
Demo: Software Suite for NB-IoT Measurement Analysis

Deliang Yang1, Liqian Shen2, Xianghui Zhang2, Xiangmao Chang2, Jun Huang3, Guoliang Xing4

Michigan State University1, Nanjing University of Aeronautics and Astronautics2,
Peking University3, The Chinese University of Hong Kong4

yangdeli@msu.edu, lqshen@nuaa.edu.cn, zhangxianghui824@gmail.com,
xiangmaoch@nuaa.edu.cn, jun.huang@pku.edu.cn, glxing@ie.cuhk.edu.hk

Abstract
Narrowband-Internet of Things standard is in its early

stage of deployment. The lack of a diagnostic and mea-
surement toolset hinders the problem analysis and device
development in the community. In this demo, we present
NBViewer, a software suite that exposed important and de-
tailed low-level insight of the deployed NB-IoT network
without the assistance from the operators. NBViewer also
supports hosting and communication with multiple periph-
eral modules to provide concurrent power measurement and
geolocation information. With such a comprehensive tool at
hand, researchers and developer can identify potential prob-
lems, understand the energy profile, and propose possible so-
lutions with less encumbrance.

1 Introduction
Narrowband-Internet of Things (NB-IoT) is a Low Power

Wide Area Network (LPWAN) radio-access technology de-
veloped by 3rd Generation Partnership Project (3GPP) [1].

Compared with other LPWAN standards such as Lo-
RaWAN [2] and Sigfox [5], NB-IoT offers three key advan-
tages. First, NB-IoT achieves better network coverage be-
cause it re-uses existing deployments of LTE eNodeB base
stations. Second, NB-IoT offers better communication secu-
rity by leveraging the security features of legacy LTE tech-
nology. Third, NB-IoT offers a better quality of service be-
cause it avoids the ISM spectrum where coexisting wireless
devices can cause strong interference. These features make
NB-IoT a promising technology for a wide range of IoT ap-
plication scenarios such as smart metering, manufacturing
automation, smart appliance [4], and logistic tracking [3].

Despite the increasing interest on NB-IoT, the communi-
cation reliability, energy efficiency, and protocol-level inter-
actions of NB-IoT networks in real-world deployments re-
main unclear to both industrial and academic research com-

ServerUE

AT Port

Debug Port

Power Monitor
USB

Serial Port

GPS Module
(Optional)

Visualization

Control

User

Figure 1. System diagram

munities. Our preliminary field test results show complex
adaption to the NB-IoT communication protocols that de-
grades link reliability and causes substantial energy waste.
However, the off-the-shelf NB-IoT nodes do not expose
low-level cell measurement results and protocol messages to
the application layer, which prevents detailed diagnosis and
deeper understanding of the performance degradation.

This demo presents a software suite called NBViewer to
collect, process, and analyze the UE debug messages for the
operational NB-IoT network. It is an extensible software
suite that is mainly built on top of the debug trace logs ex-
posed by the UE to extract and visualize the key low-level
protocol adaptation and interaction as well as their impact
on the UE power consumption. An optional GPS module
can be added to the software suite for geolocation logging
along with the debug trace logging simultaneously. In our
demo, a power monitor is also employed to provide concur-
rent energy consumption measurement. The combination of
the debug logs, geolocation, and the power profile helps one
gain an insight into the status of UE and the deployed NB-
IoT network.

2 System Design
Figure 1 shows the system diagram of the NBViewer

demo. The software suite runs on a server, which is a Linux
or Windows PC hosting the peripherals shown in the dia-
gram. The server reads their output stream, and processes
the data in real-time to visualization. First, it communicates
with an NB-IoT UE via a serial port using AT commands.
Both NB-IoT uplink (UL) and downlink (DL) transmission
are handled by the AT serial port. Second, the hexadecimal
debug logs containing detailed low-level message exchange
are streamed via the Debug serial port. Third, the server alsoInternational Conference on Embedded Wireless 

Systems and Networks (EWSN) 2019 
25–27 February, Beijing, China 
© 2019 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library 
ISBN: 978-0-9949886-3-8

279



supports reading data from an external GPS module, from
which we record the geolocation of the experiment. This is
important when one tries to correlate the measurement re-
sult with a specific location. Finally, the power monitor is
connected to the server to measure the power consumption
of a UE under different working modes, such as UL or DL
transmission, Power Saving Mode (PSM), or Extended Dis-
continuous Reception (eDRX). Currently, the power monitor
is handled by the tools provided by its manufacturer. We plan
to integrate its API to our software suite in the future.

NBViewer

OutputMessage Handler

AT Port

Debug Port 

GPS HandlerDatabase

Decoder
File I/O 

GUI

Analyser

UE Handler

API

Figure 2. Software architecture of the NBViewer

Next, we provide a detailed discussion on the NBViewer
software architecture, as shown in Figure 2. Five parallelized
threads handle the following tasks respectively:

• Send AT commands to the UE and read the response
from the UE.

