receiver (denoted by θ)
are 0 and π

2 , respectively. We can see that the waveform
shapes highly depend on the θ. Since the θ is generally
unknown and hard to estimate for CSS signals, it is dif-
ficult to define a template shape for the matched filter to
work.

4.3 Phase-Based Approach
In this section, we will provide a detailed analysis on a

possible phase-based approach to LoRa localization.

4.3.1 Modeling of LoRa Chirp Signal Propagation
As mentioned earlier, a chirp is a finite-time band-

pass signal with time-varying frequency. Let A(t) and
f (t) denote the instantaneous amplitude and frequency of
the chirp signal at the time instant t. We formulate the
chirp signal emitted by the transmitter from time t = 0 as
s(t) = A(t)sin

(
2π

∫ t
0 f (x)dx+θTx

)
, where θTx ∈ [0,2π) is

the LoRa transmitter’s initial phase at t = 0. The θTx is usu-
ally unknown. As the signal emission starts from time t = 0,
we can make A(t) = 0 and f (t) = 0 when t < 0. Now we de-
rive the expression of the chirp signal at a position that is d
meters from the transmitter. Our analysis ignores the multi-
path effect and barriers. The signal at the position, denoted
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sI(t,d) =
α(d)A(t)

2

(
cos

(
2π

∫ t− d
v

0
f (x)dx−2π fct +θTx−θRx

)
− cos

(
2π

∫ t− d
v

0
f (x)dx+2π fct +θTx +θRx

))
. (2)

sQ(t,d) =
α(d)A(t)

2

(
sin

(
2π

∫ t− d
v

0
f (x)dx−2π fct +θTx−θRx

)
+ sin

(
2π

∫ t− d
v

0
f (x)dx)+2π fct +θTx +θRx

))
. (3)

by s(t,d), can be expressed by

s(t,d) = α(d)A
(

t− d
v

)
sin

(
2π

∫ t− d
v

0
f (x)dx+θTx

)
,

where α(d) ∝
1

d2 denotes the attenuation coefficient, v de-
notes the signal propagation velocity. Note that before the
signal front arrives at the position (i.e., t < d

v ), the signal
s(t,d) = 0.
4.3.2 Modeling of LoRa Chirp Signal Reception and

a Differential Phase Sampling Technique
This section models the reception of the LoRa chirp by

a gateway implemented by a software-defined radio (SDR).
The SDR generates two unit-amplitude orthogonal carriers
sin(2π fct + θRx) and cos(2π fct + θRx), where fc is a spec-
ified frequency and θRx is the initial phase of the two self-
generated carriers at t = 0. The θRx is usually unknown.
Assume the gateway is d meters from the LoRa transmit-
ter. The SDR will mix the received signal with the self-
generated carriers, yielding sI(t,d) = s(t,d) · sin(2π fct +
θRx) and sQ(t,d)= s(t,d) ·cos(2π fct+θRx). The sI(t,d) and
sQ(t,d) can be further derived as Eq. (2) and Eq. (3), respec-
tively. The SDR will apply two internal low-pass filters to re-
move the high-frequency components in Eq. (2) and Eq. (3).
Thus, after the low-pass filtering, the I and Q components
yielded by the SDR, denoted by I(t,d) and Q(t,d), are given
by I(t,d) = α(d)A(t)

2 cosΘ(t,d), Q(t,d) = α(d)A(t)
2 sinΘ(t,d),

where Θ(t,d) = 2π
∫ t− d

v
0 f (x)dx − 2π fct + θ and θ =

θTx − θRx. From the above analysis, the instanta-
neous phase Θ(t,d) can be computed by Θ(t,d) =
atan2(Q(t,d), I(t,d))+2kπ where k ∈ Z. The k rectifies the
multi-valued inverse tangent function atan2(·, ·) ∈ (−π,π) to
an unlimited value domain and ensures that Θ(t,d) is a con-
tinuous function of t. Note that under a differential phase
sampling (DPS) scheme that will be discussed shortly, the
value of k can be easily determined.

We now discuss the DPS scheme. Let fs denote the sam-
pling rate of the SDR’s analog-to-digital converter (ADC).
Denote by {Θ[t,d],Θ[t + 1

fs
,d],Θ[t + 2

fs
,d], ...,Θ[t + n

fs
,d]}

a sequence of instantaneous phases computed by the sam-
pled I and Q values. We define the DPS sequence ∆ starting
from time t with its ith element ∆[i] given by

∆[i] = Θ

[
t +

i
fs
,d
]
−Θ

[
t +

i+1
fs

,d
]

=−2π

∫ t+ i+1
fs −

d
v

t+ i
fs−

d
v

f (x)dx+2π fc
1
fs
. (4)

The bounds of ∆[i] are analyzed as follows. The LoRa chirp’s
instantaneous frequency f (t) ∈

[
fc− BW

2 , fc +
BW

2

]
. Thus,

from Eq. (4), we have −BW
fs

π≤ ∆[i]≤ BW
fs

π.
PROPOSITION 1. fs > BW is a sufficient condition for com-
puting the sequence ∆ unambiguously based on the I and Q
traces.
PROOF. We consider computing a ∆ element based on two
consecutive Θ values Θ1 and Θ2, i.e., ∆ = Θ1−Θ2. With
fs > BW , the range of ∆ is −π < ∆ < π. Denote Θ1 =
atan2(Q1, I1)+ 2k1π and Θ2 = atan2(Q2, I2)+ 2k2π, where
k1 is known and k2 is to be determined. Since −2π <
atan2(Q1, I1)− atan2(Q2, I2) < 2π, if k2 ≤ k1 − 2 or k2 ≥
k1 + 2, ∆ will be out of its range (−π,π). Thus, there is
only three possible cases: i) k2 = k1 − 1, ii) k2 = k1, and
iii) k2 = k1 + 1. It can be easily verified that there is a case
satisfying ∆ ∈ (−π,π) and other two cases must not satisfy
∆ ∈ (−π,π). The satisfying case determines the value of k2.
Therefore, the elements of ∆ can be determined sequentially
without ambiguity.

