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Abstract
Accurate and continuous monitoring of large scale ma-

chinery is important for modern industries. Existing solu-
tions are often unsuitable for large-scale and complex sce-
narios where a huge number of data flows that generated by
hundreds of heterogeneous sensors should be considered in
combination and processed simultaneously to finally judge
the status of the machinery. In this paper, we propose a multi-
sensing collaborative diagnosis system for accurate and real-
time monitoring of large-scale machinery. Our proposed ap-
proach tries to capture and model the underlying temporal
and spatial structure in sequential data, and use this model
for more efficient prediction of machinery. Such prediction
model is built on long short-term memory (LSTM) neural
networks. A series of data preprocessing methods are also
proposed to align the asynchronous data streams and reduce
the dimension of the heterogeneous data, which improves
the efficiency of the status prediction process. We imple-
ment and evaluate our system in a real-world convertor sta-
tion where many large scale machines are applied for cur-
rent converting. The results show that the proposed system
can achieve less than 2% mean square error, which outper-
forms the state-of-the-art model-based and ML-based ma-
chine fault diagnostics methods.

1 Introduction
Large scale machinery plays a significant role in modern

industries and modern technologies in IoT (such as cloud
computing and Blockchain). Normal operating of the ma-
chines concerns many aspects of the modern industries, such
as its safety, efficiency, economy, etc. For example, in the
electric-power industry, halt of the generator will not only
cause huge economic losses but also affect the normal func-
tioning of all the social sectors that rely on the electric power.

Therefore, it is necessary and crucial to ensure the mechani-
cal health and normal operation of the machines.

Under this circumstance, many machine fault diagnosis
(MFD) systems have been proposed. In the MFD systems,
various types of sensors are implanted on different parts of
machines to measure and collect the factors (such as the vi-
bration, temperature, shaft current, etc.) that are considered
highly related to the operation of the machines. The collect-
ed data is then feed to a data analysis component for further
diagnosis. In most existing systems, however, diagnosis typi-
cally relies on an explicit relationship between the measured
factors and the health conditions of the machines, making
them a poor fit for many applications, including monitoring
of the large scale machinery in our case. Specifically, the
health condition of the machines are related to hundreds of
factors and therefore finding a explicit relationship between
them is particularly difficult.

As such, machine learning (ML)-based methods have at-
tracted a lot of research efforts recently. ML-based meth-
ods typically rely on a trained ML model, whose inputs are
the extracted features of the collected data, and the output is
the health condition of the machine. Typical ML model that
used in diagnosis includes Support Vector Machine (SVM),
Bayesian network, etc. These models however perform poor
in practice since they process each measurement in the data
sequence isolation, ignoring the dependency among them. In
fact, the collected data sequence is longitudinal, so it is im-
portant to capture the dependencies between the elements of
the sequence in order to learn more effective and robust rep-
resentations, which can then be used in machine diagnosis.

Based on the above analysis, we in this paper exploit
Long-Short Term Memory (LSTM), a powerful approach
which can capture underlying structure in sequential data, for
machine fault diagnosis. LTSM has been applied to many
areas such as image caption [1] [2], human action recog-
nition [3], medical diagnosis [4] [5], handwriting recogni-
tion [6], etc. However, applying LSTM in large scale ma-
chine monitoring still faces the following challenges:

• For many machines (e.g., rotating machinery), it is im-
possible to embed extra hardware after they are manu-
factured. Therefore, the sensors should be deployed at
some distance to the machines, and thus the collected
data is noisy and difficult to accurately indicate the s-International Conference on Embedded Wireless 
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tate of the machine. How to accurately extract features
from a series of noisy data is the first challenge we face.

• Data from different sensors may be redundant and even
contradictory due to the noise. Besides, the data are
asynchronous since the different sampling rates of the
sensors. Extracting valid features of the asynchronous
multi-source data is challenging.

• Third, there exist different kinds of factors we need to
monitor, including vibration, temperature and shaft cur-
rent. The data collected from these factors are hetero-
geneous, where both digital and analog data exist. And
the data can be either structured or unstructured. How
to deal with such large-scale heterogeneous data in real
time is a big challenge for us.

