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Abstract
For low-power wireless networks, it is important to sur-

vive interference to be usable for Industrial Internet-of-
Things (IIoT) applications. Distributed flooding protocols
like Glossy or Chaos have shown that they can meet the ex-
pectations of surviving interference and node failures. How-
ever, non-distributed, centralized schedulers are favorable
for IIoT but are not used yet in these environments. In this
paper, we explore the use of centralized schedulers for low-
power wireless networks to achieve robustness in data col-
lection applications.

1 Introduction
The growing number of Internet of Things (IoT) and par-

ticularly Industrial Internet of Things (IIoT) applications us-
ing wireless communication has strong requirements on reli-
ability and latency. Because many devices are battery pow-
ered, or harvest their energy themselves, low-power opera-
tion including a low energy consumption is another impor-
tant factor to keep as low as possible.

Based on the mentioned requirements, different protocols
for data collection, especially distributed ones, have been de-
veloped. These include Glossy [3] and Glossy-based pro-
tocols as well as protocols based on the best-effort rout-
ing protocol RPL [7]. These protocols have the advantage
to be able to adapt easily to non-predefined communica-
tions. A centralized approach on the other hand, needs to
know which communications have to be performed at a given
point in time and can be able to guarantee a certain reliabil-
ity and latency for these communications. Moreover, cen-
tralized approaches are not necessarily dependant on rout-
ing protocol like RPL. Existing centralized schedulers focus
mainly on the schedulability of communications in (almost)
interference-free networks with highly reliable links.

We present C-TSCH, a centralized scheduler for TSCH,

working with a novel routing strategy sliding windows. This
strategy enables the use of centralized schedulers in networks
susceptible to interference, combining the advantages of cen-
tralized schedulers with those of traditionally distributed
ones.

2 Centralized Scheduler (C-TSCH)
The centralized scheduler we present in this paper is

based on the TSCH layer implemented in Contiki-NG [5, 2,
1]. Contrary to previously presented centralized scheduling
algorithms, like C-LLF [6], focusing mainly on schedulabil-
ity, the focus of our scheduler is on reliability of communi-
cations in networks susceptible to interference.

The scheduler consists of two modules, a Contiki network
layer and a scheduling software, on a central server, perform-
ing the routing and scheduling using a modified version of
a shortest-path first scheduler and applying the retransmis-
sion strategy of sliding windows to it. The network layer
performs the neighbor discovery, the implementation of the
TSCH schedule as well as the main communication func-
tions of sending, receiving and forwarding. The neighbor
discovery for the competition version of the scheduler was
performed prior to the evaluation using broadcasts with indi-
vidual transmission slots for each node in the network.

Besides these network layer implementations, the follow-
ing changes of the TSCH layer were necessary. We extended
the behaviour of the TSCH queues from neighbor-based to
flow-based. Flow-based queues have the advantage of being
able to forward data independent of the order it was received
in.

The scheduling software which is written in Python
allows an easier implementation and testing of different
scheduling algorithms and retransmission strategies than a
scheduler which is part of the nodes’ operating system. Our
scheduling software creates the schedules for the node lay-
outs given for the competition, based on the data from mul-
tiple neighbor discovery runs. It uses a modified shortest-
path first scheduler with the retransmission strategy of slid-
ing windows and generates the schedule as C-code which is
used for the evaluation of the competition.

2.1 Sliding Windows
Our scheduling strategy of sliding windows introduces a

variable number of retransmissions for a route from a trans-
mitter to a receiver to add robustness of the system to inter-
ference while adding the least possible increase of latency.International Conference on Embedded Wireless 
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1 2 3 4 5 6 7

A TX TX TX TX

B RX RXTX RXTX RXTX TX

C RX RXTX RXTX RXTX TX

D RX RXTX RXTX RXTX TX

E RX RX RX RX

Figure 1. An example of the sliding window strategy. A
packet is to be transmitted from node A to E via B, C and
D. The size of the sliding window is 5, as seen for nodes
B, C and D.

To have a variable number of retransmissions per hop of
a communication flow, we use TSCH slots that can be ei-
ther used for reception or for transmission (RXTX). With
these slots, our scheduler is not limited to a fixed number
of retransmissions per hop but can instead dynamically per-
form as many retransmissions as needed depending on the
surrounding interference level. After a successful transmis-
sion, the remaining transmission slots are skipped.

An important parameter of this strategy is the window
size which is the number of timeslots a node is maximally
involved in for communication. This window size also deter-
mines how many timeslots a transmission maximally takes.
In the best case, without interference, it takes no more times-
lots than the number of hops, like traditional scheduling al-
gorithms. Whereas it can take a maximum of 2 less than the
window size additional timeslots to perform the end-to-end
transmission.

Figure 1 shows a possible schedule for a route of 5 nodes
with a window size of 5. For nodes B, C and D, it can be seen
that those three nodes are involved in the communication for
a maximum of 5 timeslots and have a radio on time of max-
imally 5 slots as well. Every node which might be sending
or receiving in the same timeslot (marked with RXTX) has
a shared slot of both modes executing one or the other based
on the previous reception of the packet sent in this commu-
nication.

3 Design
The scheduler design for the competition consists of a

shortest-path first scheduler in combination with the retrans-
mission strategy of sliding windows. We computed the
schedules for the given scenarios and the given network
topology beforehand. Nodes that are not scheduled to be part
of any of the communication flows for each scenario are not
used and therefore their processor is set to low-power mode
4 (LPM 4) to save energy.

4 Assumptions
To be able to compete with our presented scheduler in the

competition, we made the following assumption. We will
perform the scheduling of the connections beforehand result-
ing in a set of static paths, therefore the source and destina-
tion nodes have to be known beforehand and must not change
between runs.

5 Initial Results
The experiments we performed during the preparation

phase show, that our scheduler is able to reach a reliability
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Figure 2. Reliability of our scheduler for all possible la-
tencies for topology 1 with interference levels 0 to 4.

of almost 100% with an average latency of 455.5 ms and us-
ing only 160 J of energy for the whole testbed consisting of
51 nodes. These measurements were reached without any
generated interference. Figure 2 shows the achievable reli-
ability for different interference levels dependant on the ac-
ceptable latency. It shows that the created schedule performs
well for no interference, for which the schedule is optimized,
but there is room for improvements for scenarios with inter-
ference present.
6 Discussion

As seen in the initial results, our presented solution works
well for no or only little interference, but not well enough
for IIoT applications susceptible to higher interference lev-
els. This is due to using a single path only, for each com-
munication flow, which cannot adapt to strong interference
levels along the path. Moreover, the TSCH initialization
takes a long time with high interference levels, leading to a
low reliability in the beginning of an experimental run. Fur-
thermore, the limited hardware capabilities of TelosB nodes
(RAM and ROM) coupled with a modern operating system
(Contiki-NG) and the need to include all possible schedules
in the firmware are very challenging.
7 Conclusion & Future Work

In this paper, we present C-TSCH, a novel centralized
scheduler based on sliding windows as a solution for the
problem of data collection in low-power wireless networks
susceptible to interference. For a future version of the sched-
uler, we plan to include a multi-path routing strategy as well
as multicast transmissions to ensure better performance un-
der interference.
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