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Abstract
We present a centralized scheduler for reliable communi-

cations in low-power wireless TSCH networks. This sched-
uler enables us to introduce a novel centralized routing ap-
proach not dependent on existing distributed solutions like
RPL.

1 Introduction
The growing amount of wireless Internet of Things (IoT)

applications and particularly the Industrial Internet of Things
(IIoT) imposes harsh requirements on the communication es-
pecially in regards to reliability and latency. As most IoT
devices are battery powered a low energy consumption is re-
quired as well. The requirements led to the development of
many distributed solutions trying to maximize reliability and
minimize latency in non-predefined networks. These solu-
tions include distributed flooding protocols like Glossy [5] or
Chaos [6] as well as protocols based on the distributed rout-
ing protocol RPL [8], like Orchestra [3]. All of these proto-
cols can achieve high reliability but can’t guarantee holding
predefined deadlines. A centralized approach on the other
hand is able to give these guarantees, as the latest delivery
time of a packet is known beforehand. This knowledge ex-
ists because the centralized scheduler has a central view on
the topology of the network as well as which data has to be
sent at which point in time and can therefore create flows
(scheduled routes) with exact timing knowledge holding the
predefined deadlines. However, existing centralized sched-
ulers like C-LLF [7] focus on high schedulability and cre-
ate schedules for (almost) interference-free networks with
highly reliable links. This neglection of interference and the
resulting lack of retransmissions leads to low latency but also
to low reliability in non-interference-free environments.

We present a centralized scheduler for TSCH [4] com-
bining the scheduling of communications as well as its rout-

ing, avoiding the overhead of a routing protocol like RPL.
Moreover, we introduce a novel routing strategy named slid-
ing windows to keep latency as low as possible while still
being able to use retransmissions and hold predefined dead-
lines. This strategy allows our scheduler to work in networks
susceptible to interference combining the advantages of both
distributed and centralized scheduling approaches. More-
over, we introduce flow-based queues for TSCH to overcome
the limitations of neighbor-based queues as currently found
in the TSCH implementation of Contiki-NG [1].

2 Centralized Scheduler (C-TSCH)
The centralized scheduler, we present in this paper oper-

ates as a network layer on top of the layer implementation
of TSCH in Contiki-NG [1]. Contrary to previous works
on centralized schedulers, like C-LLF [7] focusing mainly
on the schedulability of the proposed scheduler, the focus
of our scheduler lies on the reliability of communications in
networks susceptible to interference.

The scheduler consists of a Contiki network layer and
a scheduling software including state-of-the-art scheduling
algorithms as well as modifications to these to accomplish
higher reliabilities using the concept of sliding windows.
The functions of the network layer consist of a neighbor dis-
covery, the implementation of the TSCH schedule and the
main functions of the network layer, sending, receiving and
forwarding of data packets. The neighbor discovery can ei-
ther be performed before run-time, using broadcasts and in-
dividual transmission slots for each node in the network with
all other nodes listening, similar to sender-based dedicated
slots (SBD) in Orchestra, or during run-time using modified
TSCH beacons. The standard way in the current implemen-
tation is performing the neighbor discovery before run-time
to be able to create comparable schedules using different
scheduling algorithms, but the goal is to switch to beacon-
based neighbor discovery later.

Besides the mentioned network layer implementations,
some layer modifications were necessary to overcome cer-
tain limitations. These modification include the TSCH bea-
cons but more important the TSCH queues had to be changed
to enable the forwarding of a packet to a certain neighbor
prior to forwarding an earlier received packet to the same
neighbor. To allow this behaviour, we added flow-based
queues, in addition to the neighbor-based queues of TSCH.
These flow-based queues are possible because the traffic ofInternational Conference on Embedded Wireless 
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(a) Topology

1 2 3 4 5 6 7 8 9 10

A TX TX TX TX
B RX RXTX RXTX RXTX TX
C TX TX TX TX
D RX RXTX RXTX RXTX TX RX RXTX RXTX RXTX TX
E RX RX RX RX
F RX RX RX RX

(b) interleaving-free SPF with sliding windows

Figure 1. An example of a schedule combining the sliding window strategy with an interleaving-free shortest path first
scheduler. One packet is to be transmitted from node A to node F and another packet from node C to node E. The size
of the sliding window is 5, as seen for nodes B and D.

each slot is defined by the scheduler and belongs to a certain
communication flow.

The scheduling software, which is written in Python to al-
low an easier implementation of new schedulers and routing
or retransmission strategies, computes the schedule based on
the output of the neighbor discovery using the retransmis-
sion strategy of sliding windows and one of the implemented
scheduling algorithms including interleaving-free shortest
path first. Currently, the scheduler generates the schedule
as C-code which then can be uploaded to the nodes, but for
a future version of the scheduling software, we plan to gen-
erate and upload the schedule to the nodes during run-time.

2.1 Sliding Windows
The scheduling strategy of sliding windows introduces a

variable number of retransmissions for a flow/route from a
transmitter to a receiver to add robustness of the system to-
wards interference while having the least possible increase
of latency added by retransmissions. An important param-
eter of this strategy is the window size which is the number
of timeslots a node is maximally involved in for communica-
tion. This window size also determines how many timeslots
a transmission maximally takes. In the best case, without
interference, it takes no more timeslots than the number of
hops like traditional scheduling algorithms, whereas it can
take a maximum of 2 less than the window size additional
timeslots to perform the end-to-end transmission. The win-
dow size can be dependant on the expected number of trans-
missions or can be fixed.

Figure 1 shows a possible schedule for two communica-
tion flows from node A to F and from node C to E with a
fixed window size of 5, involving each node of a flow for up
to 5 timeslots. Every node which might be sending or receiv-
ing in a given timeslot (marked with RXTX) has a shared slot
of both modes executing one or the other based on the pre-
vious reception of the packet sent in this communication. If
a transmission was successful, a node stops communicating
for the rest of its window and the next communication of the
flow can take place.

3 Conclusion and Future Work
The Contiki scheduler module as well as the external cen-

tralized scheduler are already implemented including slid-
ing windows with a fixed or ETX-dependant size using

interleaving-free shortest path first as scheduler. Initial ex-
periments showed that high reliabilities are achievable given
that an optimal window size is chosen. The current work
using flow-based queues will presumably increase the reli-
ability even further. Furthermore, the current state of the
scheduler is tested at this years EWSN Dependability Com-
petition.

In the near future, we want to extend our scheduler by im-
plementing additional state-of-the-art scheduling algorithms
and use them in combination with sliding windows. More-
over, we will analyze how to avoid long waiting times at in-
tersections of flows to increase the schedulability of sliding
window based flows. As mentioned before, we will also cre-
ate a way to upload a schedule during run-time. Furthermore,
we plan an additional routing strategy called Autobahn en-
abling multi-path routing.

Our long term vision is to include battery-free nodes in
our system which should be possible due to the schedule pro-
viding timeslots in which transmissions can happen. More-
over, we might use a software defined networking architec-
ture for our scheduler similar to µSDN. [2]
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