In this paper, we address the above challenges and build a
digital twin system for a convertor station in power industry
that performs fault diagnosis and real-time condition moni-
toring on the rotating compensator [7] with LSTM and ad-
vanced IoT techniques, such as low-power wireless sensor
networks [8] [9] [10], battery-free communication and sens-
ing, RFID [11] and etc. The proposed system targets at the
diagnosis of rotating machines, which is a widely used part
in industrial equipments, ranging from small motor to mas-
sive generator. Note that although the focus of this paper
is on the diagnosis of rotating machines, our system can be
tailored to other instances. The core design of our diagno-
sis system involves two main components: data processing
and fault detection. In the data processing component, we
design a compressive sensing based data filling method to
align the data collected by different sensors. In addition, s-
ince hundreds of sensor are deployed in a machine and the
collected data are interrelated, we then reduce the dimension
of multiple time series using Principal component analysis
(PCA), which helps to improve the efficiency and effective
of fault diagnosis. The processed data series are then feed
to the fault detection component, where a LSTM based di-
agnosis method is designed to continuously trace the state of
the target machine, and trigger an alarm once an abnormal
behavior is detected.

In summary, the main contributions of this paper are as
follows.

• We disclose the time dependencies between the ele-
ments in the collected data series and propose a LST-
M based model to continuously track state of the target
machine, which can detect abnormal operation of the
machine with high reliability and accuracy.

• Based on this model, we propose and implement an au-
tomatic, accurate and continuous diagnosis system for
large scale machinery in industry. The proposed system
addresses several unique practical challenges in diag-
nosis of large scale machines: i) a compressive sensing
based scheme is proposed to align the data collected by
different sensors; ii) a PCA based method is designed
to reduce the dimension of multiple time series.

• We implement and evaluate our method in a real-world
convertor station where many large scale machines are
applied for current converting. The results show that the

proposed system can achieve less than 2% mean square
error, which outperforms the state-of-the-art model-
based and ML-based machine fault diagnostics meth-
ods.

The rest of this paper is organized as follows. We present
the related work in Section 2 and then the detailed system
design in Section 3. In Section 4, we describe the implemen-
tation and experimental results of our system. Finally, we
conclude our work and discuss the future work in Section 5.
2 Related Work
2.1 Model-based approaches

Traditionally, there are many model-based mechanical
fault diagnosis approaches. The model-based approaches
generally use physical or mathematical models of the ma-
chines to monitor. Currently, different kinds of model-based
diagnostic approaches, including analytical method, finite el-
ement (FE) method, and combined analytical FE approach,
have been applied to conduct fault diagnosis of a variety of
rotating machineries, as is shown in [12]. Ma et al. [13] de-
veloped an FE model of a geared rotor system considering
the effects of the extended tooth contact and tooth root crack
on the time-varying mesh stiffness with tooth root crack. Hu
et al. [14] proposed a FE node dynamic model for the gear-
rotor-bearing system with different lengths of crack. But
these traditional model-based approaches using physical or
mathematical models require a lot of professional expertise
and knowledge, and are not applicable to multiple types of
time series data analysis which we used in our work.
2.2 Signal processing approaches

Machine condition signals analyzed by signal process-
ing methods can generate fault-related characteristic feature
for decision making. Many signal processing methods are
widely used in mechanical fault diagnosis such as wavelet
transform (WT) [15], empirical mode decomposition (EMD)
[16], spectral kurtosis (SK) [17]. A kurtosis-guided adaptive
demodulation technique for bearing fault detection based on
tunable Q-factor WT has been proposed in Ref. [18]. Li et
al. [19] used EMD to decompose adaptively angle-domain s-
tationary signals to detect gear faults under different speeds.
Wang et al. [20] proposed an adaptive spectral kurtosis (SK)
technique with adaptive determination of the bandwidth and
center frequency for the fault detection of rolling element
bearings. Although the signal processing approaches perfor-
m well in machinery fault diagnosis, it is not suitable when
using heterogeneous data in machinery fault diagnosis.
2.3 ML-based approaches

The ML-based approaches don’t require much expertise
in the specifics of diagnostic application. Numerous intelli-
gent system approaches for mechanical fault diagnosis have
been proposed, such as k-NN [21] , SVM [22], ANN [23]
and LSTM [24] [25] [26]. Zhou et al. [27] provide a contri-
bution analysis-based fault isolation method by decompos-
ing the k-NN distance used as the detection index. Liu et
al. [28] propose an intelligent method based on a short-time
matching atom decomposition method and SVM for bearing
fault diagnosis. Sadeghian et al. [29] present an algorithm
for induction motors online detection of rotor bar breakage,
based on the combination of wavelet packet decomposition
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Figure 1. System Overview.

(WPD) and ANN. These approaches are not suitable for time
series data. In addition, the k-NN approaches need a lot of
storage space and much time to compute , and the efficiency
of SVM for big data is low. Zhao et al. [30] explored the
direct application of LSTMs on raw time series data to pre-
dict the tool wear condition. The LSTM approach is suitable
for time series data but this method proposed by [30] is not
suitable for diagnosis of the machinical fault data which is
collected by multiple sensors.

