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Abstract
Glossy is a dissemination protocol that allows a node to

propagate information to the entire network through con-
structive interference. We present GLOSSAI, a new artificial
intelligence-based version of Glossy. We use reinforcement
learning to determine and update Glossy’s parameters at run-
time. Each node individually learns the best strategy to mini-
mize energy consumption while maintaining high reliability.
Furthermore, nodes can dynamically adapt their parameters
to follow the dynamics of the medium.

1 Introduction
Context. Energy efficient communication is a corner-

stone of low-power wireless networks. Nodes are often pow-
ered by batteries, have strong resource constraints, and must
operate for an extended period of time without maintenance.
These devices operate by performing local sensing or actua-
tion, computation, and by exchanging information. Different
types of traffic are common in low-power wireless networks:
sensed data can be collected by a central node, which acts as
a gateway; information can also be disseminated from one
node to the entire network, for example to distribute a new
network configuration; finally, more complex traffic, such as
many-to-all broadcast, might also be present.

To consume as little energy as possible when communi-
cating, numerous protocols have been designed. Each targets
a specific class of traffic to perform as efficiently as possi-
ble: Glossy [2] offers efficient dissemination, while A2 [1] is
used for network-wide agreement, for instance. In order to
minimize energy consumption, those protocols rely on spe-
cially defined rules, transmission policies, and parameters
that were carefully handpicked and tuned to offer the best
performance. As example, Glossy repeats a transmission N
times before shutting down the radio, N being a parameter
set by the end-user at the beginning of a new deployment. A

high value for N will offer better performance (e.g., reliabil-
ity) at the cost of more energy consumed, whereas minimiz-
ing N minimizes the power consumed, but also reduces the
performance.

Challenges. In Glossy, the transmission policy is static,
i.e., it is defined at startup and remains the same for the entire
network’s life. In contrast, the wireless medium is highly dy-
namic: temperature, mobility, and co-existing technologies
can significantly affect its properties. To counteract these
effects, Glossy deployments use a high N parameter. Perfor-
mance and connectivity are maintained even under external
interference, at the cost of an increased energy consumption.

Approach. We present GLOSSAI, a new version of
Glossy that leverages the advances in artificial intelligence
and machine learning to bring adaptivity to the dissemina-
tion protocol. GLOSSAI chooses the best N for each node at
runtime to minimize energy consumption. Furthermore, it is
able to react to the dynamics of the medium. We use Rein-
forcement Learning (RL), a technique that received a lot of
attention lately by beating the world champion at the game
of Go, and by learning how to beat top chess players in less
than four hours.
2 Reinforcement-driven Glossy

Reinforcement learning. We motivate why Glossy can
be represented as a RL problem. In RL, an agent tries to learn
which action (or list of actions) achieves an unknown goal
and maximizes an arbitrary reward function. An agent learns
through trial-and-error, i.e., by acting on its environment and
by observing the changes induced. This is different from
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Figure 1. Architecture of GLOSSAI. Local statistics and
statistics from other nodes in the network are periodi-
cally collected and used as an input to a deep Q-network,
which outputs the updated N parameter for Glossy.
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Figure 2. Rewards during the learning phase. A reward
is an arbitrary scalar in [-1,0]. We train GLOSSAI over
traces taken from Flocklab. Each iteration represents
one update of N.

traditional supervised learning, in which some input-output
tuples are known (i.e., we have training examples), and the
goal is to generalize to unseen input.

Glossy follows a similar structure. Each node corre-
sponds to one agent. A node wants to maximize perfor-
mance, i.e., reliability, and wants to minimize energy con-
sumption, i.e., the radio-on time. Our reward function is
therefore rewarding a node if its radio-on time is low, while
the reliability of the system stays high. Periodically, a node
decides if it needs to update Glossy’s N parameter, i.e., the
number of time a received packet is retransmitted during a
flood. Updating N will likely affect both the radio on-time
and reliability of the flood. Therefore, the agent can observe
how useful its action was, and compute a new reward.

Architecture. Fig. 1 presents the architecture of
GLOSSAI. We build a new layer around Glossy, and in-
troduce a control subsystem. We collect both local perfor-
mance (i.e., radio-on time and reliability) and statistics from
all other nodes periodically. We then use a deep Q-network
to compute the new N parameter for Glossy.

Execution. GLOSSAI is divided into two phases: a learn-
ing phase and an operational phase.

Learning phase: the deep Q-network starts by choosing
random actions and observe how well the system is perform-
ing. Periodically, the neural network is updated to reflect
new discoveries. As time passes and as the agent builds up
knowledge about its environment, it transitions from using
randomness towards choosing the best action, i.e., the action
that is more likely to give a higher reward. To improve sta-
bility during learning, all nodes are first trained together. A
unique neural network is trained for the entire network over
traces obtained from a testbed for many iterations. Once the
learning converged to a correct behavior, we copy the trained
neural network to all nodes, and then train each node inde-
pendently on the testbed. This technique allows GLOSSAI
to: (a) improve stability and guarantee convergence during
the first step and (b) allows an near-optimal individual be-
havior with the individual learning step.

Operational phase: nodes do not rely on randomness any-
more. Instead, each local N parameter is always locally com-
puted based on the current state on the network, and on the

Figure 3. Comparing Glossy and GLOSSAI during the
operational phase. The reward function influences the
tradeoff between energy efficiency and reliability.

knowledge of its dynamics. Periodically, nodes exchange
their local performance with the rest of the network. Since
each node learned an individual strategy, it converges to the
optimal local N based on its location in the topology.
3 Preliminary Results

We base our work on the original implementation of
Glossy, for Tmote Sky running Contiki. Fig. 2 presents
GLOSSAI during its learning phase. The system is trained on
traces containing over 6 000 floods from the Flocklab testbed
(27 nodes). A single neural network is trained for all nodes.
As the system builds knowledge of the network dynamics,
it learns to reduce N to save energy. The standard devia-
tion decreases as the probability of taking random action lin-
early decreases with time. After 100K iterations (i.e., trials),
the system learned that under normal conditions (no external
interference injected), N must be kept to a minimal value,
likely 1 or 2, to minimize energy consumption.

Fig. 3 shows how GLOSSAI behaves during operational
runtime. Because the system converges to a very small N for
normal conditions, it obtains the same reliability as Glossy
with N = 1. The higher radio-on time is mostly due to the
convergence time of N towards 1, and the fact that GLOSSAI
will increase N after dropped packets, until the reliability is
stable again.
4 Challenges and Future Work

Learning how to optimize Glossy at runtime is no easy
task. We list three main challenges that delineate our future
work: (a) Individual learning is more prone to instability as
it does not fulfill the assumptions behind guaranteed conver-
gence of learning. Thus, special care must be given to in-
dividual learning to allow a stable and reproducible process.
(b) Maintaining up-to-date information about the network’s
state can be an expensive operation, as Glossy does not pro-
vide feedback. The collection step can cause an important
overhead if done frequently. (c) Executing a neural network
can be an expensive computation step; the neural network
must remain small and must only contain simple operations.
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