For the EU868 frequency band, BW = 125KHz. The
sampling rate of SDR’s ADC (e.g., 20Msps) is much higher
than BW . Thus, the condition fs > BW can be satisfied.
4.3.3 Distance Difference Estimation and End Device

Localization
The phase-based approach measures the differences

among the phases of the gateways’ received signals to esti-
mate the differences among the distances between the end
device and the gateways. We assume that the clocks of
the gateways are tightly synchronized. Note that the clock
synchronization between the end device and the gateway
is not required. Denote by dA and dB the distances from
the end device to the gateways A and B, respectively. Our
following analysis focuses on the estimation of dA − dB.
This approach can be applied to estimate other distance
differences, which are then together used by multilatera-
tion to localize the end device. The DPS sequence on

gateway A is ∆A, where ∆A[i] = −2π
∫ t+ i+1

fs −
dA
v

t+ i
fs−

dA
v

f (x)dx +

2π fc
1
fs

. Denote by F(x) the antiderivative of f (x). The
DPS sequence on gateway A can be expressed as ∆A[i] =

−2π

(
F
(

t− dA
v + i+1

fs

)
−F

(
t− dA

v + i
fs

))
+ 2π fc

1
fs

. As

the variable in this time sequence is t − dA
v , we can de-

note the sequence as ∆A = S(t − dA
v ), where S(t − dA

v )[i] =

−2π

(
F
(

t− dA
v + i+1

fs

)
−F

(
t− dA

v + i
fs

))
+ 2π fc

1
fs

. The
DPS sequence on gateway B can be written as ∆B = S(t −
dB
v ). Thus, ∆B = S(t− dB

v ) = S(t− dA
v +( dA

v −
dB
v )). It means
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that ∆B is a time-shifted version of ∆A, where the time shift
is dA

v −
dB
v . Therefore, we can compute the cross-correlation

of the two time sequences to estimate time shift. Assum-
ing K to be the peak position of cross-correlation, we have
K 1

fs
≈ dA

v −
dB
v . The approximation is because K has to be

an integer. Thus, the distance difference dA−dB can be esti-
mated as d̂AB = K·v

fs
.

4.3.4 Challenges Faced by Phase-Based Approach
First, the approach needs a high sampling rate fs to im-

prove the localization accuracy. The resolution of the dis-
tance difference estimation is v

fs
. It means that if we use

20Msps ADC, the resolution is about 15m. If we use 1Gsps
ADC, the resolution is about 0.3m. Future research shall
investigate whether upsampling can improve the resolution.

Second, the I and Q traces generally contain noises. Af-
ter long-distance propagation and barrier penetration, the
high noise levels may significantly affect computing Θ using
atan2(Q, I). DPS scheme robust to noises is to be developed.

Third, our analysis assumes that the end device and the
gateways can generate accurate carrier frequency. The fre-
quency bias of the SDR and the end device in generating
the carrier signals may affect the localization performance.
To measure the impact of temperature change on frequency
bias, we conduct a test over 24 hours. We put a transmitter in
the corridor of a multistory building that air condition cannot
reach and a receiver in a homothermal indoor environment.
Fig. 6 shows that the estimated frequency bias changes with
temperature. The red circle dot line represents the tempera-
ture measured by a temperature sensor in the outdoor envi-
ronment. The blue square dot line represents the estimation
error. Future research shall investigate how the frequency
biases affect the distance difference estimation and develop
mitigation approaches.

Finally, the clock synchronization errors among the gate-
ways may affect the accuracy of the phase-based approach.
If there exists an unknown synchronization error ∆t between
the gateways A and B, the estimated distance difference
d̂AB = (K+∆t fs)

v
fs

. Thus, the resolution is max{1,∆t fs}· v
fs

.
If we use 1Gsps ADC and aim to maintain the resolution at
about 0.3m, we need to synchronize the clocks of the gate-
ways within 1ns error. Nanosecond-level clock synchroniza-
tion is often challenging on commodity platforms.
5 Conclusion and Future Work

This paper discusses the technical challenges faced by
several commonly used techniques in implementing LoRa-

based localization. The RSSI-based and TDOA-based ap-
proaches do not seem promising due to basic limitations of
the LoRa signal (e.g., significant signal attenuation after bar-
rier penetration and smooth time-domain signal waveform)
and current commodity LoRa hardware (e.g., low-resolution
internal time counter). Our analysis shows that the phase-
based approach is more promising but also pinpoint several
relevant challenges. Our future work is to implement and
evaluate the phase-based approach.
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