2.4 Compressive sensing
Compressive sensing [31] is a signal processing technique

using to rebuild signals which is sampled randomly by non-
linear reconstruction algorithm. Tang et al. [32] developed
a sparse classification strategy based on Compressive sens-
ing theory for mechanical fault diagnosis, which helped con-
struct a learning dictionary to represent the vibration signal.
Chen et al. [33] proposed a method based on Compressive
sensing in order to extracting impulse components in the
fault gearbox. Chen et al. [34] also proposed a sparsity-
enabled signal decomposition method in order to diagnose
the fault localization of automatic tool changers. In our
work, we use the compressive sensing to fill the mechanical
condition data which sampled by multiple sensors at differ-
ent time in order to make different data has same timestamp.

3 System Design
In this section, we firstly introduce the design of our sys-

tem. Then, we will illustrate the main components in detail.
The proposed system in this paper targets at the diagnosis of
rotating machines, which is a widely used part in industrial
equipments, ranging from small motor to massive generator.
Note that although the focus of this paper is on the diagno-
sis of rotating machines, our system can be tailored to other
instances.

3.1 System Overview
As shown in Fig. 1, our system consists of three main

components: Data Sensing, Signal Preprocessing and Fault
Detection.

- Data Sensing: This component is composed of two
modules: Data Source and Data Acquisition. Data Source
module specifies the type, characteristic and sampling fre-
quency of sensor data. Data Acquisition module explains the

approach which is used by our system to acquire the sensor
data.

- Signal Preprocessing: After obtaining sensor data, we
preprocess the data to provide high-quality data for the fur-
ther diagnosis. The preprocess component includes three
parts: Noise Removal, Data Filling and Feature Extraction.
To achieve these goals, we leverage several general yet effec-
tive methods, which are median filter, compressive sensing,
and PCA (Principal Component Analysis) respectively.

- Fault Detection: In this component, we design a
LSTM-based model to predict sensor readings with the pre-
processed data. We compute the differential value of pre-
dicted data by LSTM model and original data obtained from
sensors. And then we infer the machine status by the differ-
ential values of the specific sensor and the related sensors.
According to the detection results, we give some advice and
comments on machine health state.

3.2 Data Sensing
1) Data Source: To monitor the machines’ running state

in real time, various types of sensors are deployed. For ex-
ample, temperature sensor, electric sensor (current sensor,
voltage sensor, and etc.) and rotating speed sensor are the
most common sensors on the rotating machinery. Due to
the complexity of machine structure, sensors such as tem-
perature sensors can be divided into more fine-grained types.
For example, rotating machinery is composed of stator, ro-
tor, bearing, collector and cooling system. And each part is
equipped with its own temperature sensors. Besides the sen-
sors mentioned above, vibration signals are also acquired by
vibration sensors. From domain knowledge, we know that
temperature is a very important physical quantity to mea-
sure the operating status of rotating machinery. Therefore, in
this paper, we focus on temperature sensors and their relat-
ed quantities. By analysing the temperature data, we can do
a comprehensive diagnosis of the rotating machinery health
condition.

2) Data Acquisition: To gather the data produced by sen-
sors, we develop a acquisition program. Considering the d-
ifferent types of sensors, we utilize two methodologies to
implement this program: DCS(Distributed Control System)-
based methodology and FTP-based methodology. DCS is
a data collection program provided by a third party com-
pany. The sensor data of rotating machinery and auxiliary
machines are mainly transmitted through the DCS method-
ology. DCS program first stores the data collected from each
sensor into the DCS database. Next, we use the application
interfaces provided by DCS to fetch sensor data and put them
into our own database. FTP (File Transfer Protocol)-based
methodology is designed for transferring vibration data. Be-
cause the vibration frequency of the rotating machinery is
very fast, it will produce a large amount of data, which makes
the transmission of these data through DCS time-consuming
and costly. Therefore, we propose a FTP-based method to
receive the vibration data directly.

3.3 Signal Preprocess
1) Noise Removal: There are a large number of sensors

deployed on the rotating machinery and auxiliary machines.
Due to the inherent characteristics of the sensor and the in-
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Figure 2. Original and filtered time series data.

fluence of the monitoring environment, the perceived data is
very noisy. First, the sensor’s communication ability, battery
performance and storage capacity are limited, which makes
the stability of the sensor threatened. Second, the high-speed
rotation of the rotor makes it difficult to attach the sensor
to the rotating machinery. In addition, the complex electro-
magnetic environment inside the rotating machinery also in-
terferes with the data measured by the sensor. Hence, it is
inevitable to perceive noise problems in sensor data. In data-
driven machine diagnostic systems, these noises will affect
the reliability and accuracy of diagnostic results, and even
affect the important decisions.