• Read hexadecimal raw messages from the UE debug
port. Filter out the unwanted messages. For example,
time synchronization messages in PHY layer occupies
a large portion of the logs while providing little value
to the user. Therefore, we discard these messages to
save the computational overhead in the latter processes.
The integrity of the message packet is also checked to
determine whether this is a decodable packet.

• Query the database of message definitions. Convert the
raw messages to readable logs. The logs are then for-
warded to the message analyzer. Any valuable informa-
tion about the cause of exceptional power consumption
is extracted during this phase.

• Read the geolocation from the GPS module. Convert
the NMEA standard-complaint data to actual velocity,
latitude, and longitude.

• Handle output. It includes exporting debug log to files,
updating GUI display and providing APIs. Specifically,
the APIs support functions like querying the value of
a particular parameter or changing the configuration of
the NBViewer.

Every thread is responsible for a specific task. To improve
the robustness of the program, the inter-thread messages are
carefully handled and passed between threads to avoid po-
tential program halting or crashing.

The system is able to capture protocol debug messages
from all NB-IoT protocol layers, including but not limited to
PHY, MAC, RLC, PDCP, RRC, NAS, EMM, and ESM. One
can also collect geolocation information, power consumption
simultaneously.
3 Implementation

Figure 3 shows the implementation of our system. First,
the UEs we are using are Quectel BC95 or BC28. Second,

Figure 3. System implementation

two serial-USB converters are used to provide the IO con-
nection for the AT and Debug ports of the UE to the server
respectively. Third, the GUI of the software suite is imple-
mented by the PyQt5 library, which is based on Qt 1. Fourth,
the GPS module is a VK172 dongle. It supports adaptive
baud rate and outputs NMEA information continuously. Fi-
nally, the power monitor is the Monsoon HVPM [6]. The
power trace is collected by the PowerTools software inde-
pendently.
4 Conclusions

NB-IoT is a promising cellular IoT standard that supports
long battery life, deep coverage, and massive connection LP-
WAN applications. In this demo, we present NBViewer, a
software suite that interacts with an NB-IoT UE to extract the
fundamental details of the operational NB-IoT network with-
out the support from the operators. Researchers and system
developers can use it to detect potential system loopholes,
analyze the cause of performance degradation, and suggest
corresponding troubleshooting solutions. As this software
suite is also in its early stage, more expected features will be
added to the software suite in the future.
5 Acknowledgments

This work is supported by the US National Science Foun-
dation ECCS1446793.
6 References
[1] 3GPP. Standardization of nb-iot completed. http://www.3gpp.

org/news-events/3gpp-news/1785-nb_iot_complete, 2016. Ac-
cessed: 2018-12-10.

[2] L. Alliance. What is the lorawan specification? https://
lora-alliance.org/about-lorawan, 2018. Accessed: 2018-12-10.

[3] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer. A comparative study of
lpwan technologies for large-scale iot deployment. ICT Express, 2018.

[4] Panasonic. Panasonic and vodafone connecting home devices using
narrowband-iot. https://news.panasonic.com/global/press/
data/2018/08/en180830-4/en180830-4.html, 2018. Accessed:
2018-12-10.

[5] Sigfox. Sigfox technology overview. https://www.sigfox.com/en/
sigfox-iot-technology-overview, 2018. Accessed: 2018-12-10.

[6] M. Solutions. Inc.,“monsoon power monitor,”. https://www.msoon.
com/online-store, 2017.

1https://www.qt.io/

280

http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete
http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete
https://lora-alliance.org/about-lorawan
https://lora-alliance.org/about-lorawan
https://news.panasonic.com/global/press/data/2018/08/en180830-4/en180830-4.html
https://news.panasonic.com/global/press/data/2018/08/en180830-4/en180830-4.html
https://www.sigfox.com/en/sigfox-iot-technology-overview
https://www.sigfox.com/en/sigfox-iot-technology-overview
https://www.msoon.com/online-store
https://www.msoon.com/online-store
https://www.qt.io/


Appendix: Demo Setup
This page shows the requirement of the demo.

Hardware Used
We will bring the following hardware to the venue.

• A laptop

• A GPS dongle

• A Monsoon HVPM

• Quectel BC95 dongle, BC28 dongle

• Two USB-Serial converters.
We will setup the demo by ourselves. The venue should

prepare an outlet for the power.
Space Needed

A desk with 100 cm length and 60 cm width.
Special Instructions

The venue should be in the NB-IoT coverage, otherwise
the UE does not work normally.

281


	Introduction
	System Design
	Implementation
	Conclusions
	References