To use sensor data for machine diagnosis, such noise must
first be removed. We leverage a Median Filter method to
remove the noise from the time series data. Median Filter
is a nonlinear digital filtering technique that is often used to
remove noise from an image or signal. The main idea of
the Median Filter is to run through the signal entry by entry,
replacing each entry with the median of neighboring entries.
In our scenario, sensor data often shows local spikes. These
spikes are usually some noise and should be filtered out. Fig.
2(a) shows the original sensor data and Fig. 2(b) shows the
resultant from Median Filter. We observe that Median Filter
successfully removes most of the noises from the sensor data.

2) Data Filling: In Data Source part, we mention that
temperature data is an important indicator of operation state
of the rotating machinery. According to domain knowledge,
there is a strong correlation between temperature and oth-
er data, such as current, voltage, active power, etc. To ful-
ly make use of temperature data and the correlation data,
We apply the temperature data as a benchmark to schedule
the temperature data and its correlation data in time series.
Through this operation, we will get a matrix composed of
time series data. Because each type of sensors has a different
sampling frequency. For example, the sampling frequency of
the temperature sensor is one data per ten seconds, while the
rotating speed sensor is one data per one minute. Besides,

sensor data may also be missing due to line quality, sensor
failure or battery instability during transmission. These will
cause the matrix to be vacant at certain positions.

In this condition, we use a widely used method for ma-
trix filling: compressive sensing. Compressive sensing the-
ory is an effective signal processing theory developed in the
field of signal processing in recent years. It was proposed
by D. Donoho, E. Candes and Chinese scientists Tao T. et
al. Contrary to traditional Shannon-Nyquist Sampling The-
orem, compressive sensing can reconstruct the signals from
far fewer samples if these signals are sparsely representable
[35]. Signal sparsity is simply understood as the number of
non-zero elements in the signal is much smaller than the to-
tal number of signals. The real signals that exist in nature
are generally not sparsely, but are approximately sparse in
a certain transform domain. In other words, any signal has
compressibility. As long as we can find its corresponding
sparse representation space, it can effectively perform com-
pression sampling. Signal sparsity or compressibility is an
important theoretical basis for compressive sensing. Before
introducing how we apply compressive sensing for data fill-
ing, we need to understand how compressive sensing works.

Given an original signal x with size N × 1 and its mea-
surement signal y with size M×1(M� N), they satisfy the
relationship shown in Equation (1).

y = Φx (1)

In Equation (1), Φ is a M×N matrix and it is usually
called measurement matrix. It represents the distribution of
M samples of the original signal. The goal of compressive
sensing is reconstructing x by y and Φ. Obviously, since the
dimension of y is much lower than the dimension of x, Equa-
tion (1) has infinitely many solutions, that is, the problem is
underdetermined and it is difficult to reconstruct the origi-
nal signal. As we mentioned above, if signal x is sufficiently
sparse, we can recover signal x from y. In real world, x is
usually non-sparse. But we can sparsely represent it to an-
other domain.

x = Ψs (2)

As shown in Equation (2), signal x can be divided into Ψ

with size N×N and s with size N×1. The matrix Ψ is known
as the sparse representation basis. While s is the sparse rep-
resentation of signal x in the domain Ψ. s satisfy ‖s‖0 = K,
where K� N. Combine Equation (1) and Equation (2), we
get Equation (3).

y = ΦΨs (3)

From Equation (3), we conclude that the signal recon-
struction problem can be converted to compute s for given
measurement y and known matrices Φ and Ψ. If we know
s, we can obtain original signal x by x = Ψs. How to calcu-
late s is an optimization problem. We may acquire s by the
smallest l0 norm:

arg min‖s‖0 st. y = ΦΨs (4)
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Unfortunately, this optimization problem is NP-hard, we
are not able to get a solution in polynomial time [36]. Dono-
ho D L et al. prove that the l0 norm problem is equivalent to
the l1 norm problem:

arg min‖s‖1 st. y = ΦΨs (5)

Equation (5) is a convex optimization problem and can be
easily solved using linear programming(LP) methods. This
convex optimization problem is known as Basis Pursuit(BP).
Besides BP, there is another type of methods to recover x
which is called Matching Pursuit(MP). Orthogonal Match-
ing Pursuit(OMP) [37] and Regularized Orthogonal Match-
ing Pursuit(ROMP) [38] are typical algorithms of MP. These
two methods are faster than BP but the reconstruction quality
are worse than BP, especially when the signal is not sparse
enough.

The description above is the core idea of compressive
sensing. Through the analysis, we can see that the design
of measurement matrix Φ and choosing proper sparse rep-
resentation basis Ψ are two very important issues in com-
pressive sensing. In order to accurately reconstruct sparse
signals, a certain relationship needs to be satisfied between
Φ and Ψ. That is Φ and Ψ are not correlated [39]. In oth-
er words, the row φ j of Φ cannot be sparsely represented
by the column ψi of Ψ, and the column ψi of Ψ cannot be
sparsely represented by the row φ j of Φ. It is difficult to con-
struct a measurement matrix directly so that it satisfies the
above conditions. Tao T. et al prove that when the measure-
ment matrix is a Gaussian random matrix [31], the condition
will be satisfied. For sparse representation basis, there are
more choices. Commonly used sparse basis include Discrete
Cosine Transform basis(DCT), Fast Fourier Transform ba-
sis(FFT), Discrete Wavelet Transform(DWT) basis, Cervelat
basis, Gabor basis, and Redundant Dictionaries.

In our scenario, different type of sensors have different
sampling frequencies. The low-frequency sensors exist due
to two reasons. First, the physical quantity monitored by
some sensors is basically stable for a certain period of time
without significant changes. There is no need to sample the
data with a high frequency. For example, when the rotating
machinery works normally, the rotating speed will stabilize
at around 3,000 revolutions per second. Second, due to limit-
ed sensor battery capacity and financial cost, the data collec-
tor has to reduce the sampling frequency of some sensors. To
our knowledge, the vast majority of low-frequency sensors
are produced for the second reason. For these low-frequency
sensors, we consider they take a small amount of sampling
but retain the key information of the original signal. This is
consistent with the idea of compressed sensing.

Next we will explain how we use compressive sensing
to solve our problem. Every time when the new temperature
data comes, we find the data of sensors that has a relationship
with the temperature sensor at this time, and compose all
the data into a row vector v with size 1×H (H denotes the
number of sensors, including the temperature sensor and its
related sensors). If the related sensors have no data at this
time point, it is set zero in the corresponding position of v.
Then, we select a slide window w with size N×H (N denotes

the number of temperature sensor data), w contains the latest
N data of the temperature and its related sensors. There is no
doubt v is included in w. There are many zero elements in w,
then we employ compressive sensing to fill w so that we are
able to reconstruct the sensor data.

The compressive sensing method we use is BP, And we
design the measurement matrix by this rule: the M×N Φ

specifies a measurement scheduling policy: it contains a 1 in
the (m,n) position (1 ≤ m ≤ M , 1 ≤ n ≤ N ) if the m-th
measurement is taken at time n. In our scenario, only a s-
ingle measurement is taken in every time. This implies, Φ

contains one and only one 1 element in any row, and at most
one 1 in any column, and 0 everywhere else. This is differen-
t from Gaussian random matrix we talk above which is very
dense with no 0-entries. Although this measurement matrix
does not guarantee completely irrelevance with sparse repre-
sentation basis, the experimental results show that the matrix
can still achieve a good filling effect.

3) Feature Extraction: As we mention above, there is
strong correlation between rotating machinery data, each
sensor may be associated with several other sensors. In order
to ensure the real-time nature of our system and reduce the
complexity of the prediction algorithm, it is necessary to per-
form dimension reduction operation which is also called fea-
ture extraction. There are two schemes for feature extraction,
one is feature selection based on domain knowledge. For ex-
ample, the strong and weak correlation in rotating machinery
data is given by the expert according to the physical structure
of the machine, and the other is the data-driven feature ex-
traction method. Researchers use mathematical methods to
mine possible relationships in data and extract features.

In this paper, we use a combination of two schemas to ex-
tract features. Firstly, based on the domain knowledge, we
obtain a single sensor and the sensors which have strong or
weak relationship with it, and then extract the target features
based on the data-driven method. Here, we use the PCA
method to extract features. Our goal is to reduce the data di-
mension without losing too much information. Since we do
not know what dimensions we should reduce to. Therefore,
we investigate the relationship between data dimensions and
the accuracy of prediction results. The experiment results
show that when the dimension is set to 4, it has better predic-
tion accuracy. Meanwhile, there is little loss of information
compared to the original data.
3.4 Fault Detection

1) Prediction: The ultimate goal of this paper is to make
predictive analysis of rotating machinery operating status
based on sensor data, and to provide assistant decisions
based on the analysis results. More specifically, we want to
predict the current temperature value based on the previous
time data and historical data of the temperature sensor and
its related sensors. By comparing the difference between
the predicted value and the actual value, we can make an
assessment of the operating status of the rotating machin-
ery. This is a time series data prediction problem which has
been investigated for many years. Traditional methods such
as k-NN, Hidden Markov Model(HMM), SVR(Support Vec-
tor Regression) and some model-based approaches can effec-
tively handle small-scale time series data, however, they are
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incapable of handling multi-source, heterogeneous, large-
scale rotating machinery data. The main reason lies in that
these methods are not able to keep long-term dependencies
of the historical data. The LSTM as a deep network archi-
tecture is capable of handling long-term dependencies with a
gated structure. LSTM network has cell unit which consists
of three main gates: an input gate, a forget gate, and an out-
put gate. These gates consist of a Sigmoid neural layer and
a dot multiplication operation. The output of the Sigmoid
layer is a value between 0 and 1, which is used to control
the passing of information. When the Sigmoid layer output
is 0, it means that the gate is closed and no information is
passed. When it is 1, it means that the door is open, allowing
all the information to pass through. Specifically, the input
gate will selectively record new information in the cell state.
The forget gate allows the cell to remember or forget its pre-
vious state. Finally, the output gate is used to control what
information is output from the cell state.

As shown in Fig. 3, LSTM as an neural network contains
at least three layers, they are the input layer, hidden layer
and output layer respectively. Mathematically, at time t, we
use xt , ht , ot represent the layers mentioned above. In our
case, xt is the combination of time t− 1 temperature sensor
data and its related sensor data at time t. ht is the hidden
layer state of time t. While ot is the predicted temperature
sensor data at time t. In (6), we have a clear understanding of
the relationship among the input layer, hidden layer, output
layer, and various gates. In this equation, σ(Sigmoid layer)
and tanh are nonlinear activation functions, W and U are the
weighted matrix, while b is the bias vector.

Our training algorithm adopts stochastic gradient descent
for optimizing the objective function. The loss function is
the mean square error between true data and predicted data.
We also add a dropout layer to avoid overfitting. Finally, we
apply the LSTM method in real rotating machinery dataset
and achieve promising prediction results.

ft = σ(Wf xt +U f ht−1 +b f )

it = σ(Wixt +Uiht−1 +bi)

ot = σ(Woxt +Uoht−1 +bo)

c̃t = tanh(Wcxt +Ucht−1 +bc)

ct = c̃t · it + ct−1 · ft
ht = tanh(ct) ·ot

(6)

2) Detection: After obtaining the predicted value, we
compare the predicted value with the true value and com-
pute the difference, according to domain knowledge, if the
difference is large than 1, our system will alter alarm to the
rotating machinery maintenance personnel and indicate the
location of failure may occur.

4 Evaluation
The main objective of our dataset-based evaluation is to s-

tudy the performance of the prediction model and data align-
ment efficiency based on real world datasets. Specifically,
the evaluation has three goals:

• Assess the effectiveness and efficiency of LSTM.
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• Investigate the contribution of compressive sensing to
prediction performance.

• Characterize the relationship between input size and
model dimension and find out the optimal parameter
collection for predicting rotating machinery system op-
erating status.

4.1 Datasets and performance metrics consid-
ered

We evaluate our approach on two real-world rotating ma-
chinery datasets: a two-year generator system operating sen-
sor dataset(GSD) and a two-day compensator system oper-
ating sensor dataset(CSD). The GSD consists of 1,393,704
sensor readings of 26 sensors, including temperature, rotat-
ing speed, current and active power of one generator. The
sensor readings of GSD have been aligned with moving
mean filter before we have access to the dataset and the win-
dow size is 10 minutes. Table 1 lists the sensor type distribu-
tion of GSD. For GSD, the ground truth in terms of the op-
erating status is known, and we use mean square error(MSE)
to measure efficacy of our prediction results.

Correlation between data series. We assume the time
series of rotating machinery are correlative. Fig. 4 plots
the absolute value of Pearson correlation coefficient between
26 series of GSD. Pearson correlation coefficient ρX ,Y is a
measure of the linear correlation between two variables X , Y
derived as:

ρX ,Y =
Cov(X ,Y )

σX σY
(7)

where Cov is the covariance of X and Y , σX and σY are the
standard deviation of X and Y . ρX ,Y has a value between +1
and −1, where 1 is total positive linear correlation, 0 is no
linear correlation and −1 is total negative linear correlation.
Let us note that column 7–9, 11–13 and 17–23 are strong in-
terrelated, which means the existence of information redun-
dancy within these 26 series. This motivates us to perform
dimension reduction on GSD for estimation improvement.

We train our PCA transform matrix and LSTM model
leveraging on 80% of GSD and perform validation on the
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Table 1. Sensor Type Distribution of GSD
Sensor Type Number Description

Temperature 12 coil water temp(°C),
hydrogen temp(°C)

Electrical parameters 9 active power(MW),
current(A),
voltage(kV),
generator freq(Hz)

Rotating speed 1 rotating speed(r/min)

Auxiliary parameters 4
water flow(t/h),
water pressure(kPa),
hydrogen purity(%),
hydrogen
pressure(kPa)
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Figure 4. Correlation coefficient of 26 series in GSD.

other 20%. The CSD includes two-days data of 1,148 sen-
sors, including temperature, rotating speed, current, vibra-
tion and water pressure. The sampling frequency distribu-
tion of CSD is as shown in Table 2. As the compensator sys-
tem has been deployed for only half a year when this paper
is completed, there is no fault operation condition since the
system itself has high reliability. Therefore, we estimate our
method by calculating the prediction error instead of fault
classification accuracy.

4.2 Prediction Accuracy of LSTM
a) Results and Observation: We leverage compressive

sensing on GSD and reduce the dimensions of correlation
variable of stator outlet temperature Tout from 13 to 4. The
derived 4 features and the raw Tout are fed into LSTM as the
training data. Figure 5 shows the results on the Tout time se-
ries. As shown, the mean square error(MSE) on one single
sensor time series is less than 0.2K. Considering our model
is expected to be able to fit the pattern of normal behavior of
sensors, less than 1K error of temperature means the predict-
ed time series is a good approximation. Let us note that the

Table 2. Sensor Source Distribution of CSD
Sensor Source Number
Compensator 466

Online monitor 104
Cooling system of stator 74
Cooling system of rotor 68

Lubricant system 168
External cooling system 166

Demineralized water system 102

error become relative large when data fluctuations are severe.
We consider this is caused by the delayed response of LSTM
to jitter in time series. The delayed response lead to no more
than 2.48%. Fig. 5(b) shows the CDF of prediction error of
Tout . It is observed that the system manages to estimate the
temperature with less than 0.1K error in 90% time and less
than 0.4K error in 99% time.

Here we set hidden layer size H = 8, input data size I =
4, time steps T = 5, and number of cells in each time step
N = 1. We will describe the parameter choosing principle in
4.4.

b) Performance Comparison: There have been related s-
tudies on estimating value of time series. We compare SVR
and LR(Linear Regression) with our LSTM network and Fig.
7 shows the performance of the three models on fitting the
pattern of stator outlet temperature. We observe that LST-
M model outperform the other two models in terms of es-
timation error. The MES of LSTM is 0.1265K while SVR
get 0.4767K and LR get 0.1742K. However, we find that the
maximum error of LR is slightly less than that of LSTM. We
consider this is because the temperature fluctuates more vio-
lently during certain periods while our LSTM tends to fit it
to more smooth pattern. This infers that our LSTM model
has stronger noise immunity.
4.3 Performance of Compressive Sensing

Since our LSTM model requires history readings of one
sensor and its related variables and sampling frequencies of
different sensors varies, it is necessary to perform data align-
ment on asynchronous time series. Fig. 8 plots the recon-
struction performance of compressive sensing on four sen-
sor reading series(stator outlet temperature, cold water flow,
stator inlet temperature, active power). We reconstruct the
series with 50% of 10,000 samples. It is observed that rel-
ative error(i.e. the absolute error divided by the magnitude
of the exact value) of stator outlet temperature, cold water
flow and stator inlet temperature is below 3%. The recon-
structed time series precisely fit the raw data. However, we
notice that the average relative error of reconstructed Active
power is 12.5%. We can infer from Fig. 8 that stator outlet
temperature and active power have a strong positive corre-
lation. When the generator set is in normal operation, the
active power can be fluctuate due to changes in the power
load. And the auxiliary water temperature varies in a simi-
lar pattern with generator load fluctuations. This observation
confirms our previous assumptions about data redundancy
and we can perform dimension reduction on multiple sensor
data and achieve precise estimation and reduce the comput-
ing power demand.
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Figure 5. LSTM prediction result of the stator outlet tem-
perature.

Fig. 6 shows the CDF of data filling error on 26 sensor
time series. 80% relative error of all sensors are less than
2% and other 20% of sensors have less than 13% relative er-
ror. The polarization of reconstruct error is due to the large
range of electrical parameters e.g. active power and gener-
ator current. The output power of generator changes along
with power load, which is hard to represent using a set of
sparse basis.

4.4 Hyper-Parameter Selection
LSTM model typically contains various hyper-parameters

whose value is set before training phase. Examples of hyper-
parameters are hidden layer size, input data size, time steps,
and number of cells in each time step. A combination of
these hyper-parameters values is a model configuration. L-
STM models with different configuration tends to have d-
ifferent performances(i.g. Mean Square Error) and com-
plexities. The more complex LSTM model is, the more re-
sources(i.g. Memory, compute cost) model requires. No-
tice that configuration space increases exponentially with the
number of hyper-parameters. Moreover, we can’t estimate
each configuration’s performance until the end of training
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Figure 7. CDF of estimation error while using LSTM, LR
and SVR.

phase which requires extremely huge resource.
As most in-use rotating machinery data process server-

s are equipped with only multi-core CPU and no GPU,
we consider Complexity-Performance trade-off with multi-
dimensional configurations. Our model is expected to max-
imize the performance and minimize the model complexity.
So we conduct comprehensive experiments to explore the re-
lation between complexity and performance.

In this experiment, we focus on four hyper-parameters as
mentioned before: hidden layer size(H), input data size(I),
time steps(T ), and number of cells in each time step(N). we
use Mean Square Error as the metric of Performance. Ac-
cording to the diagram of LSTM, we compute the complex-
ity of each configuration i using the following formula:

Ci ∼ O(Hi× (Hi + Ii)
2×Ni×Ti) (8)

where Hi× (Hi + Ii)
2 means computation complexity of one

cell in LSTM model. As mentioned before, in each time step,
LSTM typically stacks N cells to improve its’ fitting ability.
And only After T time steps, the prediction can be generated.

Fig. 9 shows a scatter plot of Complexity vs. Perfor-
mance of several hundreds configurations. We use Stator
outlet temperature data to perform this experiment. There
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Figure 8. Performacne of compressive sensing data filling on GSD.
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Figure 9. Complexity-Performance.

is two orders of magnitude of difference in Complexity. The
black dashed line is the Pareto Boundary. Given certain per-
formance requirement, the configurations near this boundary
are considered as more efficient ones. For example, if we re-
quire Mean Square Error of prediction of Stator outlet tem-
perature is less than 0.031, the configuration, corresponding
to the point in red in Fig. 9, is the best choice. In other
words, only configurations that near the Pareto Boundary of
Complexity-Performance space will be considered.

5 Conclusion and Future work
Conclusion. In this paper, we present a multi-sensing col-

laborative analysis system for rotating machinery time-series
data. We estimate the value of sensors and the differences
between predicted and real value imply the operational con-
dition of machine. We propose a data filling method based
on compressive sensing for processing heterogeneous and
asynchronous sensor readings of generator and compensator.
Processed time series are used to extract principle features
for value estimation. We implement our system and evaluate
its performance on real world generator sensor data. Experi-
mental results demonstrate that our system outperform tradi-
tional model-based methods and achieve less than 2% mean
square error.

Future work. In our expreiment, we suppose the sam-
pling frequency of each sensor is fixed. In other words, the
time interval between two consecutive records is equal. In
fact, the sampling frequency of each sensor is not always the
same, it will have some fluctuations. We will take dynam-
ic change of time interval into consideration in our LSTM

network by adding a time decay factor in it.
We select parameter configuration of LSTM experimen-

tally. In GSD and CSD, the parameter selection problem can
be formalized as follows.

min z =
N

∑
i=1

Pi(ri)

s.t.


N
∑

i=1
rt ≤ R,

Pi(ri)≤ εi (i = 1,2,3, · · · ,n).

(9)

where R is the CPU computing resource, N is total sensors
to be estimated, each estimator consumes ri, i = 1,2, · · · ,N,
and its Pareto boundary is Pi, εi are given optimization er-
ror cap. We expect the solution of (9) will produce a better
result.

6 Acknowledgements
This work was supported by the State Grid of China Sci-

ence and Technology Fund No.52110417000G.

7 References
[1] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan.

Show and tell: A neural image caption generator. In Computer Vision
and Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE,
2015.

[2] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption generation with visual attention. In
International Conference on Machine Learning, 2015.

[3] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus
Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrel-
l. Long-term recurrent convolutional networks for visual recognition
and description. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015.

[4] Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu
Zhou. Patient subtyping via time-aware lstm networks. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017.

[5] Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Deep-
care: A deep dynamic memory model for predictive medicine. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2016.

[6] Marcus Liwicki, Alex Graves, Santiago Fernàndez, Horst Bunke, and
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